Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Use of adenoviral vectors as veterinary vaccines

Identifieur interne : 000258 ( Pmc/Corpus ); précédent : 000257; suivant : 000259

Use of adenoviral vectors as veterinary vaccines

Auteurs : T B Ferreira ; P M Alves ; J G Aunins ; M J T. Carrondo

Source :

RBID : PMC:7091679

Abstract

Vaccines are the most effective and inexpensive prophylactic tool in veterinary medicine. Ideally, vaccines should induce a lifelong protective immunity against the target pathogen while not causing clinical or pathological signs of diseases in the vaccinated animals. However, such ideal vaccines are rare in the veterinary field. Many vaccines are either of limited effectiveness or have harmful side effects. In addition, there are still severe diseases with no effective vaccines. A very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and even more so for poultry vaccination, where vaccines must sell for a few cents a dose. Traditional approaches include inactivated vaccines, attenuated live vaccines and subunit vaccines. Recently, genetic engineering has been applied to design new, improved vaccines. Adenovirus vectors are highly efficient for gene transfer in a broad spectrum of cell types and species. Moreover, adenoviruses often induce humoral, mucosal and cellular immune responses to antigens encoded by the inserted foreign genes. Thus, adenoviruses have become a vector of choice for delivery and expression of foreign proteins for vaccination. Consequently, the market requirements for adenovirus vaccines are increasing, creating a need for production methodologies of concentrated vectors with warranted purity and efficacy. This review summarizes recent developments and approaches of adenovirus production and purification as the application of these vectors, including successes and failures in clinical applications to date.


Url:
DOI: 10.1038/sj.gt.3302618
PubMed: 16231058
PubMed Central: 7091679

Links to Exploration step

PMC:7091679

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Use of adenoviral vectors as veterinary vaccines</title>
<author>
<name sortKey="Ferreira, T B" sort="Ferreira, T B" uniqKey="Ferreira T" first="T B" last="Ferreira">T B Ferreira</name>
<affiliation>
<nlm:aff id="Aff1">Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Oeiras, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Alves, P M" sort="Alves, P M" uniqKey="Alves P" first="P M" last="Alves">P M Alves</name>
<affiliation>
<nlm:aff id="Aff1">Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Oeiras, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aunins, J G" sort="Aunins, J G" uniqKey="Aunins J" first="J G" last="Aunins">J G Aunins</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.417993.1</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2260 0793</institution-id>
<institution>Merck and Co., Inc.,</institution>
</institution-wrap>
West Point, PA USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Carrondo, M J T" sort="Carrondo, M J T" uniqKey="Carrondo M" first="M J T" last="Carrondo">M J T. Carrondo</name>
<affiliation>
<nlm:aff id="Aff1">Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Oeiras, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10772.33</institution-id>
<institution-id institution-id-type="ISNI">0000000121511713</institution-id>
<institution>Laboratório de Engenharia Bioquímica, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL),</institution>
</institution-wrap>
Monte da Caparica, Portugal</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">16231058</idno>
<idno type="pmc">7091679</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7091679</idno>
<idno type="RBID">PMC:7091679</idno>
<idno type="doi">10.1038/sj.gt.3302618</idno>
<date when="2005">2005</date>
<idno type="wicri:Area/Pmc/Corpus">000258</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000258</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Use of adenoviral vectors as veterinary vaccines</title>
<author>
<name sortKey="Ferreira, T B" sort="Ferreira, T B" uniqKey="Ferreira T" first="T B" last="Ferreira">T B Ferreira</name>
<affiliation>
<nlm:aff id="Aff1">Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Oeiras, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Alves, P M" sort="Alves, P M" uniqKey="Alves P" first="P M" last="Alves">P M Alves</name>
<affiliation>
<nlm:aff id="Aff1">Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Oeiras, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aunins, J G" sort="Aunins, J G" uniqKey="Aunins J" first="J G" last="Aunins">J G Aunins</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.417993.1</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2260 0793</institution-id>
<institution>Merck and Co., Inc.,</institution>
</institution-wrap>
West Point, PA USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Carrondo, M J T" sort="Carrondo, M J T" uniqKey="Carrondo M" first="M J T" last="Carrondo">M J T. Carrondo</name>
<affiliation>
<nlm:aff id="Aff1">Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Oeiras, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10772.33</institution-id>
<institution-id institution-id-type="ISNI">0000000121511713</institution-id>
<institution>Laboratório de Engenharia Bioquímica, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL),</institution>
</institution-wrap>
Monte da Caparica, Portugal</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Gene Therapy</title>
<idno type="ISSN">0969-7128</idno>
<idno type="eISSN">1476-5462</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Vaccines are the most effective and inexpensive prophylactic tool in veterinary medicine. Ideally, vaccines should induce a lifelong protective immunity against the target pathogen while not causing clinical or pathological signs of diseases in the vaccinated animals. However, such ideal vaccines are rare in the veterinary field. Many vaccines are either of limited effectiveness or have harmful side effects. In addition, there are still severe diseases with no effective vaccines. A very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and even more so for poultry vaccination, where vaccines must sell for a few cents a dose. Traditional approaches include inactivated vaccines, attenuated live vaccines and subunit vaccines. Recently, genetic engineering has been applied to design new, improved vaccines. Adenovirus vectors are highly efficient for gene transfer in a broad spectrum of cell types and species. Moreover, adenoviruses often induce humoral, mucosal and cellular immune responses to antigens encoded by the inserted foreign genes. Thus, adenoviruses have become a vector of choice for delivery and expression of foreign proteins for vaccination. Consequently, the market requirements for adenovirus vaccines are increasing, creating a need for production methodologies of concentrated vectors with warranted purity and efficacy. This review summarizes recent developments and approaches of adenovirus production and purification as the application of these vectors, including successes and failures in clinical applications to date.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Plotkin, Sa" uniqKey="Plotkin S">SA Plotkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doel, Tr" uniqKey="Doel T">TR Doel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paoletti, E" uniqKey="Paoletti E">E Paoletti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, E" uniqKey="Miller E">E Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wood, Dj" uniqKey="Wood D">DJ Wood</name>
