Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis of novel N-acyl-β-d-glucopyranosylamines and ureas as potential lead cytostatic agents

Identifieur interne : 000294 ( Pmc/Corpus ); précédent : 000293; suivant : 000295

Synthesis of novel N-acyl-β-d-glucopyranosylamines and ureas as potential lead cytostatic agents

Auteurs : Vanessa Parmenopoulou ; Stella Manta ; Athina Dimopoulou ; Nikolaos Kollatos ; Dominique Schols ; Dimitri Komiotis

Source :

RBID : PMC:7079967

Abstract

Novel classes of acetylated and fully deprotected N-acyl-β-d-glucopyranosylamines and ureas have been synthesized and biologically evaluated. Acylation of the per-O-acetylated β-d-glucopyranosylurea (5), easily prepared via its corresponding phosphinimine derivative, by zinc chloride catalyzed reaction of the corresponding acyl chlorides RCOCl (af) gave the protected N-acyl-β-d-glucopyranosylureas (6af), in acceptable-to-moderate yields. Subsequent deacetylation of analogues 6af under Zemplén conditions afforded the fully deprotected derivatives 7a,b,d,e,f, while the desired urea 7c was formed after treatment of 6c with dibutyltin oxide. All protected and unprotected compounds were examined for their cytotoxic activity in different L1210, CEM and HeLa tumor cell lines and were also evaluated against a broad panel of DΝΑ and RNA viruses. Derivative 7c exhibited cytostatic activity against the three evaluated tumor cell lines (IC50 9–24 μΜ) and might be the basis for the synthesis of structure-related derivatives with improved cytostatic potential. Only analogue 6f weakly but significantly inhibited the replication of parainfluenza-3 virus, Sindbis virus and Coxsackie virus B4 in cell cultures at concentrations of 45–58 μM.


Url:
DOI: 10.1007/s00044-016-1539-5
PubMed: NONE
PubMed Central: 7079967

Links to Exploration step

PMC:7079967

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synthesis of novel
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines and ureas as potential lead cytostatic agents</title>
<author>
<name sortKey="Parmenopoulou, Vanessa" sort="Parmenopoulou, Vanessa" uniqKey="Parmenopoulou V" first="Vanessa" last="Parmenopoulou">Vanessa Parmenopoulou</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Manta, Stella" sort="Manta, Stella" uniqKey="Manta S" first="Stella" last="Manta">Stella Manta</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dimopoulou, Athina" sort="Dimopoulou, Athina" uniqKey="Dimopoulou A" first="Athina" last="Dimopoulou">Athina Dimopoulou</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kollatos, Nikolaos" sort="Kollatos, Nikolaos" uniqKey="Kollatos N" first="Nikolaos" last="Kollatos">Nikolaos Kollatos</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schols, Dominique" sort="Schols, Dominique" uniqKey="Schols D" first="Dominique" last="Schols">Dominique Schols</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.5596.f</institution-id>
<institution-id institution-id-type="ISNI">0000000106687884</institution-id>
<institution>Department of Microbiology and Immunology, Rega Institute for Medical Research,</institution>
<institution>KU Leuven,</institution>
</institution-wrap>
Louvain, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Komiotis, Dimitri" sort="Komiotis, Dimitri" uniqKey="Komiotis D" first="Dimitri" last="Komiotis">Dimitri Komiotis</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmc">7079967</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079967</idno>
<idno type="RBID">PMC:7079967</idno>
<idno type="doi">10.1007/s00044-016-1539-5</idno>
<idno type="pmid">NONE</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000294</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000294</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Synthesis of novel
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines and ureas as potential lead cytostatic agents</title>
<author>
<name sortKey="Parmenopoulou, Vanessa" sort="Parmenopoulou, Vanessa" uniqKey="Parmenopoulou V" first="Vanessa" last="Parmenopoulou">Vanessa Parmenopoulou</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Manta, Stella" sort="Manta, Stella" uniqKey="Manta S" first="Stella" last="Manta">Stella Manta</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dimopoulou, Athina" sort="Dimopoulou, Athina" uniqKey="Dimopoulou A" first="Athina" last="Dimopoulou">Athina Dimopoulou</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kollatos, Nikolaos" sort="Kollatos, Nikolaos" uniqKey="Kollatos N" first="Nikolaos" last="Kollatos">Nikolaos Kollatos</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schols, Dominique" sort="Schols, Dominique" uniqKey="Schols D" first="Dominique" last="Schols">Dominique Schols</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.5596.f</institution-id>
<institution-id institution-id-type="ISNI">0000000106687884</institution-id>
<institution>Department of Microbiology and Immunology, Rega Institute for Medical Research,</institution>
<institution>KU Leuven,</institution>
</institution-wrap>
Louvain, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Komiotis, Dimitri" sort="Komiotis, Dimitri" uniqKey="Komiotis D" first="Dimitri" last="Komiotis">Dimitri Komiotis</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Medicinal Chemistry Research</title>
<idno type="ISSN">1054-2523</idno>
<idno type="eISSN">1554-8120</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Novel classes of acetylated and fully deprotected
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines and ureas have been synthesized and biologically evaluated. Acylation of the per-
<italic>O</italic>
-acetylated
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylurea (
<bold>5</bold>
), easily prepared via its corresponding phosphinimine derivative, by zinc chloride catalyzed reaction of the corresponding acyl chlorides RCOCl (
<bold>a</bold>
<bold>f</bold>
) gave the protected
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylureas (
<bold>6a</bold>
<bold>f</bold>
), in acceptable-to-moderate yields. Subsequent deacetylation of analogues
<bold>6a</bold>
<bold>f</bold>
under Zemplén conditions afforded the fully deprotected derivatives
<bold>7a,b,d,e,f</bold>
, while the desired urea
<bold>7c</bold>
was formed after treatment of
<bold>6c</bold>
with dibutyltin oxide. All protected and unprotected compounds were examined for their cytotoxic activity in different L1210, CEM and HeLa tumor cell lines and were also evaluated against a broad panel of DΝΑ and RNA viruses. Derivative
<bold>7c</bold>
exhibited cytostatic activity against the three evaluated tumor cell lines (IC
<sub>50</sub>
9–24 μΜ) and might be the basis for the synthesis of structure-related derivatives with improved cytostatic potential. Only analogue
<bold>6f</bold>
weakly but significantly inhibited the replication of parainfluenza-3 virus, Sindbis virus and Coxsackie virus B4 in cell cultures at concentrations of 45–58 μM.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Agoston, K" uniqKey="Agoston K">K Agoston</name>
</author>
<author>
<name sortKey="Dob, A" uniqKey="Dob A">A Dobó</name>
</author>
<author>
<name sortKey="Rak, J" uniqKey="Rak J">J Rákó</name>
</author>
<author>
<name sortKey="Kerekgyart, J" uniqKey="Kerekgyart J">J Kerékgyártó</name>
</author>
<author>
<name sortKey="Szurmai, Z" uniqKey="Szurmai Z">Z Szurmai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blanc, J" uniqKey="Blanc J">J Blanc</name>
</author>
<author>
<name sortKey="Geney, R" uniqKey="Geney R">R Geney</name>
</author>
<author>
<name sortKey="Menet, C" uniqKey="Menet C">C Menet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, Mi" uniqKey="Davis M">MI Davis</name>
</author>
<author>
<name sortKey="Hunt, Jp" uniqKey="Hunt J">JP Hunt</name>
</author>
<author>
<name sortKey="Herrgard, S" uniqKey="Herrgard S">S Herrgard</name>
</author>
<author>
<name sortKey="Ciceri, P" uniqKey="Ciceri P">P Ciceri</name>
</author>
<author>
<name sortKey="Wodicka, Lm" uniqKey="Wodicka L">LM Wodicka</name>
</author>
<author>
<name sortKey="Pallares, G" uniqKey="Pallares G">G Pallares</name>
</author>
<author>
<name sortKey="Hocker, M" uniqKey="Hocker M">M Hocker</name>
</author>
<author>
<name sortKey="Treiber, Dk" uniqKey="Treiber D">DK Treiber</name>
</author>
<author>
<name sortKey="Zarrinkar, Pp" uniqKey="Zarrinkar P">PP Zarrinkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dimopoulou, A" uniqKey="Dimopoulou A">A Dimopoulou</name>
</author>
<author>
<name sortKey="Manta, S" uniqKey="Manta S">S Manta</name>
</author>
<author>
<name sortKey="Kiritsis, C" uniqKey="Kiritsis C">C Kiritsis</name>
</author>
<author>
<name sortKey="Gkaragkouni, Dn" uniqKey="Gkaragkouni D">DN Gkaragkouni</name>
</author>
<author>
<name sortKey="Papasotiriou, I" uniqKey="Papasotiriou I">I Papasotiriou</name>
</author>
<author>
<name sortKey="Balzarini, J" uniqKey="Balzarini J">J Balzarini</name>
</author>
<author>
<name sortKey="Komiotis, D" uniqKey="Komiotis D">D Komiotis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferlay, J" uniqKey="Ferlay J">J Ferlay</name>
</author>
<author>
<name sortKey="Soerjomataram, I" uniqKey="Soerjomataram I">I Soerjomataram</name>
</author>
<author>
<name sortKey="Dikshit, R" uniqKey="Dikshit R">R Dikshit</name>
</author>
<author>
<name sortKey="Eser, S" uniqKey="Eser S">S Eser</name>
</author>
<author>
<name sortKey="Mathers, C" uniqKey="Mathers C">C Mathers</name>
</author>
<author>
<name sortKey="Rebelo, M" uniqKey="Rebelo M">M Rebelo</name>
</author>
<author>
<name sortKey="Parkin, Dm" uniqKey="Parkin D">DM Parkin</name>
</author>
<author>
<name sortKey="Forman, D" uniqKey="Forman D">D Forman</name>
</author>
<author>
<name sortKey="Bray, F" uniqKey="Bray F">F Bray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Helm, Rf" uniqKey="Helm R">RF Helm</name>
</author>
<author>
<name sortKey="Kakhesy, Jj" uniqKey="Kakhesy J">JJ Kakhesy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Isbell, Hs" uniqKey="Isbell H">HS Isbell</name>
</author>
<author>
<name sortKey="Frush, Hl" uniqKey="Frush H">HL Frush</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="J Nne, Pa" uniqKey="J Nne P">PA Jänne</name>
</author>
<author>
<name sortKey="Gray, N" uniqKey="Gray N">N Gray</name>
</author>
<author>
<name sortKey="Settleman, J" uniqKey="Settleman J">J Settleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kantsadi, Al" uniqKey="Kantsadi A">AL Kantsadi</name>
</author>
<author>
<name sortKey="Manta, S" uniqKey="Manta S">S Manta</name>
</author>
<author>
<name sortKey="Psarra, Am" uniqKey="Psarra A">AM Psarra</name>
</author>
<author>
<name sortKey="Dimopoulou, A" uniqKey="Dimopoulou A">A Dimopoulou</name>
</author>
<author>
<name sortKey="Kiritsis, C" uniqKey="Kiritsis C">C Kiritsis</name>
</author>
<author>