</author>
<author>
<name sortKey="Macadam, Aj" uniqKey="Macadam A">AJ Macadam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yokoyama, N" uniqKey="Yokoyama N">N Yokoyama</name>
</author>
<author>
<name sortKey="Maeda, K" uniqKey="Maeda K">K Maeda</name>
</author>
<author>
<name sortKey="Mikami, T" uniqKey="Mikami T">T Mikami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunham, Sp" uniqKey="Dunham S">SP Dunham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giese, M" uniqKey="Giese M">M Giese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babiuk, La" uniqKey="Babiuk L">LA Babiuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jalava, K" uniqKey="Jalava K">K Jalava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewis, Am" uniqKey="Lewis A">AM Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, Fl" uniqKey="Graham F">FL Graham</name>
</author>
<author>
<name sortKey="Smiley, J" uniqKey="Smiley J">J Smiley</name>
</author>
<author>
<name sortKey="Russell, Wc" uniqKey="Russell W">WC Russell</name>
</author>
<author>
<name sortKey="Nairn, R" uniqKey="Nairn R">R Nairn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bloom, Br" uniqKey="Bloom B">BR Bloom</name>
</author>
<author>
<name sortKey="Lambert, P" uniqKey="Lambert P">P Lambert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Randrianarison Jewtoukoff, V" uniqKey="Randrianarison Jewtoukoff V">V Randrianarison-Jewtoukoff</name>
</author>
<author>
<name sortKey="Perricaudet, M" uniqKey="Perricaudet M">M Perricaudet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jooss, K" uniqKey="Jooss K">K Jooss</name>
</author>
<author>
<name sortKey="Ertl, Hc" uniqKey="Ertl H">HC Ertl</name>
</author>
<author>
<name sortKey="Wilson, Jm" uniqKey="Wilson J">JM Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Su, Q" uniqKey="Su Q">Q Su</name>
</author>
<author>
<name sortKey="Wilson, Jm" uniqKey="Wilson J">JM Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Tc" uniqKey="Yang T">TC Yang</name>
</author>
<author>
<name sortKey="Dayball, K" uniqKey="Dayball K">K Dayball</name>
</author>
<author>
<name sortKey="Wan, Yh" uniqKey="Wan Y">YH Wan</name>
</author>
<author>
<name sortKey="Bramson, J" uniqKey="Bramson J">J Bramson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russell, Wc" uniqKey="Russell W">WC Russell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babiuk, La" uniqKey="Babiuk L">LA Babiuk</name>
</author>
<author>
<name sortKey="Tikoo, Sk" uniqKey="Tikoo S">SK Tikoo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imler, Jl" uniqKey="Imler J">JL Imler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bett, Aj" uniqKey="Bett A">AJ Bett</name>
</author>
<author>
<name sortKey="Prevec, L" uniqKey="Prevec L">L Prevec</name>
</author>
<author>
<name sortKey="Graham, Fl" uniqKey="Graham F">FL Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harui, A" uniqKey="Harui A">A Harui</name>
</author>
<author>
<name sortKey="Suzuki, S" uniqKey="Suzuki S">S Suzuki</name>
</author>
<author>
<name sortKey="Kochanek, S" uniqKey="Kochanek S">S Kochanek</name>
</author>
<author>
<name sortKey="Mitani, K" uniqKey="Mitani K">K Mitani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danthinne, X" uniqKey="Danthinne X">X Danthinne</name>
</author>
<author>
<name sortKey="Imperiale, Mj" uniqKey="Imperiale M">MJ Imperiale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamen, A" uniqKey="Kamen A">A Kamen</name>
</author>
<author>
<name sortKey="Henry, O" uniqKey="Henry O">O Henry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murakami, P" uniqKey="Murakami P">P Murakami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Volpers, C" uniqKey="Volpers C">C Volpers</name>
</author>
<author>
<name sortKey="Kochanek, S" uniqKey="Kochanek S">S Kochanek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papp, Z" uniqKey="Papp Z">Z Papp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischer, L" uniqKey="Fischer L">L Fischer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papp, Z" uniqKey="Papp Z">Z Papp</name>
</author>
<author>
<name sortKey="Babiuk, La" uniqKey="Babiuk L">LA Babiuk</name>
</author>
<author>
<name sortKey="Baca Estrada, Me" uniqKey="Baca Estrada M">ME Baca-Estrada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reddy, Ps" uniqKey="Reddy P">PS Reddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soudais, C" uniqKey="Soudais C">C Soudais</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheppard, M" uniqKey="Sheppard M">M Sheppard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond, Jm" uniqKey="Hammond J">JM Hammond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zakhartchouk, A" uniqKey="Zakhartchouk A">A Zakhartchouk</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Tikoo, Sk" uniqKey="Tikoo S">SK Tikoo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benko, M" uniqKey="Benko M">M Benko</name>
</author>
<author>
<name sortKey="Harrach, B" uniqKey="Harrach B">B Harrach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uhl, Ew" uniqKey="Uhl E">EW Uhl</name>
</author>
<author>
<name sortKey="Heaton Jones, Tg" uniqKey="Heaton Jones T">TG Heaton-Jones</name>
</author>
<author>
<name sortKey="Pu, R" uniqKey="Pu R">R Pu</name>
</author>
<author>
<name sortKey="Yamamoto, Jk" uniqKey="Yamamoto J">JK Yamamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonin, P" uniqKey="Gonin P">P Gonin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrett, T" uniqKey="Barrett T">T Barrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirama, K" uniqKey="Hirama K">K Hirama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vos, A" uniqKey="Vos A">A Vos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiang, Zq" uniqKey="Xiang Z">ZQ Xiang</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Wilson, Jm" uniqKey="Wilson J">JM Wilson</name>
</author>
<author>
<name sortKey="Ertl, Hc" uniqKey="Ertl H">HC Ertl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tims, T" uniqKey="Tims T">T Tims</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Xiang, Z" uniqKey="Xiang Z">Z Xiang</name>
</author>
<author>
<name sortKey="Pasquini, S" uniqKey="Pasquini S">S Pasquini</name>
</author>
<author>
<name sortKey="Ertl, Hc" uniqKey="Ertl H">HC Ertl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Ma" uniqKey="Johnson M">MA Johnson</name>
</author>
<author>
<name sortKey="Pooley, C" uniqKey="Pooley C">C Pooley</name>
</author>
<author>
<name sortKey="Ignjatovic, J" uniqKey="Ignjatovic J">J Ignjatovic</name>
</author>
<author>
<name sortKey="Tyack, Sg" uniqKey="Tyack S">SG Tyack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, H" uniqKey="Muller H">H Muller</name>
</author>
<author>
<name sortKey="Islam, Mr" uniqKey="Islam M">MR Islam</name>
</author>
<author>
<name sortKey="Raue, R" uniqKey="Raue R">R Raue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paton, Dj" uniqKey="Paton D">DJ Paton</name>
</author>
<author>
<name sortKey="Greiser Wilke, I" uniqKey="Greiser Wilke I">I Greiser-Wilke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Oirschot, Jt" uniqKey="Van Oirschot J">JT van Oirschot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond, Jm" uniqKey="Hammond J">JM Hammond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond, Jm" uniqKey="Hammond J">JM Hammond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond, Jm" uniqKey="Hammond J">JM Hammond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roth, Ja" uniqKey="Roth J">JA Roth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monteil, M" uniqKey="Monteil M">M Monteil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexandersen, S" uniqKey="Alexandersen S">S Alexandersen</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Donaldson, Ai" uniqKey="Donaldson A">AI Donaldson</name>
</author>
<author>
<name sortKey="Garland, Aj" uniqKey="Garland A">AJ Garland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomson, Gr" uniqKey="Thomson G">GR Thomson</name>
</author>
<author>
<name sortKey="Vosloo, W" uniqKey="Vosloo W">W Vosloo</name>
</author>
<author>
<name sortKey="Bastos, Ad" uniqKey="Bastos A">AD Bastos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayr, Ga" uniqKey="Mayr G">GA Mayr</name>
</author>
<author>
<name sortKey="Chinsangaram, J" uniqKey="Chinsangaram J">J Chinsangaram</name>
</author>
<author>
<name sortKey="Grubman, Mj" uniqKey="Grubman M">MJ Grubman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayr, Ga" uniqKey="Mayr G">GA Mayr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moraes, Mp" uniqKey="Moraes M">MP Moraes</name>
</author>
<author>
<name sortKey="Mayr, Ga" uniqKey="Mayr G">GA Mayr</name>
</author>
<author>
<name sortKey="Mason, Pw" uniqKey="Mason P">PW Mason</name>
</author>
<author>
<name sortKey="Grubman, Mj" uniqKey="Grubman M">MJ Grubman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Q" uniqKey="Wu Q">Q Wu</name>
</author>
<author>
<name sortKey="Moraes, Mp" uniqKey="Moraes M">MP Moraes</name>
</author>
<author>
<name sortKey="Grubman, Mj" uniqKey="Grubman M">MJ Grubman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moraes, Mp" uniqKey="Moraes M">MP Moraes</name>
</author>
<author>
<name sortKey="Chinsangaram, J" uniqKey="Chinsangaram J">J Chinsangaram</name>
</author>
<author>
<name sortKey="Brum, Mc" uniqKey="Brum M">MC Brum</name>
</author>
<author>
<name sortKey="Grubman, Mj" uniqKey="Grubman M">MJ Grubman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chinsangaram, J" uniqKey="Chinsangaram J">J Chinsangaram</name>
</author>
<author>
<name sortKey="Moraes, Mp" uniqKey="Moraes M">MP Moraes</name>
</author>
<author>
<name sortKey="Koster, M" uniqKey="Koster M">M Koster</name>
</author>
<author>
<name sortKey="Grubman, Mj" uniqKey="Grubman M">MJ Grubman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rossow, Kd" uniqKey="Rossow K">KD Rossow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonin, P" uniqKey="Gonin P">P Gonin</name>
</author>
<author>
<name sortKey="Pirzadeh, B" uniqKey="Pirzadeh B">B Pirzadeh</name>
</author>
<author>
<name sortKey="Gagnon, Ca" uniqKey="Gagnon C">CA Gagnon</name>
</author>
<author>
<name sortKey="Dea, S" uniqKey="Dea S">S Dea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gagnon, Ca" uniqKey="Gagnon C">CA Gagnon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garwes, Dj" uniqKey="Garwes D">DJ Garwes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuboly, T" uniqKey="Tuboly T">T Tuboly</name>
</author>
<author>
<name sortKey="Nagy, E" uniqKey="Nagy E">E Nagy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jimenez, G" uniqKey="Jimenez G">G Jimenez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torres, Jm" uniqKey="Torres J">JM Torres</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torres, Jm" uniqKey="Torres J">JM Torres</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Reeth, K" uniqKey="Van Reeth K">K van Reeth</name>
</author>
<author>
<name sortKey="Nauwynck, H" uniqKey="Nauwynck H">H Nauwynck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Nn" uniqKey="Zhou N">NN Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, M" uniqKey="Tang M">M Tang</name>
</author>
<author>
<name sortKey="Harp, Ja" uniqKey="Harp J">JA Harp</name>
</author>
<author>
<name sortKey="Wesley, Rd" uniqKey="Wesley R">RD Wesley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wesley, Rd" uniqKey="Wesley R">RD Wesley</name>
</author>
<author>
<name sortKey="Tang, M" uniqKey="Tang M">M Tang</name>
</author>
<author>
<name sortKey="Lager, Km" uniqKey="Lager K">KM Lager</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macklin, Md" uniqKey="Macklin M">MD Macklin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ulmer, Jb" uniqKey="Ulmer J">JB Ulmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goens, Sd" uniqKey="Goens S">SD Goens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wellenberg, Gj" uniqKey="Wellenberg G">GJ Wellenberg</name>
</author>
<author>
<name sortKey="Van Der Poel, Wh" uniqKey="Van Der Poel W">WH van der Poel</name>
</author>
<author>
<name sortKey="Van Oirschot, Jt" uniqKey="Van Oirschot J">JT Van Oirschot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elahi, Sm" uniqKey="Elahi S">SM Elahi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elahi, Sm" uniqKey="Elahi S">SM Elahi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baxi, Mk" uniqKey="Baxi M">MK Baxi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breker Klassen, Mm" uniqKey="Breker Klassen M">MM Breker-Klassen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittal, Sk" uniqKey="Mittal S">SK Mittal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zakhartchouk, An" uniqKey="Zakhartchouk A">AN Zakhartchouk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mutwiri, G" uniqKey="Mutwiri G">G Mutwiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gogev, S" uniqKey="Gogev S">S Gogev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diallo, A" uniqKey="Diallo A">A Diallo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamanouchi, K" uniqKey="Yamanouchi K">K Yamanouchi</name>