<name sortKey="Parmenopoulou, V" uniqKey="Parmenopoulou V">V Parmenopoulou</name>
</author>
<author>
<name sortKey="Skamnaki, Vt" uniqKey="Skamnaki V">VT Skamnaki</name>
</author>
<author>
<name sortKey="Zoumpoulakis, P" uniqKey="Zoumpoulakis P">P Zoumpoulakis</name>
</author>
<author>
<name sortKey="Zographos, Se" uniqKey="Zographos S">SE Zographos</name>
</author>
<author>
<name sortKey="Leonidas, Dd" uniqKey="Leonidas D">DD Leonidas</name>
</author>
<author>
<name sortKey="Komiotis, D" uniqKey="Komiotis D">D Komiotis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kokosza, K" uniqKey="Kokosza K">K Kokosza</name>
</author>
<author>
<name sortKey="Balzarini, J" uniqKey="Balzarini J">J Balzarini</name>
</author>
<author>
<name sortKey="Piotrowska, Dg" uniqKey="Piotrowska D">DG Piotrowska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Hm" uniqKey="Liu H">HM Liu</name>
</author>
<author>
<name sortKey="Yan, X" uniqKey="Yan X">X Yan</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Cs" uniqKey="Lu C">CS Lu</name>
</author>
<author>
<name sortKey="Tang, K" uniqKey="Tang K">K Tang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Jin, B" uniqKey="Jin B">B Jin</name>
</author>
<author>
<name sortKey="Yin, Dl" uniqKey="Yin D">DL Yin</name>
</author>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C Ma</name>
</author>
<author>
<name sortKey="Chen, Xg" uniqKey="Chen X">XG Chen</name>
</author>
<author>
<name sortKey="Huang, Hh" uniqKey="Huang H">HH Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manta, S" uniqKey="Manta S">S Manta</name>
</author>
<author>
<name sortKey="Parmenopoulou, V" uniqKey="Parmenopoulou V">V Parmenopoulou</name>
</author>
<author>
<name sortKey="Kiritsis, C" uniqKey="Kiritsis C">C Kiritsis</name>
</author>
<author>
<name sortKey="Dimopoulou, A" uniqKey="Dimopoulou A">A Dimopoulou</name>
</author>
<author>
<name sortKey="Kollatos, N" uniqKey="Kollatos N">N Kollatos</name>
</author>
<author>
<name sortKey="Papasotiriou, I" uniqKey="Papasotiriou I">I Papasotiriou</name>
</author>
<author>
<name sortKey="Balzarini, J" uniqKey="Balzarini J">J Balzarini</name>
</author>
<author>
<name sortKey="Komiotis, D" uniqKey="Komiotis D">D Komiotis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckay, Mj" uniqKey="Mckay M">MJ McKay</name>
</author>
<author>
<name sortKey="Nguyen, Hm" uniqKey="Nguyen H">HM Nguyen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montagut, C" uniqKey="Montagut C">C Montagut</name>
</author>
<author>
<name sortKey="Settleman, J" uniqKey="Settleman J">J Settleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novikov, Ms" uniqKey="Novikov M">MS Novikov</name>
</author>
<author>
<name sortKey="Babkov, Da" uniqKey="Babkov D">DA Babkov</name>
</author>
<author>
<name sortKey="Paramonova, Mp" uniqKey="Paramonova M">MP Paramonova</name>
</author>
<author>
<name sortKey="Khandazhinskaya, Al" uniqKey="Khandazhinskaya A">AL Khandazhinskaya</name>
</author>
<author>
<name sortKey="Ozerov, Aa" uniqKey="Ozerov A">AA Ozerov</name>
</author>
<author>
<name sortKey="Chizhov, Ao" uniqKey="Chizhov A">AO Chizhov</name>
</author>
<author>
<name sortKey="Andrei, G" uniqKey="Andrei G">G Andrei</name>
</author>
<author>
<name sortKey="Snoeck, R" uniqKey="Snoeck R">R Snoeck</name>
</author>
<author>
<name sortKey="Balzarini, J" uniqKey="Balzarini J">J Balzarini</name>
</author>
<author>
<name sortKey="Seley Radtke, Kl" uniqKey="Seley Radtke K">KL Seley-Radtke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parmenopoulou, V" uniqKey="Parmenopoulou V">V Parmenopoulou</name>
</author>
<author>
<name sortKey="Kantsadi, Al" uniqKey="Kantsadi A">AL Kantsadi</name>
</author>
<author>
<name sortKey="Tsirkone, Vg" uniqKey="Tsirkone V">VG Tsirkone</name>
</author>
<author>
<name sortKey="Chatzileontiadou, Ds" uniqKey="Chatzileontiadou D">DS Chatzileontiadou</name>
</author>
<author>
<name sortKey="Manta, S" uniqKey="Manta S">S Manta</name>
</author>
<author>
<name sortKey="Zographos, Se" uniqKey="Zographos S">SE Zographos</name>
</author>
<author>
<name sortKey="Molfeta, C" uniqKey="Molfeta C">C Molfeta</name>
</author>
<author>
<name sortKey="Archontis, G" uniqKey="Archontis G">G Archontis</name>
</author>
<author>
<name sortKey="Agius, L" uniqKey="Agius L">L Agius</name>
</author>
<author>
<name sortKey="Hayes, Jm" uniqKey="Hayes J">JM Hayes</name>
</author>
<author>
<name sortKey="Leonidas, Dd" uniqKey="Leonidas D">DD Leonidas</name>
</author>
<author>
<name sortKey="Komiotis, D" uniqKey="Komiotis D">D Komiotis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paulsen, H" uniqKey="Paulsen H">H Paulsen</name>
</author>
<author>
<name sortKey="Pflufhaupt, Kw" uniqKey="Pflufhaupt K">KW Pflufhaupt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterson, Qp" uniqKey="Peterson Q">QP Peterson</name>
</author>
<author>
<name sortKey="Hsu, Dc" uniqKey="Hsu D">DC Hsu</name>
</author>
<author>
<name sortKey="Goode, Dr" uniqKey="Goode D">DR Goode</name>
</author>
<author>
<name sortKey="Novotny, Cj" uniqKey="Novotny C">CJ Novotny</name>
</author>
<author>
<name sortKey="Totten, Rk" uniqKey="Totten R">RK Totten</name>
</author>
<author>
<name sortKey="Hergenrother, Pj" uniqKey="Hergenrother P">PJ Hergenrother</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinter, I" uniqKey="Pinter I">I Pinter</name>
</author>
<author>
<name sortKey="Kovacs, J" uniqKey="Kovacs J">J Kovacs</name>
</author>
<author>
<name sortKey="Toth, G" uniqKey="Toth G">G Toth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Putt, Ks" uniqKey="Putt K">KS Putt</name>
</author>
<author>
<name sortKey="Chen, Gw" uniqKey="Chen G">GW Chen</name>
</author>
<author>
<name sortKey="Pearson, Jm" uniqKey="Pearson J">JM Pearson</name>
</author>
<author>
<name sortKey="Sandhorst, Js" uniqKey="Sandhorst J">JS Sandhorst</name>
</author>
<author>
<name sortKey="Hoagland, Ms" uniqKey="Hoagland M">MS Hoagland</name>
</author>
<author>
<name sortKey="Kwon, Jj" uniqKey="Kwon J">JJ Kwon</name>
</author>
<author>
<name sortKey="Hwang, Sk" uniqKey="Hwang S">SK Hwang</name>
</author>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H Jin</name>
</author>
<author>
<name sortKey="Churchwell, Mi" uniqKey="Churchwell M">MI Churchwell</name>
</author>
<author>
<name sortKey="Cho, Mh" uniqKey="Cho M">MH Cho</name>
</author>
<author>
<name sortKey="Doerge, Dr" uniqKey="Doerge D">DR Doerge</name>
</author>
<author>
<name sortKey="Helferich, Wg" uniqKey="Helferich W">WG Helferich</name>
</author>
<author>
<name sortKey="Hergenrother, Pj" uniqKey="Hergenrother P">PJ Hergenrother</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sausville, Ea" uniqKey="Sausville E">EA Sausville</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sethi, N" uniqKey="Sethi N">N Sethi</name>
</author>
<author>
<name sortKey="Kang, Y" uniqKey="Kang Y">Y Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Somsak, L" uniqKey="Somsak L">L Somsák</name>
</author>
<author>
<name sortKey="Felfoldi, N" uniqKey="Felfoldi N">N Felföldi</name>
</author>
<author>
<name sortKey="K Nya, B" uniqKey="K Nya B">B Kónya</name>
</author>
<author>
<name sortKey="Huse, C" uniqKey="Huse C">C Hüse</name>
</author>
<author>
<name sortKey="Telep, K" uniqKey="Telep K">K Telepó</name>
</author>
<author>
<name sortKey="Bokor, E" uniqKey="Bokor E">E Bokor</name>
</author>
<author>
<name sortKey="Czifrak, K" uniqKey="Czifrak K">K Czifrák</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Somsak, L" uniqKey="Somsak L">L Somsák</name>
</author>
<author>
<name sortKey="Czifrak, K" uniqKey="Czifrak K">K Czifrák</name>
</author>
<author>
<name sortKey="T Th, M" uniqKey="T Th M">M Tóth</name>
</author>
<author>
<name sortKey="Bokor, E" uniqKey="Bokor E">E Bokor</name>
</author>
<author>
<name sortKey="Chrysina, Ed" uniqKey="Chrysina E">ED Chrysina</name>
</author>
<author>
<name sortKey="Alexacou, Km" uniqKey="Alexacou K">KM Alexacou</name>
</author>
<author>
<name sortKey="Hayes, Jm" uniqKey="Hayes J">JM Hayes</name>
</author>
<author>
<name sortKey="Tiraidis, C" uniqKey="Tiraidis C">C Tiraidis</name>
</author>
<author>
<name sortKey="Lazoura, E" uniqKey="Lazoura E">E Lazoura</name>
</author>
<author>
<name sortKey="Leonidas, Dd" uniqKey="Leonidas D">DD Leonidas</name>
</author>
<author>
<name sortKey="Zographos, Se" uniqKey="Zographos S">SE Zographos</name>
</author>
<author>
<name sortKey="Oikonomakos, Ng" uniqKey="Oikonomakos N">NG Oikonomakos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tropper, Fd" uniqKey="Tropper F">FD Tropper</name>
</author>
<author>
<name sortKey="Andersson, Fo" uniqKey="Andersson F">FO Andersson</name>
</author>
<author>
<name sortKey="Braun, S" uniqKey="Braun S">S Braun</name>
</author>
<author>
<name sortKey="Roy, R" uniqKey="Roy R">R Roy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilhelm, S" uniqKey="Wilhelm S">S Wilhelm</name>
</author>
<author>
<name sortKey="Carter, C" uniqKey="Carter C">C Carter</name>
</author>
<author>
<name sortKey="Lynch, M" uniqKey="Lynch M">M Lynch</name>
</author>
<author>
<name sortKey="Lowinger, T" uniqKey="Lowinger T">T Lowinger</name>
</author>
<author>
<name sortKey="Dumas, J" uniqKey="Dumas J">J Dumas</name>
</author>
<author>
<name sortKey="Smith, Ra" uniqKey="Smith R">RA Smith</name>
</author>
<author>
<name sortKey="Schwartz, B" uniqKey="Schwartz B">B Schwartz</name>
</author>
<author>
<name sortKey="Simantov, R" uniqKey="Simantov R">R Simantov</name>
</author>
<author>
<name sortKey="Kelley, S" uniqKey="Kelley S">S Kelley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Zhai, X" uniqKey="Zhai X">X Zhai</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Tan, Z" uniqKey="Tan Z">Z Tan</name>
</author>
<author>
<name sortKey="Gong, P" uniqKey="Gong P">P Gong</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Med Chem Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Med Chem Res</journal-id>
<journal-title-group>
<journal-title>Medicinal Chemistry Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">1054-2523</issn>
<issn pub-type="epub">1554-8120</issn>
<publisher>
<publisher-name>Springer US</publisher-name>
<publisher-loc>New York</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmc">7079967</article-id>
<article-id pub-id-type="publisher-id">1539</article-id>
<article-id pub-id-type="doi">10.1007/s00044-016-1539-5</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Synthesis of novel
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines and ureas as potential lead cytostatic agents</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Parmenopoulou</surname>
<given-names>Vanessa</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Manta</surname>
<given-names>Stella</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dimopoulou</surname>
<given-names>Athina</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kollatos</surname>