</author>
<author>
<name sortKey="Barrett, T" uniqKey="Barrett T">T Barrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freshney, Ri" uniqKey="Freshney R">RI Freshney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nadeau, I" uniqKey="Nadeau I">I Nadeau</name>
</author>
<author>
<name sortKey="Kamen, A" uniqKey="Kamen A">A Kamen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garnier, A" uniqKey="Garnier A">A Garnier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nadeau, I" uniqKey="Nadeau I">I Nadeau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Henry, O" uniqKey="Henry O">O Henry</name>
</author>
<author>
<name sortKey="Dormond, E" uniqKey="Dormond E">E Dormond</name>
</author>
<author>
<name sortKey="Perrier, M" uniqKey="Perrier M">M Perrier</name>
</author>
<author>
<name sortKey="Kamen, A" uniqKey="Kamen A">A Kamen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huyghe, Bg" uniqKey="Huyghe B">BG Huyghe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S Zhang</name>
</author>
<author>
<name sortKey="Thwin, C" uniqKey="Thwin C">C Thwin</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z Wu</name>
</author>
<author>
<name sortKey="Cho, T" uniqKey="Cho T">T Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babiuk, La" uniqKey="Babiuk L">LA Babiuk</name>
</author>
<author>
<name sortKey="Babiuk, Sl" uniqKey="Babiuk S">SL Babiuk</name>
</author>
<author>
<name sortKey="Loehr, Bi" uniqKey="Loehr B">BI Loehr</name>
</author>
<author>
<name sortKey="Van Drunnen Littel Van Den, H" uniqKey="Van Drunnen Littel Van Den H">H van Drunnen Littel-van den</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fallaux, Fj" uniqKey="Fallaux F">FJ Fallaux</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Gene Ther</journal-id>
<journal-id journal-id-type="iso-abbrev">Gene Ther</journal-id>
<journal-title-group>
<journal-title>Gene Therapy</journal-title>
</journal-title-group>
<issn pub-type="ppub">0969-7128</issn>
<issn pub-type="epub">1476-5462</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">16231058</article-id>
<article-id pub-id-type="pmc">7091679</article-id>
<article-id pub-id-type="publisher-id">BF3302618</article-id>
<article-id pub-id-type="doi">10.1038/sj.gt.3302618</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Use of adenoviral vectors as veterinary vaccines</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ferreira</surname>
<given-names>T B</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Alves</surname>
<given-names>P M</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Aunins</surname>
<given-names>J G</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Carrondo</surname>
<given-names>M J T</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Oeiras, Portugal</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.417993.1</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2260 0793</institution-id>
<institution>Merck and Co., Inc.,</institution>
</institution-wrap>
West Point, PA USA</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10772.33</institution-id>
<institution-id institution-id-type="ISNI">0000000121511713</institution-id>
<institution>Laboratório de Engenharia Bioquímica, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL),</institution>
</institution-wrap>
Monte da Caparica, Portugal</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>18</day>
<month>10</month>
<year>2005</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2005</year>
</pub-date>
<volume>12</volume>
<issue>Suppl 1</issue>
<fpage>S73</fpage>
<lpage>S83</lpage>
<permissions>
<copyright-statement>© Nature Publishing Group 2005</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Vaccines are the most effective and inexpensive prophylactic tool in veterinary medicine. Ideally, vaccines should induce a lifelong protective immunity against the target pathogen while not causing clinical or pathological signs of diseases in the vaccinated animals. However, such ideal vaccines are rare in the veterinary field. Many vaccines are either of limited effectiveness or have harmful side effects. In addition, there are still severe diseases with no effective vaccines. A very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and even more so for poultry vaccination, where vaccines must sell for a few cents a dose. Traditional approaches include inactivated vaccines, attenuated live vaccines and subunit vaccines. Recently, genetic engineering has been applied to design new, improved vaccines. Adenovirus vectors are highly efficient for gene transfer in a broad spectrum of cell types and species. Moreover, adenoviruses often induce humoral, mucosal and cellular immune responses to antigens encoded by the inserted foreign genes. Thus, adenoviruses have become a vector of choice for delivery and expression of foreign proteins for vaccination. Consequently, the market requirements for adenovirus vaccines are increasing, creating a need for production methodologies of concentrated vectors with warranted purity and efficacy. This review summarizes recent developments and approaches of adenovirus production and purification as the application of these vectors, including successes and failures in clinical applications to date.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>adenovirus vector</kwd>
<kwd>veterinary vaccine</kwd>
<kwd>viral vector production</kwd>
<kwd>viral vector purification</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Nature Limited 2005</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Introduction</title>
<p id="Par2">The history of veterinary vaccine development starts with the well-known story of Louis Pasteur and his rabbit spinal cord vaccine and continues to this day with the demonstration of protection in animals by rabies virus reverse transcriptase DNA plasmid vaccination.
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
In between, in 1947, Frenkel used suspensions of the epithelium obtained from the tongues of recently slaughtered healthy cattle that were maintained
<italic>in vitro</italic>
and subsequently infected in a manner similar to that used today with baby hamster kidney cells to produce foot and mouth disease virus (FMDV). The Frenkel procedure became the corner stone of vaccine production for many years and paved the way for modern biotechnology as we know it.
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
More recently, recombinant pox viruses have been generated for vaccination against heterologous pathogens, using vaccinia-vectors, expressing the rabies virus glycoprotein and Newcastle disease virus fusion and hemagglutinin (HA) glycoproteins, the first applications of genetically engineered vaccines.