<given-names>Nikolaos</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schols</surname>
<given-names>Dominique</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Komiotis</surname>
<given-names>Dimitri</given-names>
</name>
<address>
<phone>+302410 565285</phone>
<email>dkom@bio.uth.gr</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.410558.d</institution-id>
<institution-id institution-id-type="ISNI">0000000100356670</institution-id>
<institution>Laboratory of Bioorganic Chemistry, Department of Biochemistry and Biotechnology,</institution>
<institution>University of Thessaly,</institution>
</institution-wrap>
26 Ploutonos Str., 41 221 Larissa, Greece</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.5596.f</institution-id>
<institution-id institution-id-type="ISNI">0000000106687884</institution-id>
<institution>Department of Microbiology and Immunology, Rega Institute for Medical Research,</institution>
<institution>KU Leuven,</institution>
</institution-wrap>
Louvain, Belgium</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>29</day>
<month>2</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<volume>25</volume>
<issue>5</issue>
<fpage>932</fpage>
<lpage>940</lpage>
<history>
<date date-type="received">
<day>12</day>
<month>1</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>2</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© Springer Science+Business Media New York 2016</copyright-statement>
</permissions>
<abstract id="Abs1">
<p id="Par1">Novel classes of acetylated and fully deprotected
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines and ureas have been synthesized and biologically evaluated. Acylation of the per-
<italic>O</italic>
-acetylated
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylurea (
<bold>5</bold>
), easily prepared via its corresponding phosphinimine derivative, by zinc chloride catalyzed reaction of the corresponding acyl chlorides RCOCl (
<bold>a</bold>
<bold>f</bold>
) gave the protected
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylureas (
<bold>6a</bold>
<bold>f</bold>
), in acceptable-to-moderate yields. Subsequent deacetylation of analogues
<bold>6a</bold>
<bold>f</bold>
under Zemplén conditions afforded the fully deprotected derivatives
<bold>7a,b,d,e,f</bold>
, while the desired urea
<bold>7c</bold>
was formed after treatment of
<bold>6c</bold>
with dibutyltin oxide. All protected and unprotected compounds were examined for their cytotoxic activity in different L1210, CEM and HeLa tumor cell lines and were also evaluated against a broad panel of DΝΑ and RNA viruses. Derivative
<bold>7c</bold>
exhibited cytostatic activity against the three evaluated tumor cell lines (IC
<sub>50</sub>
9–24 μΜ) and might be the basis for the synthesis of structure-related derivatives with improved cytostatic potential. Only analogue
<bold>6f</bold>
weakly but significantly inhibited the replication of parainfluenza-3 virus, Sindbis virus and Coxsackie virus B4 in cell cultures at concentrations of 45–58 μM.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines</kwd>
<kwd>
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylureas</kwd>
<kwd>Antitumor agents</kwd>
<kwd>Cytotoxic activity</kwd>
<kwd>Antiviral activity</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Science+Business Media New York 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p id="Par2">Cancer figures among the major concerns of modern healthcare due to its rapidly increasing rates and associated mortality. In light of the growing prevalence of malignant carcinomas and their implications, equal impetus is being paid by the scientific community to research on the disease (Ferlay
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR5">2015</xref>
). Although significant effort has been made to improve the current preventive and/or therapeutic strategies against carcinogenesis, the development of new selective agents capable of suppressing tumor growth and metastasis would contribute greatly to a better prognosis and current therapy (Sethi and Kang,
<xref ref-type="bibr" rid="CR23">2011</xref>
).</p>
<p id="Par3">In the beginning of 1990s (Lu
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR12">2013</xref>
), small molecule kinase inhibitors have shown great potential as novel therapeutics for the treatment of cancer (Sausville,
<xref ref-type="bibr" rid="CR22">2000</xref>
) because of their intimate involvement in oncogenic signal transduction pathways that present multiple physiological responses, tumor cell proliferation and cell survival (Blanc
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR2">2013</xref>
). Among them, sorafenib (Nevaxar), a diaryl urea analogue, is a small molecular inhibitor of several tyrosine protein kinases for the treatment of advanced renal cell carcinoma (RCC) and advanced hepatocellular carcinoma (HCC) (Wilhelm
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR27">2006</xref>
; Montagut and Settleman,
<xref ref-type="bibr" rid="CR15">2009</xref>
). In the same manner, PAC-1 bearing the
<italic>N</italic>
-acylhydrazone pharmacophore is promising as a new antitumor drug that can directly influence the apoptotic machinery or suicide of cells and has shown good results in mouse models (Zhang
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR28">2012</xref>
; Peterson
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR19">2009</xref>
; Putt
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR21">2006</xref>
). Finally, carboxamide analogue sunitinib (Sutent) has proven to be successful in the treatment of renal cancer and pancreatic neuroendocrine tumors, while thiazole carboxamide analogue dasatinib is used for the treatment of several types of leukemia (Jänne
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR8">2009</xref>
). Probably, the use of amide, urea or heteroatom linkers such as nitrogen or oxygen in the structure of the aforementioned inhibitors are important features for their selectivity that allow the formation of one or two hydrogen bonds with residues of the specific kinase (Davis
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR3">2011</xref>
).</p>
<p id="Par4">In view of the above observations and as a continuation of our long-term interest in glucopyranosyl analogues as antitumor/antiviral agents and potent enzyme inhibitors (Parmenopoulou
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR17">2014</xref>
; Dimopoulou
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR4">2013</xref>
; Manta
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR13">2012</xref>
; Kantsadi
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR9">2012</xref>
), it was envisaged that compounds bearing a glucopyranosyl moiety linked with various aralkyl and aralkenyl groups (Somsák
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR24">2008a</xref>
,
<xref ref-type="bibr" rid="CR25">b</xref>
) via the pharmacophore linkers NHCO and NHCONHCO would be endowed with pronounced antitumor activity. We hereby report the facile synthesis and biological properties of novel acetylated as well as fully deprotected
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines (
<bold>3a</bold>
<bold>f</bold>
,
<bold>4a</bold>
<bold>f</bold>
) and ureas (
<bold>6a</bold>
<bold>f</bold>
,
<bold>7a</bold>
<bold>f</bold>
), respectively.</p>
</sec>
<sec id="Sec2">
<title>Results and discussion</title>
<sec id="Sec3">
<title>Chemistry</title>
<p id="Par5">For the synthesis of the target
<italic>N</italic>
-acyl-
<italic>N</italic>
′-2,3,4,6-tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylureas (
<bold>6a</bold>
<bold>f</bold>
), the per-
<italic>O</italic>
-acetylated
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylurea (
<bold>5</bold>
), easily prepared via its corresponding phosphinimine derivative (Pinter
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR20">1995</xref>
), seemed a suitable precursor. Therefore, acylation of compound
<bold>5</bold>
(Pinter
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR20">1995</xref>
) by zinc chloride (ZnCl
<sub>2</sub>
) catalyzed reaction of the corresponding acyl chlorides RCOCl (
<bold>a</bold>
<bold>f</bold>
) gave derivatives
<bold>6a</bold>
<bold>f</bold>
, in acceptable-to-moderate yields (35–67 %). Although the Lewis acidic zinc chloride not only activates acid chlorides but also catalyze iminium ion formation (Paulsen and Pflufhaupt,
<xref ref-type="bibr" rid="CR18">1980</xref>
; Isbell and Frush,
<xref ref-type="bibr" rid="CR7">1958</xref>
) and, thereby, anomerization (Somsák
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR24">2008a</xref>
,
<xref ref-type="bibr" rid="CR25">b</xref>
), in our case, the
<italic>β</italic>
-anomers
<bold>6a</bold>
<bold>f</bold>
were solely obtained. Their
<sup>1</sup>
H NMR spectra showed large coupling constants for H-1, H-2, H-3, H-4 and H-5 (
<italic>J</italic>
<sub>1,2</sub>
 ≥ 9.4 Hz,
<italic>J</italic>
<sub>2,3</sub>
 ≥ 8.5 Hz,
<italic>J</italic>
<sub>3,4</sub>
 ≥ 8.9 Hz and
<italic>J</italic>
<sub>4,5</sub>
 ≥ 9.4 Hz) arising from the trans-diaxial orientation of these consecutive protons, indicating the
<italic>β</italic>
-configuration of the sugar moiety and equatorially oriented acetyl groups.</p>
<p id="Par6">Subsequent deacetylation of analogues
<bold>6a</bold>
<bold>f</bold>
under Zemplén conditions (Agoston
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR1">2001</xref>
) at 0 °C for 20 min afforded the fully deprotected derivatives
<bold>7a,b,d,e,f</bold>
after flash chromatography, in good yields (72–82 %). Deprotection of acyl urea
<bold>6c</bold>
either with basic or acidic transesterification conditions (sodium methoxide, methanolic ammonia, methanolic hydrogen chloride) was unsuccessful, due to faster cleavage of the
<italic>N</italic>
-acyl moiety than removal of the
<italic>O</italic>
-protecting groups. In order to overcome this difficulty and to successfully synthesize compound
<bold>7c</bold>
, we sought to couple the free glucosyl urea (McKay and Nguyen,
<xref ref-type="bibr" rid="CR14">2014</xref>
; Helm and Kakhesy,
<xref ref-type="bibr" rid="CR6">1989</xref>
) with the desired acyl chloride RCOCl (
<bold>c</bold>
) in the presence of ZnCl
<sub>2</sub>
, but unfortunately only the starting materials were recovered. To our delight, when the acyl urea
<bold>6c</bold>
was stirred in methanol in the presence of 0.5 eq dibutyltin oxide (Bu
<sub>2</sub>
SnO) at reflux (Liu
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR11">2002</xref>
), the acetyl groups were smoothly deprotected and derivative
<bold>7c</bold>
was isolated after flash chromatography, in 83 % yield (Scheme 
<xref rid="Sch1" ref-type="fig">1</xref>
).