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
</p>
<p id="Par3">Traditional vaccination involves the use of inactivated, live-attenuated or subunit vaccines. Inactivated, or ‘killed’, vaccines consist of treated microorganisms that are unable to replicate; however, they do not elicit protein production in the cytosol and hence viral antigens cannot be presented by MHC class I molecules, thus cytotoxic CD8 T cells are not generated. Live-attenuated vaccines are generally far more potent educing a greater number of relevant effector mechanisms, including cytotoxic CD8 T cells. Nevertheless, these vaccines sometimes have residual pathogenicity,
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
or a pathogenic virus strain may re-emerge by a further series of mutations.
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
Subunit vaccines would be as effective as live whole organisms, inherently safer than vaccines based on whole organisms, but they are not strongly immunogenic, being particularly difficult to obtain MHC class I specific responses.
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
,
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
The development of vaccines therefore remains an important goal of immunology. Moreover, there remains a need for further vaccines that can reduce the economic impact of disease in production animals.</p>
<p id="Par4">The ideal vaccine should be 100% efficacious in preventing infection, although this is totally unrealistic. Therefore, the ‘realistic’ vaccine should provide greater than 90% efficacy in disease prevention within a few days up to a couple of weeks of a single administration. Furthermore, in order to reduce the cost of regular reimmunizations and ensure receipt of a complete vaccination schedule, this protection should be of long duration, and should use a minimal number of doses. Additionally, an ‘ideal’ vaccine would also stimulate mucosal immunity, since the majority of viruses enter via mucosal surfaces; thus, the ‘perfect’ vaccine should be designed to be delivered by mucosal routes, that is, intranasal or oral delivery is preferable. Vaccines also need to be safe and not cause any adverse side reaction, such as immunosuppression or interference with immunity to other vaccines given simultaneously. Finally, the vaccines need to be both genetically and thermally stable. Genetic stability must be present to ensure the absence of reversion of the live vaccine to the virulent organism which might cause disease; and thermal stability is critical since the maintenance of the cold chain is not always guaranteed from manufacturing to delivery. A very important desired characteristic is to have vaccines that can be delivered to animals at a very young age and stimulate immunity in the presence of innate, passive immunity.
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
Another very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and for poultry vaccines, in which the vaccines must sell for a few cents a dose. Unfortunately, such ideal vaccines are rare in the veterinary field; additionally, there are still severe diseases with no effective vaccines.</p>
<p id="Par5">The history of heterologous gene expression in adenovirus (Ad) goes back to the discovery of simian virus 40 (SV40) contamination in the 1950s of inactivated Ad strains 1–5 and 7 vaccines during adaptation to growth in rhesus monkey kidney cells; it was observed that the SV40 T-antigen occasionally incorporated into the Ad genome, which led to the realization that Ad could be used to express heterologous genes.
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
Then recognition that purified replication-defective Ads could be propagated on 293 cells without helper viruses paved the way toward intentional production of genetically modified Ads.
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
The popularity of Ad as a recombinant viral vector is largely due to the successful and safe immunization of millions of US military recruits in 1971 with enterically coated Ad4 and Ad7 as a prevention against acute respiratory disease (ARD) outbreaks.
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
Following these first trials, a number of recombinant Ad (rAd) have recently been constructed and tested not only for humans but also for veterinary vaccination.
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
</p>
<p id="Par6">Ads are highly efficacious vaccine carriers with strong immunogenicity. Although the ability of Ad vectors to elicit antigen-specific CD8 and CD4 T cells is well described, little is known about the kinetics or nature of the immune response following Ad immunization.
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
However, Yang
<italic>et al</italic>
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
observed that Ad vectors have (i) the ability to deliver large amounts of antigen into the lymphoid tissues, (ii) the ability to induce rapid expansion and migration of CD8 T cells throughout the lymphatic system, and (iii) the ability to produce a sustained, high-level CD8 T-cell response, that may explain the strong immunogenicity of these vectors.</p>
<p id="Par7">The use of rAd as a veterinary vaccine has many advantages: (i) they can infect a wide variety of dividing or nondividing cells; (ii) Ad infections are ubiquitous and are normally without significant or severe clinical symptoms;
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
(iii) they can be administered orally;
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
(iv) Ads have their genome well characterized;
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
(v) they can accommodate up to 36 kb of foreign genetic material;
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
(vi) their genome rarely integrates into the host chromosome;
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
(vii) techniques are well established for the construction of rAd vectors;
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
and (viii) they have the ability to replicate at high titers in complementing cell lines.
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
</p>
</sec>
<sec id="Sec2">
<title>Ad biology</title>
<p id="Par8">Ad is a non-enveloped, icosahedral virus of 60–90 nm with a linear duplex DNA genome of about 36 kb. The genome is divided into early (E) and late (L) genes, expressed, respectively, before and after replication of the viral chromosome (
<xref rid="Fig1" ref-type="fig">Figure 1</xref>
). E1 gene products are involved in the control of viral gene transcription, shut-off of cellular proteins and cellular transformation. The E2 gene codes for proteins involved in viral replication, including a DNA-binding protein involved in DNA elongation (E2A) and a DNA polymerase (E2B); E3 gene, dispensable for Ad replication, codes for proteins that interfere with the host immune response against virus infection; finally, the E4 genes are involved in the transition from early to late gene expression, the shut-off of host-cell gene expression, the viral replication and the assembly of the virion (see Russell
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
and Imler
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
reviews). First-generation vectors are usually deleted in their E1 and E3 regions; however, when production is performed on 293 cells, recombination between the left terminus of first-generation Ad vector and partially overlapping E1 sequences in the cellular genome may result in the generation of E1-positive, replication-competent Ad (RCA),
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
a serious safety concern if nonreplicating vectors are desired. Second-generation vectors are replicative-defective Ad, which are further deleted in E2A, E2B or E4, showing reduced immunogenicity and RCA generation, but engineering of stable cell lines that complement these vectors can be cumbersome and lead to poor cell growth and viral titers.
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>Schematic representation of the adenoviral genome organization.</p>
</caption>
<graphic xlink:href="41434_2005_Article_BF3302618_Fig1_HTML" id="d29e373"></graphic>
</fig>
</p>
<p id="Par9">rAd vectors have been developed either as replication-competent, with the expression cassette for the foreign antigen in place of the E3 genes, or as replication-defective viruses, when the antigen expression cassette replaces the E1 genes.
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
Despite the fact that it would be preferable to work with replication-defective virus, different studies have supported the use of RCAs in veterinary vaccination, since the ability of the replication-defective form to induce mucosal immunity and to protect against a respiratory challenge, following immunization, was reported to be limited.
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
Moreover, RCA-based vaccines were known to have the potentiality to override maternal-derived immunity.
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
Additionally, cattle vaccination with both rAds against herpesvirus-1 showed that the use of the replication-defective form induced lower titers of antibody than the replication-competent form in intratracheal/subcutaneous immunization.
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
</p>
</sec>
<sec id="Sec3">
<title>Species-specific platforms</title>
<p id="Par10">Currently, human rAd represents one of the most efficient vector systems for delivery of vaccine antigens. However, the use of human Ad (HAd) as a vaccine delivery system in non-human animals is still limited. Since non-HAds are species specific, the development of animal-specific Ad as a vaccine delivery system would be a logical choice. Thus, Ads isolated from species other than man have generated increasing interest, in particularly:
<list list-type="simple">
<list-item>
<label>i)</label>
<p id="Par11">canine Ad (CAd), which has the ability to replicate and persist locally in the upper respiratory tract of puppies in the face of maternal-derived antibodies when administered via the intranasal route and use both depedent and independent coxsackievirus group B and Ad receptor (CAR) pathays to enter the cells;
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
</sup>
</p>
</list-item>
<list-item>
<label>ii)</label>
<p id="Par12">avian Ad, the subject of numerous investigations, has a number of features that make them attractive to the poultry industry: ease of propagation, ease of administration (water, aerosol or injection) and a large range of serotypes that vary in virulence. Chicken embryo lethal orphan (CELO), classified as the type 1 fowl Ad (FAd), is the most studied vector. This virus, like other typical avian Ad, has a much larger genome than mammalian Ad. Despite its large scatter, it has never been associated with serious disease or economical losses in the poultry industry. It can be isolated from healthy chickens and does not induce clinical signs when experimentally inoculated in chickens. Also this virus use both dependent and independent CAR pathways to enter the cells;
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
</p>
</list-item>
<list-item>
<label>iii)</label>
<p id="Par13">porcine Ad (PAd), which, depending upon serotype, can be grown in the pig kidney, testis, retina, thyroid cells, human kidney, canine melanoma and calf kidney cells, do not require adjuvants for the induction of proper immune responses. Infection is generally sub clinical causing no adverse effects in producing pigs, with PAd also isolated from apparently healthy pigs. PAd is species specific having only been isolated from swine, reducing the possibility of its spread to other animal or man following administration. PAd could induce both systemic and mucosal antibody responses;
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
and</p>
</list-item>
<list-item>
<label>iv)</label>
<p id="Par14">bovine Ad serotype 3 (BAd3), which, like PAd, do not require adjuvants for the induction of proper immune response, and has been used due to its lack of virulence. Moreover, experimental infections of calves with BAd3 failed to produce either clinical signs or gross lesions, but all animals seroconverted. The cell entry pathway of BAd3 is not well understood.
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
</p>
</list-item>
</list>
</p>
</sec>
<sec id="Sec4">
<title>Applications</title>
<sec id="Sec5">
<title>Adenovirus vaccination in companion animals</title>
<sec id="Sec6">
<title>Feline immunodeficiency virus</title>
<p id="Par15">The infection of cats with feline immunodeficiency virus (FIV) results in an immunosuppressive disease that is transmitted by blood and saliva. FIV invades and destroys the monocyte/macrophage system and infects B cells.
<sup>
<xref ref-type="bibr" rid="CR36">36</xref>
</sup>
Different approaches have been made trying to immunize cats against FIV; so far, no effective vaccine has been made. Gonin
<italic>et al</italic>
,
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
10 years ago, constructed a replication-defective HAd5, containing the envelope protein ENV gene of FIV; however, despite the fact that an antibody response to pseudorabies virus in cats showed the potential of rHAd5 vectors to be used in this species, cats injected with 10
<sup>10.8</sup>
–10
<sup>11.8</sup>
of 50% tissue culture infectious dose (TCID
<sub>50</sub>
) adjuvanted with montanide ISA 708 (water in nonmineral oil) or with montanide ISA 206 (double water/mineral oil/water) of this rAd did not develop detectable antibody response against ENV. Moreover, it was observed that even if high titers of antibodies against ENV products are induced, they could still be insufficient for protection.
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
Since then, no further work has apparently been performed concerning the use of Ad vectors as a potential vaccine against FIV.</p>
</sec>
<sec id="Sec7">
<title>Canine distemper virus</title>
<p id="Par16">Canine distemper virus (CDV) induces fatal diseases including encephalitis with demyelination, diarrhea and respiratory disorders in dogs. Although conventional live modified vaccines are commercially available and widely used in the field, their efficacy is limited in the presence of maternally derived antibodies.
<sup>
<xref ref-type="bibr" rid="CR38">38</xref>
</sup>
Thus, a new and improved CDV vaccine, which could overcome this limitation, would constitute a significant improvement. The construction and characterization of the first replication-competent rCAd2 started recently. The genes that code for CDV HA
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
or fusion (F)
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
proteins were inserted in two CAd2s and used as a candidate vaccine in puppies. It was reported that intranasal vaccination with a mixture containing 10
<sup>5.8</sup>
TCID
<sub>50</sub>
of which rCAd2 provided an excellent level of protection in seronegative puppies, inducing almost complete protection. In contrast, intranasal immunization of puppies born to CDV and CAd2 immune dams failed to activate specific and protective immune responses. However, when the same puppies were vaccinated subcutaneously, significant seroconversion and solid protective immunity were triggered. Furthermore, a significant priming of memory responses was evidenced immediately after challenge, this constituting an efficient strategy to overcome both passive and active Ad-specific immunity in the dog.</p>
</sec>
<sec id="Sec8">
<title>Rabies virus</title>
<p id="Par17">Rabies still presents a health threat not only to humans but also to dogs and cats, dog being the only important vector for humans, especially in less developed nations where uncontrolled canine rabies often is endemic. A replication-competent and -defective HAd5 expressing a rabies glycoprotein (RG) has been developed, inducing immunity to rabies in rodent, canine, foxes and skunk when given by intramuscular, subcutaneous or intranasal routes with a dose of 10
<sup>8</sup>
TCID
<sub>50</sub>
/animal. However, oral immunization failed to induce a measurable antibody response to rabies virus (RV) using the same dose.