<fig id="Sch1">
<label>Scheme 1</label>
<caption>
<p>Reagents and conditions: (
<italic>i</italic>
) H
<sub>2</sub>
, 10 % Pd/C, EtOAc, 20 °C, 24 h; (
<italic>ii</italic>
) DMF, RCOCl, Et
<sub>3</sub>
N, room temperature, 1 h; (
<italic>iii</italic>
) ammonia/MeOH or MeOH, methanolic NaOMe (1 M), Amberlyst 15 (H
<sup>+</sup>
form), room temperature; (
<italic>iv</italic>
) NH
<sub>3</sub>
, CO
<sub>2</sub>
, THF, Ph
<sub>3</sub>
P, 24 h; (
<italic>v</italic>
) CHCl
<sub>3</sub>
, RCOCl, ZnCl
<sub>2</sub>
, reflux; (
<italic>vi</italic>
) MeOH, methanolic NaOMe (1 M), Amberlyst 15 (H
<sup>+</sup>
form), 0 °C, 20 min or MeOH, Bu
<sub>2</sub>
SnO, reflux, 2 h</p>
</caption>
<graphic xlink:href="44_2016_1539_Sch1_HTML" id="MO1"></graphic>
</fig>
</p>
<p id="Par7">All compounds were well characterized by
<sup>1</sup>
H and
<sup>13</sup>
C NMR, mass spectrometry and elemental analysis and gave satisfactory analytical and spectroscopic data, which were in full accordance with their depicted structure. During the spectroscopic characterization, compound
<bold>6f</bold>
appeared to consist of two rotamers, judged from their
<sup>1</sup>
H NMR spectra, which is probably due to hindered rotation of the amide bond.</p>
</sec>
<sec id="Sec4">
<title>Anticancer activity</title>
<p id="Par8">The cytostatic activity of
<bold>3a</bold>
<bold>f</bold>
,
<bold>4a</bold>
<bold>f</bold>
,
<bold>6a</bold>
<bold>f</bold>
and
<bold>7a</bold>
<bold>f</bold>
was determined against murine leukemia (L1210), human lymphocyte (CEM) and human cervix carcinoma (HeLa) cell cultures, and the results are summarized in Table 
<xref rid="Tab1" ref-type="table">1</xref>
.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Cytostatic activity of compounds
<bold>3a</bold>
<bold>f</bold>
,
<bold>4a</bold>
<bold>f</bold>
,
<bold>6a</bold>
<bold>f</bold>
and
<bold>7a</bold>
<bold>f</bold>
against murine leukemia (L1210), human lymphocyte (CEM) and human cervix carcinoma (HeLa) cell cultures and primary fibroblasts</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2">Compound</th>
<th align="left" colspan="3">IC
<sub arrange="stack">50</sub>
<sup arrange="stack">a</sup>
(μM)</th>
<th align="left">MCC
<sup>b</sup>
(μΜ)</th>
</tr>
<tr>
<th align="left">L1210</th>
<th align="left">CEM</th>
<th align="left">HeLa</th>
<th align="left">HEL</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>3a</bold>
</td>
<td align="left">≥250</td>
<td align="left">≥250</td>
<td align="left">≥250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>3b</bold>
</td>
<td align="left">106 ± 6</td>
<td align="left">116 ± 9</td>
<td align="left">118 ± 23</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>3c</bold>
</td>
<td align="left">139 ± 8</td>
<td align="left">180 ± 100</td>
<td align="left">≥250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>3d</bold>
</td>
<td align="left">110 ± 6</td>
<td align="left">99 ± 15</td>
<td align="left">124 ± 18</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>3e</bold>
</td>
<td align="left">184 ± 2</td>
<td align="left">118 ± 5</td>
<td align="left">≥250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>3f</bold>
</td>
<td align="left">103 ± 1</td>
<td align="left">110 ± 5</td>
<td align="left">64 ± 16</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>4a</bold>
</td>
<td align="left">134 ± 1</td>
<td align="left">192 ± 82</td>
<td align="left">84 ± 21</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>4b</bold>
</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>4c</bold>
</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>4d</bold>
</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>4e</bold>
</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>4f</bold>
</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>6a</bold>
</td>
<td align="left">91 ± 15</td>
<td align="left">110 ± 29</td>
<td align="left">100 ± 14</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>6b</bold>
</td>
<td align="left">78 ± 0</td>
<td align="left">38 ± 10</td>
<td align="left">66 ± 12</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>6c</bold>
</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>6d</bold>
</td>
<td align="left">24 ± 0</td>
<td align="left">16 ± 1</td>
<td align="left">44 ± 24</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>6e</bold>
</td>
<td align="left">71 ± 16</td>
<td align="left">41 ± 4</td>
<td align="left">88 ± 17</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>6f</bold>
</td>
<td align="left">47 ± 8</td>
<td align="left">32 ± 1</td>
<td align="left">39 ± 23</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>7a</bold>
</td>
<td align="left">206 ± 44</td>
<td align="left">141 ± 5</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>7b</bold>
</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>7c</bold>
</td>
<td align="left">9.0 ± 5.9</td>
<td align="left">24 ± 1</td>
<td align="left">19 ± 3</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>7d</bold>
</td>
<td align="left">25 ± 2</td>
<td align="left">22 ± 4</td>
<td align="left">45 ± 27</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>7e</bold>
</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>7f</bold>
</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>100</td>
</tr>
<tr>
<td align="left">
<bold>5</bold>
-Fluorouracil</td>
<td align="left">0.33 ± 0.17</td>
<td align="left">18 ± 5</td>
<td align="left">0.54 ± 0.12</td>
<td align="left"></td>
</tr>
<tr>
<td align="left">
<bold>6</bold>
-Mercaptopurine</td>
<td align="left">2.8 ± 1.1</td>
<td align="left">2.8 ± 1.3</td>
<td align="left">1.1 ± 0.1</td>
<td align="left"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
50 % inhibitory concentration or compound concentration required to inhibit cell proliferation by 50 %</p>
<p>
<sup>b</sup>
Minimal cytotoxic concentration or compound concentration required to affect and alter microscopically detectable human lung fibroblast HEL cell morphology</p>
</table-wrap-foot>
</table-wrap>
</p>
<p id="Par9">From the overall results obtained, it was clear that the acetylated
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines (
<bold>3b</bold>
<bold>f</bold>
) and ureas (
<bold>6a</bold>
,
<bold>b</bold>
,
<bold>e</bold>
,
<bold>f</bold>
) showed a better cytostatic profile than their corresponding unprotected derivatives
<bold>4b</bold>
<bold>f</bold>
and
<bold>7a</bold>
,
<bold>b</bold>
,
<bold>e</bold>
,
<bold>f</bold>
, respectively (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). Exceptions were analogues
<bold>4a</bold>
and
<bold>7c</bold>
, which proved to be more cytostatic than their corresponding acetylated congeners
<bold>3a</bold>
and
<bold>6c</bold>
; in particular derivative
<bold>7c</bold>
proved to be the most cytotoxic for all three tumor cell lines (IC
<sub>50</sub>
of 9, 24 and 19 μΜ, respectively). The cytostatic potential of
<bold>7c</bold>
was only 5- to 15-fold lower than the established 6-mercaptopurine anticancer drug. Finally, the acetylated analogue
<bold>6d</bold>
and the unprotected
<bold>7d</bold>
exhibited a comparable degree of cellular cytotoxicity (IC
<sub>50</sub>
of 16–45 μΜ). Also, the tested compounds were not cytotoxic in normal (primary) confluent human lung fibroblast (HEL) cell cultures (MCC
<sub>50</sub>
 > 100 μΜ).</p>
</sec>
<sec id="Sec5">
<title>Broad-spectrum evaluation for potential antiviral activity</title>
<p id="Par10">Compounds
<bold>3a</bold>
<bold>f</bold>
,
<bold>4a</bold>
<bold>f</bold>
,
<bold>6a</bold>
<bold>f</bold>
and
<bold>7a</bold>
<bold>f</bold>
have been evaluated against a broad panel of DΝΑ and RNA viruses, including herpes simplex virus type 1 [HSV-1(KOS)], HSV-2 (G), vaccinia virus and vesicular stomatitis virus (VSV) in HEL cultures; VSV, Coxsackie virus B4 and respiratory syncytial virus (RSV) in HeLa cell cultures; parainfluenza-3 virus, reovirus-1, Sindbis virus, Coxsackie virus B4 and Punta Toro virus in Vero cell cultures; influenza virus A (H1N1, H3N2) and influenza virus B in MDCK cell cultures, feline corona virus (FIPV) and feline herpes virus in CRFK cell cultures and human inmmunodeficiency virus (HIV-1III
<sub>B</sub>
and HIV-2ROD) in CEM T cell cultures.</p>
<p id="Par11">Only the acetylated glucopyranosyl urea
<bold>6f</bold>
was found to inhibit the proliferation of parainfluenza-3 virus, Sindbis virus and Coxsackie virus B4 in Vero cells at the concentration of 45 and 58 μM (
<italic>vide</italic>
IC
<sub>50</sub>
), respectively, whereas the well-described antiviral drug ribavirin showed no activity at all (≥250 μM). The polyanionic compound dextran sulfate (DS) (mw 10,000) was also included as a control compound (Table 
<xref rid="Tab2" ref-type="table">2</xref>
).
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Cytotoxicity and antiviral activity of
<bold>6f</bold>
in Vero cell cultures</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2">Compound</th>
<th align="left" colspan="6">IC
<sub arrange="stack">50</sub>
<sup arrange="stack">b</sup>
(µM)</th>
</tr>
<tr>
<th align="left">Minimum cytotoxic concentration
<sup>a</sup>
(µM)</th>
<th align="left">Parainfluenza-3 virus</th>
<th align="left">Reovirus-1</th>
<th align="left">Sindbis virus</th>
<th align="left">Coxsackie virus B4</th>
<th align="left">Punta Toro virus</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>6f</bold>
</td>
<td align="left">>100</td>
<td align="left">45</td>
<td align="left">>100</td>
<td align="left">58</td>
<td align="left">58</td>
<td char="." align="char">100</td>
</tr>
<tr>
<td align="left">DS-10.000 (µg/mL)</td>
<td align="left">>100</td>
<td align="left">>100</td>
<td align="left">>100</td>
<td align="left">20</td>
<td align="left">100</td>
<td char="." align="char">100</td>
</tr>
<tr>
<td align="left">Ribavirin</td>
<td align="left">>250</td>
<td align="left">250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td align="left">>250</td>
<td char="." align="char">146</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
Required to cause a microscopically detectable alteration of normal cell morphology</p>
<p>
<sup>b</sup>
Required to reduce virus-induced cytopathicity by 50 %</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
</sec>
<sec id="Sec6" sec-type="conclusion">
<title>Conclusion</title>
<p id="Par12">In this study, we report the synthesis of novel acetylated as well as fully deprotected
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines and ureas as potential cytotoxic agents. Since the
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylureas proved to be more cytostatic than the corresponding amines and the final analogues were less potent than their acetylated congeners, it seems that the cytostatic activity of compounds is associated with the type of the linker, while the acetyl moiety may also contribute to the antitumor effect. Derivative
<bold>7c</bold>
exhibited the most enhanced cytostatic activity (IC
<sub>50</sub>
of 9, 24 and 19 μΜ, respectively) and might be the basis for preparing structure-related derivatives with improved cytostatic potential, while analogue
<bold>6f</bold>
inhibited the proliferation of parainfluenza-3 virus, Sindbis virus and Coxsackie virus B4 in Vero cell cultures at the concentration of 45, 58 and 58 μM (vide IC
<sub>50</sub>
), respectively, as compared to ribavirin (
<underline>></underline>
250 μM).</p>
</sec>
<sec id="Sec7">
<title>Experimental</title>
<sec id="Sec8">
<title>Chemistry</title>
<p id="Par13">Thin layer chromatography (TLC) was performed on Merck precoated 60F254 plates. Reactions were monitored by TLC on silica gel, with detection by UV light (254 nm) or by charring with sulfuric acid. Flash chromatography was performed using silica gel (240–400 mesh, Merck).
<sup>1</sup>
H NMR and
<sup>13</sup>
C NMR spectra were obtained at room temperature with a Bruker 300 spectrometer at 300 and 75.5 MHz, respectively, using chloroform-
<italic>d</italic>
(CDCl
<sub>3</sub>
) and methanol-
<italic>d</italic>
<sub>4</sub>
(CD
<sub>3</sub>
OD) with internal tetramethylsilane (TMS). The
<sup>1</sup>
H assignments of compounds 6 were based on
<sup>1</sup>
H–
<sup>1</sup>
H COSY experiments executed using standard Varian software. Chemical shifts (
<italic>δ</italic>
) were given in ppm measured downfield from TMS, and spin–spin coupling constants are in Hz. Mass spectra were obtained on a ThermoQuest Finnigan AQA Mass Spectrometer (electrospray ionization). Optical rotations were measured using an Autopol I polarimeter.</p>
<p id="Par14">All reactions sensitive to oxygen or moisture were carried out under nitrogen atmosphere using oven-dried glassware. Chloroform (CHCl
<sub>3</sub>
) was distilled from phosphorus pentoxide and stored over 4E molecular sieves. Methanol (MeOH) was stored over 3E molecular sieves. 2,3,4,6-Tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl azide (
<bold>1</bold>
) (Tropper
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR26">1992</xref>
), 2,3,4,6-tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glycopyranosylamine (
<bold>2</bold>
),
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines
<bold>3a</bold>
<bold>f</bold>
and
<bold>4a</bold>
<bold>f</bold>
(Parmenopoulou
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR17">2014</xref>
) and 2,3,4,6-tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylurea (
<bold>5</bold>
) (Pinter
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR20">1995</xref>
) were prepared according to the procedures described in literature, and their chemical and physical properties were in agreement with previous data.</p>
<sec id="Sec9">
<title>General procedure for preparation of the
<italic>N</italic>
-acyl-
<italic>N′</italic>
-2,3,4,6-tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylureas (
<bold>6a</bold>
<bold>f</bold>
)</title>
<p id="Par15">To a solution of an acyl chloride (18 mmol) in 20 mL of dry CHCl
<sub>3</sub>
, anhydrous ZnCl
<sub>2</sub>
(0.59 mmol) and 2,3,4,6-tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylurea (
<bold>5</bold>
) (2.56 mmol) were added with stirring. The reaction mixture was refluxed until TLC showed the complete transformation of the urea. Then, the reaction mixture was poured into ice water and was extracted with chloroform (2×). The organic phases were collected and washed with sat. aq. NaHCO
<sub>3</sub>
solution and water. After drying, the solvent was evaporated under vacuo and the residue was purified by flash chromatography (
<italic>n</italic>
-hexane/EtOAc 1:1).</p>
</sec>
<sec id="Sec10">
<title>
<italic>N</italic>
-(
<italic>E</italic>
)-3-(Biphenyl-4-yl)acryloyl-
<italic>N</italic>
′-(2,3,4,6-tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>6a</bold>
)</title>
<p id="Par16">White foam, yield 44 %;
<italic>Rf</italic>
 = 0.28 (
<italic>n</italic>
-hexane/EtOAc 1:1); [
<italic>α</italic>
]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = +4 (
<italic>c</italic>
 = 0.20, CHCl
<sub>3</sub>
);
<sup>1</sup>
H NMR (300 MHz, CDCl
<sub>3</sub>
):
<italic>δ</italic>
9.37 (d, 1H,
<italic>J</italic>
 = 9.0 Hz, NH), 9.10 (s, 1H, NH), 7.86 (d, 1H,
<italic>J</italic>
 = 15.6 Hz, CH=CH), 7.68–7.38 (m, 9H, ArH), 6.51 (d, 1H, CH=CH), 6.39–5.29 (2pseudo t, 2H,
<italic>J</italic>
 = 9.6, 9.4 Hz, H-1, H-3), 5.17–5.08 (2pseudo t, 2H,
<italic>J</italic>
 = 9.4, 9.5 Hz, H-4, H-2), 4.25 (dd, 1H,
<italic>J</italic>
 = 4.3, 12.5 Hz, H-6a), 4.10 (dd, 1H,
<italic>J</italic>
 = 1.9, 12.5 Hz, H-6b), 3.83 (ddd, 1H,
<italic>J</italic>
 = 2.1, 4.1, 10.0 Hz, H-5), 2.06, 2.05, 2.03, 2.01 (4s, 12H, 4OAc);
<sup>13</sup>
C NMR (75.5 MHz, CDCl
<sub>3</sub>
)
<italic>δ</italic>
170.6, 170.1, 169.8, 169.4, 166.4, 154.8 (CO), 145.4, 143.7, 139.9, 132.8, 128.9, 128.8, 128.0, 127.7, 127.0, 118.3 (CH=CH and Ar–C), 79.0, 73.6, 73.0, 70.0, 68.2, 61.6 (C-1–C-6), 20.7, 20.6, 20.5 (OCOCH
<sub>3</sub>
); ESI–MS:
<italic>m/z</italic>
, 597.24 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>30</sub>
H
<sub>32</sub>
N
<sub>2</sub>
O
<sub>11</sub>
: C, 60.40; H, 5.41; N, 4.70; Found: C, 60.17; H, 5.59; N, 4.83.</p>
</sec>
<sec id="Sec11">
<title>
<italic>N</italic>
-4-(5,6,7,8-Tetrahydronaphthalen-2-yl)butanoyl-
<italic>N</italic>
′-(2,3,4,6-tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>6b</bold>
)</title>
<p id="Par17">Yellow foam, Yield 38 %;
<italic>Rf</italic>
 = 0.38 (
<italic>n</italic>
-hexane/EtOAc 1:1); [
<italic>α</italic>
]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = +2 (
<italic>c</italic>
 = 0.20, CHCl
<sub>3</sub>
);
<sup>1</sup>
H NMR (300 MHz, CDCl
<sub>3</sub>
):
<italic>δ</italic>
6.99–6.86 (m, 4H, ArH, NH), 6.13 (d, 1H,
<italic>J</italic>
 = 9.2 Hz, NH), 5.34–5.25 (2pseudo t, 2H,
<italic>J</italic>
 = 9.4, 8.9 Hz, H-1, H-3), 5.06 (t, 1H,
<italic>J</italic>
 = 9.9 Hz, H-4), 4.90 (t, 1H,
<italic>J</italic>
 = 9.6 Hz, H-2), 4.30 (dd, 1H,
<italic>J</italic>
 = 3.8, 12.5 Hz, H-6a), 4.08 (dd, 1H,
<italic>J</italic>
 = 1.1, 12.5 Hz, H-6b), 3.82 (ddd, 1H,
<italic>J</italic>
 = 1.8, 3.8, 10.3 Hz, H-5), 2.73 (m, 4H, tetrahydronaphthalene moiety), 2.60 (t, 2H,
<italic>J</italic>
 = 7.4 Hz, CH
<sub>2</sub>
), 2.38 (t, 2H,
<italic>J</italic>
 = 7.4 Hz, CH
<sub>2</sub>
), 2.07, 2.03, 2.02, 2.01 (4s, 12H, 4OAc), 1.95–1.88 (m, 2H, CH
<sub>2</sub>
), 1.79 (m, 4H, tetrahydronaphthalene moiety);
<sup>13</sup>
C NMR (75.5 MHz, CDCl
<sub>3</sub>
)
<italic>δ</italic>
173.8, 170.5, 169.9, 169.7, 169.4, 152.9 (CO), 137.7, 137.3, 135.2, 129.3, 129.1, 125.6 (Ar–C), 79.1, 73.7, 73.2, 70.4, 68.4, 61.8 (C-1–C-6), 36.4, 34.4, 29.4, 29.1, 26.0, 23.3, 23.2 (3CH
<sub>2</sub>
and 4CH
<sub>2</sub>
of tetrahydronaphthalene moiety), 20.7, 20.5, 20.4 (OCOCH
<sub>3</sub>
); ESI–MS:
<italic>m/z</italic>
, 591.21 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>29</sub>
H
<sub>38</sub>
N
<sub>2</sub>
O
<sub>11</sub>
: C, 58.97; H, 6.49; N, 4.74; Found: C, 59.31; H, 6.67; N, 4.53.</p>
</sec>
<sec id="Sec12">
<title>
<italic>N</italic>
-2-(Biphenyl-4-yloxy)acetyl-
<italic>N′</italic>
-(2,3,4,6-tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>6c</bold>
)</title>
<p id="Par18">Yellow foam, Yield 62 %;
<italic>Rf</italic>
 = 0.32 (
<italic>n</italic>
-hexane/EtOAc 1:1); [
<italic>α</italic>
]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = + 16 (
<italic>c</italic>
 = 0.20, CHCl
<sub>3</sub>
);
<sup>1</sup>
H NMR (300 MHz, CDCl
<sub>3</sub>
):
<italic>δ</italic>
8.92 (d, 1H,
<italic>J</italic>
 = 9.0 Hz, NH), 8.51 (s, 1H, NH), 7.58–7.30 (m, 7H, ArH), 7.00 (d, 2H,
<italic>J</italic>
 = 8.6 Hz, ArH), 7.35–5.25 (2pseudo t, 2H,
<italic>J</italic>
 = 9.4, 9.2 Hz, H-1, H-3), 5.14–5.06 (2pseudo t, 2H,
<italic>J</italic>
 = 9.7, 9.5 Hz, H-4, H-2), 4.63, 4.58 (q, AB-system, 2H,
<italic>J</italic>
 = 16.3 Hz, CH
<sub>2</sub>
), 4.28 (dd, 1H,
<italic>J</italic>
 = 4.4, 12.5 Hz, H-6a), 4.13 (dd, 1H,
<italic>J</italic>
 = 2.1, 12.5 Hz, H-6b), 3.83 (ddd, 1H,
<italic>J</italic>
 = 2.2, 4.3, 10.1 Hz, H-5), 2.09, 2.04, 2.03, 2.02 (4s, 12H, 4OAc);
<sup>13</sup>
C NMR (75.5 MHz, CDCl
<sub>3</sub>
)
<italic>δ</italic>
170.7, 170.0, 169.8, 169.5, 169.4, 169.3 (CO), 157.4, 140.6, 134.8, 128.8, 128.4, 128.2, 126.8, 114.9 (Ar–C), 77.9, 75.0, 72.9, 70.1, 68.0, 67.5, 61.4 (CH
<sub>2</sub>
and C1–C6), 20.7, 20.6, 20.5 (OCOCH
<sub>3</sub>
); ESI–MS:
<italic>m/z</italic>
, 601.22 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>29</sub>
H
<sub>32</sub>
N
<sub>2</sub>
O
<sub>12</sub>
: C, 58.00; H, 5.37; N, 4.66; Found: C, 57.88; H, 5.73; N, 5.06.</p>
</sec>
<sec id="Sec13">
<title>
<italic>N</italic>
-(E)-3-(4-Isopropylphenyl)acryloyl-
<italic>N′</italic>
-(2,3,4,6-tetra-O-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>6d</bold>
)</title>
<p id="Par19">White foam, Yield 67 %; Rf = 0.36 (
<italic>n</italic>
-hexane/EtOAc 1:1); [α]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = -4 (
<italic>c</italic>
 = 0.20, CHCl
<sub>3</sub>
);
<sup>1</sup>
H NMR (300 MHz, CDCl
<sub>3</sub>
):
<italic>δ</italic>
9.32 (d, 1H,
<italic>J</italic>
 = 9.0 Hz, NH), 8.59 (s, 1H, NH), 7.80 (d, 1H,
<italic>J</italic>
 = 15.6 Hz, CH=CH), 7.47 (d, 2H,
<italic>J</italic>
 = 8.1 Hz, ArH cumenyl), 7.28 (d, 2H,
<italic>J</italic>
 = 10.1 Hz, ArH cumenyl), 6.39 (d, 1H, CH=CH), 5.37–5.27 (2pseudo t, 2H,
<italic>J</italic>
 = 9.4, 9.8 Hz, H-1, H-3), 5.15–5.08 (2pseudo t, 2H,
<italic>J</italic>
 = 9.4, 9.6 Hz, H-4, H-2), 4.26 (dd, 1H,
<italic>J</italic>
 = 4.4, 12.4 Hz, H-6a), 4.15–4.08 (dd, 1H,
<italic>J</italic>
 = 1.6, 12.4 Hz, H-6b), 3.83 (ddd, 1H,
<italic>J</italic>
 = 2.1, 4.1, 10.0 Hz, H-5), 2.99–2.90 (m, 1H, CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
), 2.05, 2.03 (2s, 12H, 4OAc), 1.27 (d, 6H,
<italic>J</italic>
 = 6.9 Hz, CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
);
<sup>13</sup>
C NMR (75.5 MHz, CDCl
<sub>3</sub>
)
<italic>δ</italic>
170.7, 170.1, 169.9, 169.4, 166.3, 154.4 (CO), 152.5, 146.1, 131.4, 128.5, 127.2, 117.3 (CH=CH and Ar–C), 79.0, 73.6, 73.0, 70.1, 68.1, 61.6 (C-1–C-6), 34.2, 23.7 (CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
), 20.7, 20.6, 20.5 (OCOCH
<sub>3</sub>
); ESI–MS:
<italic>m/z</italic>
, 563.21 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>27</sub>
H
<sub>34</sub>
N
<sub>2</sub>
O
<sub>11</sub>
: C, 57.64; H, 6.09; N, 4.98; Found: C, 57.46; H, 6.34; N, 5.29.</p>
</sec>
<sec id="Sec14">
<title>
<italic>N</italic>
-(R)-3-(4-Ethylphenyl)butanoyl-
<italic>N′</italic>
-(2,3,4,6-tetra-O-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>6e</bold>
)</title>
<p id="Par20">Yellow foam, Yield 44 %; Rf = 0.28 (
<italic>n</italic>
-hexane/EtOAc 1:1); [α]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = -10 (
<italic>c</italic>
 = 0.20, CHCl
<sub>3</sub>
);
<sup>1</sup>
H NMR (300 MHz, CDCl
<sub>3</sub>
):
<italic>δ</italic>
9.05 (d, 1H,
<italic>J</italic>
 = 8.2 Hz, NH), 8.28 (s, 1H, NH), 7.19–711 (m, 4H, ArH), 5.31–5.16 (2pseudo t, 2H,
<italic>J</italic>
 = 9.4, 9.2 Hz, H-1, H-3), 5.12–5.02 (2pseudo t, 2H,
<italic>J</italic>
 = 9.5, 10.0 Hz, H-4, H-2), 4.25 (dd, 1H,
<italic>J</italic>
 = 4.3, 12.4 Hz, H-6a), 4.11 (dd, 1H,
<italic>J</italic>
 = 2.0, 12.4 Hz, H-6b), 3.80 (ddd, 1H,
<italic>J</italic>
 = 2.1, 4.0, 10.7 Hz, H-5), 3.35–3.22 (m, 1H, CH), 3.69–3.54 (m, 4H, CH
<sub>2</sub>
, CH
<sub>2</sub>
CH
<sub>3</sub>
), 2.07, 2.02, 2.01, 1.98 (4s, 12H, 4OAc), 1.34 (d, 3H,
<italic>J</italic>
 = 6.8 Hz, CH
<sub>3</sub>
), 1.20 (t, 3H,
<italic>J</italic>
 = 7.6 Hz, CH
<sub>2</sub>
CH
<sub>3</sub>
);
<sup>13</sup>
C NMR (75.5 MHz, CDCl
<sub>3</sub>
)
<italic>δ</italic>
175.9, 172.3, 171.5, 170.1, 169.8, 154.4 (CO), 142.5, 142.4, 128.7, 126.6 (Ar–C), 77.9, 73.3, 72.4, 70.7, 68.2, 61.6 (C-1–C-6), 45.5, 42.3, 36.0 (CH and 2CH
<sub>2</sub>
), 27.7, 21.0, 20.8, 20.7, 15.1 (OCOCH
<sub>3</sub>
, CHCH
<sub>3</sub>
, CH
<sub>2</sub>
CH
<sub>3</sub>
); ESI–MS:
<italic>m/z</italic>
, 565.20 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>27</sub>
H
<sub>36</sub>
N
<sub>2</sub>
O
<sub>11</sub>
: C, 57.44; H, 6.43; N, 4.96; Found: C, 57.34; H, 6.72; N, 4.57.</p>
</sec>
<sec id="Sec15">
<title>
<italic>N</italic>
-(S)-3-(4-Isopropylphenyl)-2-methylpropanoyl-
<italic>N′</italic>
-(2,3,4,6-tetra-
<italic>O</italic>
-acetyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>6f</bold>
)</title>
<p id="Par21">Yellow foam, Yield 35 %; Rf = 0.33 (
<italic>n</italic>
-hexane/EtOAc 1:1); [α]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = + 4 (
<italic>c</italic>
 = 0.20, CHCl
<sub>3</sub>
); The
<sup>1</sup>
H NMR spectrum showed hindered rotation around the amide bond.