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
Dogs previously vaccinated with commercially available vaccines, immunized with 10
<sup>7</sup>
plaque forming unit (PFU)/animal of a replication-defective HAd5 expressing the RG, have developed higher titers of viral neutralizing antibodies against RV 10 days after vaccination when compared with conventional vaccines under similar conditions. Moreover, the immunization of dogs with the commercial non-Ad vaccines is required yearly or, at best, every 3 years, depending on the type of vaccine. On the other hand, the higher antibody titers obtained with Ad vaccines against RV would reduce the frequency of dog immunization, reducing the costs for pet owners.
<sup>
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
One important advantage of this recombinant vaccine is the fact that the immune response to the RG was shown not to be impaired by maternal immunity; thus, this Ad vaccine is highly suitable for neonatal immunization.
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
</p>
</sec>
</sec>
<sec id="Sec9">
<title>Adenovirus vaccination in poultry</title>
<sec id="Sec10">
<title>Avian infectious bronchitis virus</title>
<p id="Par18">Infectious bronchitis virus (IBV) is an highly contagious pathogen of poultry causing significant morbidity and mortality. Depending on the strain, IBV can target the respiratory tract, kidney and oviducts, and result in nephritis and reduced egg production. In addition, more than 20 IBV serotypes have been identified worldwide and new serotypic variants have been identified as a result of the widespread use of live attenuated vaccines. Different approaches have been developed in order to generate a more efficacious vaccine against IBV. The expression of S1, a glycoprotein involved in the attachment of cellular receptors, by a vaccinia virus was able to induce virus-neutralizing antibodies to IBV when delivered to mice; however, multiple injections are required to achieve a reasonable degree of protection. Recently, a FAd expressing the S1 of IBV has been developed.
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
A single dose of 10
<sup>6</sup>
TCID
<sub>50</sub>
/animal was shown to be sufficient to obtain complete protection of chickens at the trachea, the primary site of infection by IBV. Moreover, even in the face of FAV maternal antibodies, a high level of protection was achieved.
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
</p>
</sec>
<sec id="Sec11">
<title>Infectious bursal disease virus</title>
<p id="Par19">Infectious bursal disease virus (IBDV) induces an immunosuppressive disease of chickens by destruction of the B lymphocytes. Current vaccination alternatives consist of either live virus or inactivated oil-emulsion vaccines, which induce serum antibody production in breeding hens after natural exposure; they are transferred to the progeny chicks via the yolk sac providing protection for the first critical weeks after hatching.
<sup>
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
The construction of an rFAd10 containing the VP2 gene from IBDV has been described.
<sup>
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
This recombinant vaccine was shown to induce an immune response in chickens to VP2 after vaccination with 10
<sup>7</sup>
 PFU/animal. Moreover, after challenge with IBDV, intravenously, intraperitoneally, subcutaneously or intramuscularly, vaccinated chickens were protected, although no protection was observed in conjunctival sac vaccinated chickens.
<sup>
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
</p>
</sec>
</sec>
<sec id="Sec12">
<title>Adenovirus vaccination in swine</title>
<sec id="Sec13">
<title>Classical swine fever virus</title>
<p id="Par20">Classical swine fever (CSF), also known as hog cholera, is a serious and contagious viral disease of pigs with a high mortality rate, difficult to control in areas of high pig or wild boar densities, being the most economically important disease of swine in areas of intensive pig farming. For this reason, CSF is included in the A list of infectious diseases of the highest importance for international trade. Thus, it is highly relevant to develop efficacious vaccines for the control of CSF virus (CSFV) in domestic pigs and in wild boar. Prophylactic vaccination is still carried out in many parts of the world.
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
New vaccine developments have included a number of different strategies for delivering the major envelope glycoprotein, E2, against which most neutralizing antibodies are directed.
<sup>
<xref ref-type="bibr" rid="CR47">47</xref>
</sup>
Hammond
<italic>et al</italic>
,
<sup>
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
constructed the first rPAd expressing the E2 protein and showed that a single dose of 10
<sup>7</sup>
TCID
<sub>50</sub>
/animal in tissue culture supernatant, when administered subcutaneously, is sufficient to completely protect pigs against subcutaneous challenge. Later, the same authors showed that when the challenge is administered orally, only 60% of the animals were protected;
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
</sup>
more, recently, it was shown that pigs given two oral doses of 10
<sup>6</sup>
TCID
<sub>50</sub>
/animal of rPAd were completely protected from the disease.
<sup>
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
</p>
</sec>
<sec id="Sec14">
<title>Pseudorabies virus</title>
<p id="Par21">Pseudorabies virus (PrV) is an alpha herpesvirus, which causes the economically important and widespread Aujeszky's disease (AJD) in pigs. PrV is a highly neurotropic virus causing nervous and respiratory complications in pigs, the natural host, and in a variety of other animal species. Vaccination against AJD is widely practised with live attenuated or killed whole virus vaccines. However, neonatal immunization is often limited in the presence of maternally derived antibody, which inhibits the immune response against both vaccines.
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
Recently, the use of rAd vaccines carrying individual PrV genes were constructed as a safe alternative. Glycoproteins gD, gB and gC of PrV were chosen on the basis of their role in eliciting a protective immune response against virus infection. It was shown that piglets vaccinated intramuscularly with 10
<sup>8.6</sup>
–10
<sup>9.6</sup>
TCID
<sub>50</sub>
/animal 1 day after birth, with replication-competent HAd5 harbouring these three genes, developed similar neutralizing antibody responses independently of the presence or absence of maternal antibodies and were partially protected against challenge 16 weeks later.