<sup>1</sup>
H NMR (300 MHz, CDCl
<sub>3</sub>
):
<italic>δ</italic>
9.11 (t, 1H,
<italic>J</italic>
 = 10.1 Hz, NH), 8.10 (2br s, 1H, NH), 7.17–7.05 (m, 4H, ArH cumenyl), 5.32–5.18 (2pseudo t, 2H,
<italic>J</italic>
 = 9.4, 9.1 Hz, H-1, H-3), 5.12–5.03 (2pseudo t, 2H,
<italic>J</italic>
 = 9.4, 8.5 Hz, H-4, H-2), 4.26 (dd, 1H,
<italic>J</italic>
 = 4.3, 12.5 Hz, H-6a), 4.09 (dd, 1H,
<italic>J</italic>
 = 1.6, 12.5 Hz, H-6b), 3.77 (ddd, 1H,
<italic>J</italic>
 = 2.0, 4.0, 10.1 Hz, H-5), 3.05–2.83 (m, 2H, CH
<sub>2</sub>
), 2.69–2.58 (m, 2H, CH, CH
<sub>3</sub>
-CH–CH
<sub>3</sub>
), 2.08, 2.07, 2.02, 2.01 (4s, 12H, 4OAc), 1.24, 1.23 (2d, 6H,
<italic>J</italic>
 = 6.9 Hz, CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
), 1.19 (2d, 3H,
<italic>J</italic>
 = 6.5 Hz, CH
<sub>3</sub>
);
<sup>13</sup>
C NMR (75.5 MHz, CDCl
<sub>3</sub>
)
<italic>δ</italic>
177.2, 170.5, 170.0, 169.5, 169.3, 153.8 (CO), 147.4, 135.8, 128.8, 126.7 (Ar–C), 79.1, 73.8, 73.2, 70.4, 68.4, 61.8 (C-1–C-6), 43.9, 39.1, 33.7 (2CH and CH
<sub>2</sub>
), 23.9, 20.6, 20.5, 20.4, 16.8 (CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
, OCOCH
<sub>3</sub>
, CHCH
<sub>3</sub>
); ESI–MS:
<italic>m/z</italic>
, 579.25 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>28</sub>
H
<sub>38</sub>
N
<sub>2</sub>
O
<sub>11</sub>
: C, 58.12; H, 6.62; N, 4.84; Found: C, 58.26; H, 6.35; N, 4.72.</p>
</sec>
<sec id="Sec16">
<title>General procedure for the preparation of the
<italic>N</italic>
-acyl-
<italic>N′</italic>
-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylureas
<bold>7a</bold>
,
<bold>b</bold>
,
<bold>d</bold>
,
<bold>e</bold>
,
<bold>f</bold>
</title>
<p id="Par22">The protected ureas
<bold>6a</bold>
,
<bold>b</bold>
,
<bold>d</bold>
,
<bold>e</bold>
,
<bold>f</bold>
(0.18 mmol) were dissolved in dry MeOH (1 mL), 1–2 drops of 1 M methanolic sodium methoxide (NaOMe) solution were added and the reaction mixture was kept at 0 °C until completion of the transformation (20 min, TLC, EtOAc/MeOH 4:1). Amberlyst 15 (H
<sup>+</sup>
form) was then added to remove sodium ions, the resin was filtered off, the solvent was removed and the residue was purified by flash chromatography (EtOAc/MeOH 4:1) to afford pure
<bold>7a,b,d,e,f</bold>
.</p>
</sec>
<sec id="Sec17">
<title>
<italic>N</italic>
-(
<italic>E</italic>
)-3-(Biphenyl-4-yl)acryloyl-
<italic>N′</italic>
-(
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>7a</bold>
)</title>
<p id="Par23">White syrup, Yield 72 %;
<italic>Rf</italic>
 = 0.22 (EtOAc/MeOH 4:1); [
<italic>α</italic>
]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = + 2 (
<italic>c</italic>
 = 0.20, MeOH);
<sup>1</sup>
H NMR (300 MHz, CD
<sub>3</sub>
OD):
<italic>δ</italic>
7.83 (d, 1H,
<italic>J</italic>
 = 15.7 Hz, CH=CH), 7.71–7.65 (m, 6H, ArH), 7.51–7.36 (m, 3H, ArH), 6.76 (d, 1H, CH=CH), 4.98 (d, 1H,
<italic>J</italic>
 = 8.9 Hz, H-1), 3.88 (dd, 1H,
<italic>J</italic>
 = 1.5, 11.8 Hz, H-6b), 3.71 (dd, 1H,
<italic>J</italic>
 = 4.4, 11.8 Hz, H-6a), 3.50–3.37 (m, 4H, H-2–Η-5);
<sup>13</sup>
C NMR (75.5 MHz, CD
<sub>3</sub>
OD)
<italic>δ</italic>
168.8, 156.3 (CO), 145.6, 144.9, 141.4, 134.7, 130.0, 129.9, 129.0, 128.6, 128.0, 120.2 (CH=CH and Ar–C), 82.2, 79.8, 79.1, 74.6, 71.6, 62.9 (C-1–C-6); ESI–MS:
<italic>m/z</italic>
, 429.17 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>22</sub>
H
<sub>24</sub>
N
<sub>2</sub>
O
<sub>7</sub>
: C, 61.67; H, 5.65; N, 6.54; Found: C, 61.39; H, 5.48; N, 6.65.</p>
</sec>
<sec id="Sec18">
<title>
<italic>N</italic>
-4-(5,6,7,8-Tetrahydronaphthalen-2-yl)butanoyl-
<italic>N′</italic>
-(
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>7b</bold>
)</title>
<p id="Par24">Yellow syrup, Yield 82 %;
<italic>Rf</italic>
 = 0.25 (EtOAc/MeOH 4:1); [
<italic>α</italic>
]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = + 22 (
<italic>c</italic>
 = 0.20, MeOH);
<sup>1</sup>
H NMR (300 MHz, CD
<sub>3</sub>
OD):
<italic>δ</italic>
6.94–6.85 (m, 3H, ArH), 4.90 (d, 1H,
<italic>J</italic>
 = 9.0 Hz, H-1), 3.83 (dd, 1H,
<italic>J</italic>
 = 1.3, 11.8 Hz, H-6b), 3.66 (dd, 1H,
<italic>J</italic>
 = 4.4, 11.8 Hz, H-6a), 3.44–3.35 and 3.28–3.22 (2 m, 4H, H-2–Η-5), 2.71 (m, 4H, tetrahydronaphthalene moiety), 2.56 (t, 2H,
<italic>J</italic>
 = 7.5 Hz, CH
<sub>2</sub>
), 2.33 (t, 2H,
<italic>J</italic>
 = 7.3 Hz, CH
<sub>2</sub>
), 1.95–1.85 (m, 2H, CH
<sub>2</sub>
), 1.78 (m, 4H, tetrahydronaphthalene moiety);
<sup>13</sup>
C NMR (75.5 MHz, CD
<sub>3</sub>
OD)
<italic>δ</italic>
177.2, 156.0 (CO), 139.7, 138.1, 135.8, 130.1, 126.7 (Ar–C), 82.1, 79.8, 79.1, 74.5, 71.6, 62.9 (C-1–C-6), 36.8, 35.6, 30.4, 30.1, 27.7, 24.6, 24.5 (3CH
<sub>2</sub>
and 4CH
<sub>2</sub>
of tetrahydronaphthalene moiety); ESI–MS:
<italic>m/z</italic>
, 423.18 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>21</sub>
H
<sub>30</sub>
N
<sub>2</sub>
O
<sub>7</sub>
: C, 59.70; H, 7.16; N, 6.63; Found: C, 59.85; H, 7.01; N, 6.49.</p>
</sec>
<sec id="Sec19">
<title>
<italic>N</italic>
-2-(Biphenyl-4-yloxy)acetyl-
<italic>N′</italic>
-(
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>7c</bold>
)</title>
<p id="Par25">The protected derivative
<bold>6c</bold>
(1 mmol) was heated under reflux in dry MeOH (4 mL) containing Bu
<sub>2</sub>
SnO (0.5 mmol) for 2 h and the fully deprotected compound
<bold>7c</bold>
was obtained as a yellow syrup after flash chromatography using EtOAc/MeOH 4:1 as eluting solvents. Yield 83 %;
<italic>Rf</italic>
 = 0.18 (EtOAc/MeOH 4:1); [
<italic>α</italic>
]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = −8 (
<italic>c</italic>
 = 0.20, MeOH);
<sup>1</sup>
H NMR (300 MHz, CD
<sub>3</sub>
OD):
<italic>δ</italic>
7.59–7.56 (m, 4H, ArH), 7.40, 7.28 (2t, 3H,
<italic>J</italic>
 = 7.6 Hz, ArH), 7.10 (d, 2H,
<italic>J</italic>
 = 8.7 Hz, ArH), 5.04 (d, 1H,
<italic>J</italic>
 = 8.6 Hz, H-1), 4.63, 4.60 (q, AB-system, 2H,
<italic>J</italic>
 = 15.0 Hz, CH
<sub>2</sub>
), 3.84 (dd, 1H,
<italic>J</italic>
 = 1.3, 11.8 Hz, H-6b), 3.68 (dd, 1H,
<italic>J</italic>
 = 4.4, 11.8 Hz, H-6a), 3.46–3.36 (m, 4H, Η-2–Η-5);
<sup>13</sup>
C NMR (75.5 MHz, CD
<sub>3</sub>
OD)
<italic>δ</italic>
172.1, 158.7 (CO), 141.9, 136.2, 129.8, 129.2, 127.9, 127.6, 116.3 (Ar–C), 80.9, 79.5, 79.0, 73.9, 71.3, 68.4, 62.6 (C1–C6, CH
<sub>2</sub>
); ESI–MS:
<italic>m/z</italic>
, 433.18 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>21</sub>
H
<sub>24</sub>
N
<sub>2</sub>
O
<sub>8</sub>
: C, 58.33; H, 5.59; N, 6.48; Found: C, 58.67; H, 5.32; N, 6.23.</p>
</sec>
<sec id="Sec20">
<title>
<italic>N</italic>
-(
<italic>E</italic>
)-3-(4-Isopropylphenyl)acryloyl-
<italic>N′</italic>
-(
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>7d</bold>
)</title>
<p id="Par26">White syrup, Yield 76 %;
<italic>Rf</italic>
 = 0.29 (EtOAc/MeOH 4:1); [
<italic>α</italic>
]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = + 20 (
<italic>c</italic>
 = 0.20, MeOH);
<sup>1</sup>
H NMR (300 MHz, CD
<sub>3</sub>
OD):
<italic>δ</italic>
7.74 (d, 1H,
<italic>J</italic>
 = 15.7 Hz, CH=CH), 7.53, 7.29 (2d, 4H,
<italic>J</italic>
 = 8.2 Hz ArH cumenyl), 6.64 (d, 1H, CH=CH), 4.94 (d, 1H,
<italic>J</italic>
 = 9.0 Hz, H-1), 3.85 (dd, 1H,
<italic>J</italic>
 = 1.8, 11.6 Hz, H-6b), 3.67 (dd, 1H,
<italic>J</italic>
 = 4.4, 11.6 Hz, H-6a), 3.46–3.34 (m, 4H, H-2–H-5), 2.97–2.88 (m, 1H, CH), 1.25 (d, 6H,
<italic>J</italic>
 = 6.9 Hz, CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
);
<sup>13</sup>
C NMR (75.5 MHz, CD
<sub>3</sub>
OD)
<italic>δ</italic>
168.9, 156.4 (CO), 153.5, 146.2, 133.4, 129.6, 128.2, 119.3 (CH=CH and Ar–C), 82.2, 79.8, 79.1, 74.6, 71.6, 62.9 (C-1–C-6), 35.4, 24.1 (CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
); ESI–MS:
<italic>m/z</italic>
, 395.20 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>19</sub>
H
<sub>26</sub>
N
<sub>2</sub>
O
<sub>7</sub>
: C, 57.86; H, 6.64; N, 7.10; Found: C, 57.69; H, 6.29; N, 7.23.</p>
</sec>
<sec id="Sec21">
<title>
<italic>N</italic>
-(R)-3-(4-Ethylphenyl)butanoyl-
<italic>N′</italic>
-(
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>7e</bold>
)</title>
<p id="Par27">Yellow syrup, Yield 74 %;
<italic>Rf</italic>
 = 0.37 (EtOAc/MeOH 4:1); [
<italic>α</italic>
]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = +20 (
<italic>c</italic>
 = 0.20, MeOH);
<sup>1</sup>
H NMR (300 MHz, CD
<sub>3</sub>
OD):
<italic>δ</italic>
7.13–7.09 (m, 4H, ArH), 4.88 (d, 1H,
<italic>J</italic>
 = 9.0 Hz, H-1), 3.83 (dd, 1H,
<italic>J</italic>
 = 4.5, 11.8 Hz, H-6a), 3.70–3.62 (m, 1H, H-6b), 3.42–3.34 and 3.26–3.19 (2 m, 4H, H-2–H-5), 2.64–2.53 (m, 5H, CH, CH
<sub>2</sub>
, CH
<sub>2</sub>
CH
<sub>3</sub>
), 1.29–1.24 (m, 6H, CHCH
<sub>3</sub>
, CH
<sub>2</sub>
CH
<sub>3</sub>
);
<sup>13</sup>
C NMR (75.5 MHz, CD
<sub>3</sub>
OD)
<italic>δ</italic>
176.0, 155.9 (CO), 145.7, 143.7, 129.0, 127.8 (Ar–C), 82.1, 79.8, 79.0, 74.5, 71.5, 62.8 (C-1–C-6), 45.9, 37.2, 29.4 (CH and 2CH
<sub>2</sub>
), 22.3, 16.1 (CHCH
<sub>3</sub>
, CH
<sub>2</sub>
CH
<sub>3</sub>
); ESI–MS:
<italic>m/z</italic>
, 397.16 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>19</sub>
H
<sub>28</sub>
N
<sub>2</sub>
O
<sub>7</sub>
: C, 57.56; H, 7.12; N, 7.07; Found: C, 57.73; H, 6.86; N, 6.70.</p>
</sec>
<sec id="Sec22">
<title>
<italic>N</italic>
-(
<italic>S</italic>
)-3-(4-Isopropylphenyl)-2-methylpropanoyl-
<italic>N′</italic>
-(
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosyl)-urea (
<bold>7f</bold>
)</title>
<p id="Par28">Yellow syrup, Yield 72 %;
<italic>Rf</italic>
 = 0.35 (EtOAc/MeOH 4:1); [
<italic>α</italic>
]
<sub arrange="stack">D</sub>
<sup arrange="stack">22</sup>
 = +36 (
<italic>c</italic>
 = 0.20, MeOH);
<sup>1</sup>
H NMR (300 MHz, CD
<sub>3</sub>
OD):
<italic>δ</italic>
7.15–7.08 (m, 4H, ArH cumenyl), 4.90 (d, 1H,
<italic>J</italic>
 = 9.0 Hz, H-1), 3.84 (m, 1H, H-6b), 3.68 (dd, 1H,
<italic>J</italic>
 = 4.3, 12.0 Hz, H-6a), 3.46–3.35 (m, 4H, H-2–H-5), 3.00–2.83 and 2.81–2.57 (2 m, 4H, CH
<sub>2</sub>
, CH, CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
), 1.22 (d, 6H,
<italic>J</italic>
 = 6.9 Hz, CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
), 1.14 (d, 3H,
<italic>J</italic>
 = 6.8 Hz, CH
<sub>3</sub>
);
<sup>13</sup>
C NMR (75.5 MHz, CD
<sub>3</sub>
OD)
<italic>δ</italic>
180.3, 156.1 (CO), 148.2, 137.8, 130.0, 127.5 (Ar–C), 82.0, 79.8, 79.0, 74.4, 71.3, 62.7 (C-1–C-6), 44.4, 40.0, 35.1 (2CH and CH
<sub>2</sub>
), 24.5, 17.8 (CH
<sub>3</sub>
–CH–CH
<sub>3</sub>
, CHCH
<sub>3</sub>
); ESI–MS:
<italic>m/z</italic>
, 411.19 [M + H]
<sup>+</sup>
. Anal. calcd for C
<sub>20</sub>
H
<sub>30</sub>
N
<sub>2</sub>
O
<sub>7</sub>
: C, 58.52; H, 7.37; N, 6.82; Found: C, 58.33; H, 7.63; N, 6.42.</p>
</sec>
</sec>
<sec id="Sec23">
<title>Antiviral activity assays (Kokosza
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR10">2013</xref>
; Novikov
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR16">2013</xref>
)</title>
<p id="Par29">The antiviral assays, other than the anti-HIV assays, were based on the inhibition of virus-induced cytopathicity or plaque formation in HEL [herpes simplex virus type 1 (HSV-1) (KOS), HSV-2 (G), vaccinia virus, vesicular stomatitis virus, human cytomegalovirus (HCMV), and varicella-zoster virus (VZV)], Vero (parainfluenza-3, reovirus-1, Sindbis virus, and Coxsackie B4), HeLa (vesicular stomatitis virus, Coxsackie virus B4, and respiratory syncytial virus) or MDCK [influenza A (H1N1; H3N2) and influenza B] cell cultures. The confluent cell cultures (or nearly confluent for MDCK cells) in microtiter 96-well plates were inoculated with 100 CCID
<sub>50</sub>
of virus (1 CCID
<sub>50</sub>
being the virus dose to infect 50 % of the cell cultures) or with 20 plaque-forming units (PFU) (for VZV) in the presence of varying concentrations (100, 20, etc., µM) of the test compounds. The viral cytopathicity was recorded as soon as it reached completion in the control virus-infected cell cultures that were not treated with the test compounds. The antiviral activity was expressed as the EC
<sub>50</sub>
or the compound concentration required to reduce virus-induced cytopathogenicity or viral plaque (VZV) plaque formation by 50 %. The minimal cytotoxic concentration (MCC) of the compounds was defined as the compound concentration that caused a microscopically visible alteration of cell morphology. Alternatively, the cytostatic activity of the test compounds was measured based on the inhibition of cell growth. HEL cells were seeded at a rate of 5 × 103 cells/well into 96-well microtiter plates and allowed to proliferate for 24 h. Then, the medium containing different concentrations of the test compounds was added. After three days of incubation at 37 °C, the cell number was determined with a Coulter counter. The cytostatic concentration was calculated as the CC
<sub>50</sub>
, or the compound concentration required to reduce cell proliferation by 50 % relative to the number of cells in the untreated controls. The methodology of the anti-HIV assays was as follows: human CEM (~3×105 cells/cm
<sup>3</sup>
) cells were infected with 100 CCID
<sub>50</sub>
of HIV-1IIIB or HIV-2ROD and seeded in 200-µL wells of a microtiter plate containing appropriate dilutions of the test compounds. After 4 days of incubation at 37 °C, the HIV-induced CEM giant cell formation was examined light microscopically.</p>
</sec>
<sec id="Sec24">
<title>Antiproliferative assays (Kokosza
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR10">2013</xref>
; Novikov
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR16">2013</xref>
)</title>
<p id="Par30">The cytostatic effects of the test compounds on murine leukemia cells (L1210), human T-lymphocyte cells (CEM), and human cervix carcinoma cells (HeLa) were evaluated as follows: an appropriate number of cells suspended in growth medium were allowed to proliferate in 200-µL-wells of 96-well microtiter plates in the presence of variable amounts of test compounds at 37 °C in a humidified CO
<sub>2</sub>
-controlled atmosphere. After 48 h (L1210), 72 h (CEM) or 96 h (HeLa), the number of cells was determined in a Coulter counter. The IC
<sub>50</sub>
value was defined as the compound concentration required to inhibit cell proliferation by 50 %.</p>
</sec>
<sec id="Sec25">
<title>Cytotoxic activity assay (Kokosza
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR10">2013</xref>
; Novikov
<italic>et al.</italic>
,
<xref ref-type="bibr" rid="CR16">2013</xref>
)</title>
<p id="Par31">Confluent human lung fibroblast (HEL) cultures in 96-well microtiter plate were exposed to serial dilutions of the test compounds (i.e., 100, 20, 4, 0.8 μΜ). After 3 days of incubation at 37 °C, microscopical detectable alterations of cell morphology were examined.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>This work was supported in part by the Postgraduate Programmes “Biotechnology-Quality assessment in Nutrition and the Environment,” “Application of Molecular Biology-Molecular Genetics-Molecular Markers,” Department of Biochemistry and Biotechnology, University of Thessaly, and the KU Leuven (GOA 10/14). We thank Lizette van Berckelaer, Leen Ingels, Leentje Persoons and Frieda De Meyer for excellent technical assistance in the evaluation of these compounds in the cellular assays.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agoston</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dobó</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rákó</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kerékgyártó</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Szurmai</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Anomalous Zemplén deacylation reactions of alpha- and beta-
<sc>d</sc>
-mannopyranoside derivatives</article-title>
<source>Carbohydr Res</source>
<year>2001</year>
<volume>330</volume>
<fpage>183</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="doi">10.1016/S0008-6215(00)00283-4</pub-id>
<pub-id pub-id-type="pmid">11217971</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blanc</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Geney</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Menet</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Type II kinase inhibitors: an opportunity in cancer for rational design</article-title>
<source>Anti-Cancer Agents Med Chem</source>
<year>2013</year>
<volume>13</volume>
<fpage>731</fpage>
<lpage>747</lpage>
<pub-id pub-id-type="doi">10.2174/1871520611313050008</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Herrgard</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ciceri</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wodicka</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Pallares</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hocker</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Treiber</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Zarrinkar</surname>
<given-names>PP</given-names>
</name>
</person-group>
<article-title>Comprehensive analysis of kinase inhibitor selectivity</article-title>
<source>Nat Biotechnol</source>
<year>2011</year>
<volume>29</volume>
<fpage>1046</fpage>
<lpage>1051</lpage>
<pub-id pub-id-type="doi">10.1038/nbt.1990</pub-id>
<pub-id pub-id-type="pmid">22037378</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dimopoulou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Manta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kiritsis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gkaragkouni</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Papasotiriou</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Komiotis</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Rapid microwave-enhanced synthesis of C5-alkynyl pyranonucleosides as novel cytotoxic antitumor agents</article-title>
<source>Bioorg Med Chem Lett</source>
<year>2013</year>
<volume>23</volume>
<fpage>1330</fpage>
<lpage>1333</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmcl.2012.12.092</pub-id>
<pub-id pub-id-type="pmid">23369539</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferlay</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Soerjomataram</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dikshit</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Eser</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mathers</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rebelo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Parkin</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Forman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bray</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012</article-title>
<source>Int J Cancer</source>
<year>2015</year>
<volume>136</volume>
<fpage>E359</fpage>
<lpage>E386</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.29210</pub-id>
<pub-id pub-id-type="pmid">25220842</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Helm</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Kakhesy</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<article-title>Carbohydrate–urea–phenol-based adhesives: transient formation of mono- and di-
<sc>d</sc>
-glucosylurea</article-title>
<source>Carbohydr Res</source>
<year>1989</year>
<volume>189</volume>
<fpage>103</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="doi">10.1016/0008-6215(89)84089-3</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Isbell</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Frush</surname>
<given-names>HL</given-names>
</name>
</person-group>
<article-title>Mutarotation, hydrolysis, and rearrangement reactions of glycosylamines</article-title>
<source>J Org Chem</source>
<year>1958</year>
<volume>23</volume>
<fpage>1309</fpage>
<lpage>1319</lpage>
<pub-id pub-id-type="doi">10.1021/jo01103a019</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jänne</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Settleman</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Factors underlying sensitivity of cancers to small-molecule kinase inhibitors</article-title>
<source>Nat Rev Drug Discov</source>
<year>2009</year>
<volume>8</volume>
<fpage>709</fpage>
<lpage>723</lpage>
<pub-id pub-id-type="doi">10.1038/nrd2871</pub-id>
<pub-id pub-id-type="pmid">19629074</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kantsadi</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Manta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Psarra</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Dimopoulou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kiritsis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Parmenopoulou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Skamnaki</surname>
<given-names>VT</given-names>
</name>
<name>
<surname>Zoumpoulakis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zographos</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Leonidas</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Komiotis</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The binding of C5-alkynyl and alkylfurano[2,3-
<italic>d</italic>
]pyrimidine glucopyranonucleosides to glycogen phosphorylase b: synthesis, biochemical and biological assessment</article-title>
<source>Eur J Med Chem</source>
<year>2012</year>
<volume>54</volume>
<fpage>740</fpage>
<lpage>749</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejmech.2012.06.029</pub-id>
<pub-id pub-id-type="pmid">22770609</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kokosza</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Piotrowska</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Design, synthesis, antiviral and cytostatic evaluation of novel isoxazolidine nucleotide analogues with a carbamoyl linker</article-title>
<source>Bioorg Med Chem</source>
<year>2013</year>
<volume>21</volume>
<fpage>1097</fpage>
<lpage>1108</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmc.2013.01.007</pub-id>
<pub-id pub-id-type="pmid">23380474</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A mild and selective method for cleavage of
<italic>O</italic>
-acetyl groups with dibutyltin oxide</article-title>
<source>Carbohydr Res</source>
<year>2002</year>
<volume>337</volume>
<fpage>1763</fpage>
<lpage>1767</lpage>
<pub-id pub-id-type="doi">10.1016/S0008-6215(02)00277-X</pub-id>
<pub-id pub-id-type="pmid">12423955</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>XG</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>HH</given-names>
</name>
</person-group>
<article-title>Synthesis and in vitro antitumor activities of novel benzyl urea analogues of sorafenib</article-title>
<source>Yao Xue Xue Bao</source>
<year>2013</year>
<volume>48</volume>
<fpage>709</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">23888694</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Parmenopoulou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kiritsis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dimopoulou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kollatos</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Papasotiriou</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Komiotis</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Stereocontrolled facile synthesis and biological evaluation of (3′S) and (3′R)-3′-amino (and Azido)-3′-deoxy pyranonucleosides</article-title>
<source>Nucleosides Nucleotides Nucleic Acids</source>
<year>2012</year>
<volume>31</volume>
<fpage>522</fpage>
<lpage>535</lpage>
<pub-id pub-id-type="doi">10.1080/15257770.2012.696759</pub-id>
<pub-id pub-id-type="pmid">22849646</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKay</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>HM</given-names>
</name>
</person-group>
<article-title>Recent developments in glycosyl urea synthesis</article-title>
<source>Carbohydr Res</source>
<year>2014</year>
<volume>385</volume>
<fpage>18</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1016/j.carres.2013.08.007</pub-id>
<pub-id pub-id-type="pmid">24398301</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Montagut</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Settleman</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Targeting the RAF–MEK–ERK pathway in cancer therapy</article-title>
<source>Cancer Lett</source>
<year>2009</year>
<volume>283</volume>
<fpage>125</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2009.01.022</pub-id>
<pub-id pub-id-type="pmid">19217204</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Novikov</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Babkov</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Paramonova</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Khandazhinskaya</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Ozerov</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Chizhov</surname>
<given-names>AO</given-names>
</name>
<name>
<surname>Andrei</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Snoeck</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Seley-Radtke</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Synthesis and anti-HCMV activity of 1-[
<italic>ω</italic>
-(phenoxy)-alkyl]uracil derivatives and analogues thereof</article-title>
<source>Bioorg Med Chem</source>
<year>2013</year>
<volume>21</volume>
<fpage>4151</fpage>
<lpage>4157</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmc.2013.05.009</pub-id>
<pub-id pub-id-type="pmid">23743443</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parmenopoulou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kantsadi</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Tsirkone</surname>
<given-names>VG</given-names>
</name>
<name>
<surname>Chatzileontiadou</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Manta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zographos</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Molfeta</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Archontis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Agius</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hayes</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Leonidas</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Komiotis</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Structure based inhibitor design targeting glycogen phosphorylase b. Virtual screening, synthesis, biochemical and biological assessment of novel
<italic>N</italic>
-acyl-
<italic>β</italic>
-
<sc>d</sc>
-glucopyranosylamines</article-title>
<source>Bioorg Med Chem</source>
<year>2014</year>
<volume>22</volume>
<fpage>4810</fpage>
<lpage>4825</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmc.2014.06.058</pub-id>
<pub-id pub-id-type="pmid">25092521</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Paulsen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pflufhaupt</surname>
<given-names>KW</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Pigman</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Horton</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The carbohydrates: chemistry and biochemistry</article-title>
<source>2</source>
<year>1980</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Academic Press</publisher-name>
<fpage>881</fpage>
<lpage>927</lpage>
</element-citation>
</ref>
<ref id="CR19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peterson</surname>
<given-names>QP</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Goode</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Novotny</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Totten</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Hergenrother</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Procaspase-3 activation as an anti-cancer strategy: structure-activity relationship of procaspase-activating compound 1 (PAC-1) and its cellular co-localization with caspase-3</article-title>
<source>J Med Chem</source>
<year>2009</year>
<volume>52</volume>
<fpage>5721</fpage>
<lpage>5731</lpage>
<pub-id pub-id-type="doi">10.1021/jm900722z</pub-id>
<pub-id pub-id-type="pmid">19708658</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinter</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kovacs</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Toth</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Synthesis of sugar ureas via phosphinimines</article-title>
<source>Carbohydr Res</source>
<year>1995</year>
<volume>273</volume>
<fpage>99</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="doi">10.1016/0008-6215(95)00029-S</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Putt</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Sandhorst</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Hoagland</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Churchwell</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Doerge</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Helferich</surname>
<given-names>WG</given-names>
</name>
<name>
<surname>Hergenrother</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy</article-title>
<source>Nat Chem Biol</source>
<year>2006</year>
<volume>2</volume>
<fpage>543</fpage>
<lpage>550</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio814</pub-id>
<pub-id pub-id-type="pmid">16936720</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sausville</surname>
<given-names>EA</given-names>
</name>
</person-group>
<article-title>Protein kinase antagonists: interim challenges and issues</article-title>
<source>Anticancer Drug Des</source>
<year>2000</year>
<volume>15</volume>
<fpage>1</fpage>
<lpage>2</lpage>
<pub-id pub-id-type="pmid">10888031</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sethi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Unravelling the complexity of metastasis—molecular understanding and targeted therapies</article-title>
<source>Nat Rev Cancer</source>
<year>2011</year>
<volume>11</volume>
<fpage>735</fpage>
<lpage>748</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3125</pub-id>
<pub-id pub-id-type="pmid">21941285</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Somsák</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Felföldi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kónya</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hüse</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Telepó</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bokor</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Czifrák</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Assessment of synthetic methods for the preparation of
<italic>N</italic>
-beta-
<sc>d</sc>
-glucopyranosyl-
<italic>N</italic>
′-substituted ureas, -thioureas and related compounds</article-title>
<source>Carbohydr Res</source>
<year>2008</year>
<volume>343</volume>
<fpage>2083</fpage>
<lpage>2093</lpage>
<pub-id pub-id-type="doi">10.1016/j.carres.2008.01.045</pub-id>
<pub-id pub-id-type="pmid">18299124</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Somsák</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Czifrák</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tóth</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bokor</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Chrysina</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Alexacou</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Hayes</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Tiraidis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lazoura</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Leonidas</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Zographos</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Oikonomakos</surname>
<given-names>NG</given-names>
</name>
</person-group>
<article-title>New inhibitors of glycogen phosphorylase as potential antidiabetic agents</article-title>
<source>Curr Med Chem</source>
<year>2008</year>
<volume>15</volume>
<fpage>2933</fpage>
<lpage>2983</lpage>
<pub-id pub-id-type="doi">10.2174/092986708786848659</pub-id>
<pub-id pub-id-type="pmid">19075645</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tropper</surname>
<given-names>FD</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>FO</given-names>
</name>
<name>
<surname>Braun</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Phase transfer catalysis as a general and stereoselective entry into glycosyl azides from glycosyl halides</article-title>
<source>Synthesis</source>
<year>1992</year>
<volume>7</volume>
<fpage>618</fpage>
<lpage>620</lpage>
<pub-id pub-id-type="doi">10.1055/s-1992-26175</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilhelm</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lowinger</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dumas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Simantov</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kelley</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Discovery and development of sorafenib: a multikinase inhibitor for treating cancer</article-title>
<source>Nat Rev Drug Discov</source>
<year>2006</year>
<volume>5</volume>
<fpage>835</fpage>
<lpage>844</lpage>
<pub-id pub-id-type="doi">10.1038/nrd2130</pub-id>
<pub-id pub-id-type="pmid">17016424</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhai</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Design, synthesis and anticancer activities of diaryl urea derivatives bearing
<italic>N</italic>
-acylhydrazone moiety</article-title>
<source>Chem Pharm Bull</source>
<year>2012</year>
<volume>60</volume>
<fpage>1046</fpage>
<lpage>1054</lpage>
<pub-id pub-id-type="doi">10.1248/cpb.c12-00234</pub-id>
<pub-id pub-id-type="pmid">22863709</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000294 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000294 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7079967
   |texte=   Synthesis of novel N-acyl-β-d-glucopyranosylamines and ureas as potential lead cytostatic agents
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:NONE" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021