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
</sup>
For pigs that are slaughtered a few months after birth, one-shot vaccination at birth could provide protection of sufficient duration. Finally, two doses of 2 ml of clarified tissue culture supernatant containing 10
<sup>5.4</sup>
TCID
<sub>50</sub>
of rPAd expressing the PrV gD gene were administered subcutaneously and showed to protect pigs after challenge. Postmorten, gross lesions of pneumonia were found in the lungs of pigs given a single dose of vaccine; the lungs of pigs given two doses were free from disease.
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
</sup>
</p>
</sec>
<sec id="Sec15">
<title>Foot and mouth disease virus</title>
<p id="Par22">Foot and mouth disease (FMD) is a severe, clinically acute, vesicular disease of cloven-hoofed animals including domesticated ruminants, pigs and more than 70 wildlife species. Pigs are recognized as a significant factor in the spread of the disease since a single pig releases as much aerosol virus as 3000 cattle in a short period of time.
<sup>
<xref ref-type="bibr" rid="CR53">53</xref>
,
<xref ref-type="bibr" rid="CR54">54</xref>
</sup>
The economic and social impact of FMD can be catastrophic when an outbreak occurs in FMD-free countries populated with immunologically naive animals. The current vaccine is a chemically inactivated preparation of concentrated infected cell culture supernatant. However, FMD-free countries generally prohibit its use because of the lack of an approved diagnostic test that can reliably distinguish vaccinated from infected animals. Moreover, current vaccines can induce a protective response only after approximately 7 days post vaccination; this is a critical issue in disease-free countries, where, in the case of FMD outbreaks, a rapid control in preventing the spread of the disease is crucial (see Doel
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
for a review). Thus, there is a need to develop disease control strategies relying on more rapidly induced protection. Mayer
<italic>et al</italic>
<sup>
<xref ref-type="bibr" rid="CR55">55</xref>
</sup>
developed a replication-defective HAd5 vector containing the capsid polypeptide P1 and the viral 3C protease coding regions, necessary for processing P1 to the capsid proteins VP0, VP3 and VP1, from the FMDV strain A12. They observed that vaccinated swine with 1 × 10
<sup>8</sup>
 PFU/animal in PBS developed antibodies against FMDV structural proteins and an FMDV-specific neutralizing antibody response, which seems to increase slightly by boosting the swine with a second inoculation of 5 × 10
<sup>8</sup>
 PFU/animal in PBS at 4 weeks post initial vaccination.
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
This vaccination protocol was shown to offer a significant degree of protection to the pigs, as five of six pigs were completely protected, while the remaining animal had significantly reduced signs of disease. Later, Moraes
<italic>et al</italic>
<sup>
<xref ref-type="bibr" rid="CR57">57</xref>
</sup>
showed that a single dose of 5 × 10
<sup>9</sup>
 PFU/animal in PBS of a replication-defective HAd5 expressing the P1 coding region of FMDV strain A24 completely protected pigs against homologous challenge 7, 14 or 42 days after vaccination. Since efficacious vaccination is strain dependent and the infection with one serotype does not confer protection against another, HAd5 bicistronic vector vaccines have been developed,
<sup>
<xref ref-type="bibr" rid="CR58">58</xref>
</sup>
decreasing the cost for multivalent adenoviral FMD vaccines. For the construction of these vectors, the P1 capsid coding region for both A24 and O1 strains and the 3C protease coding region of A12 strain were used. However, the neutralizing antibody response after vaccination with 2.5 × 10
<sup>9</sup>
 PFU/animal in PBS of the bicistronic vector was considerably lower than that induced by a commercial FMD vaccine or the monovalent Ad-A24 vaccine.
<sup>
<xref ref-type="bibr" rid="CR57">57</xref>
</sup>
Recently, a new strategy based on the fact that FMDV is highly sensitive to alpha/beta interferon (IFN-α/β) have been developed using a replication-defective HAd5.
<sup>
<xref ref-type="bibr" rid="CR59">59</xref>
,
<xref ref-type="bibr" rid="CR60">60</xref>
</sup>
This strategy has been shown to completely protect pigs after vaccination with 10
<sup>9</sup>
 PFU/animal when challenged 24 h later with virulent FMDV.</p>
</sec>
<sec id="Sec16">
<title>Porcine respiratory and reproductive syndrome virus.</title>
<p id="Par23">Porcine respiratory and reproductive syndrome virus (PRRSV) is the causative agent of an economically important pig disease, with a worldwide distribution, characterized by reproductive failure in sows and respiratory problems in unweaned and growing pigs. Swine macrophage is the only cell type known to support PRRSV replication, making commercial production impossible. Direct contact between infected and naive pigs is the predominant route of PRRSV transmission. Moreover, pneumonia caused by PRRSV infection is more severe in young pigs compared to adults and may be complicated by concurrent bacterial infection.
<sup>
<xref ref-type="bibr" rid="CR61">61</xref>
</sup>
Gonin
<italic>et al</italic>
<sup>
<xref ref-type="bibr" rid="CR62">62</xref>
</sup>
observed that PRRSV-infected pigs present circulating antibodies responsible for viral neutralization mainly directed against GP
<sub>5</sub>
, an envelope protein. Gagnon
<italic>et al</italic>
<sup>
<xref ref-type="bibr" rid="CR63">63</xref>
</sup>
constructed a replication-defective HAd5 expressing the GP
<sub>5</sub>
protein and used this recombinant virus to immunize pigs using two intradermal injections with 5 × 10
<sup>8</sup>
–1 × 10
<sup>9</sup>
 PFU/animal in a mixture containing 100 μl of PBS and 100 μl of poloxamer SP1017 at 0.02%. It was observed that following challenge given intranasally 14 days after the booster, pigs produced high antibody titers to GP
<sub>5</sub>
protein. Moreover, vaccinated pigs presented specific immune memory which, following a subsequent PRRSV infection, resulted in a rapid clonal expansion of memory cells to the neutralizing epitopes of the authentic viral GP
<sub>5</sub>
protein.</p>
</sec>
<sec id="Sec17">
<title>Transmissible gastroenteritis (Corona) virus</title>
<p id="Par24">Transmissible gastroenteritis (Corona) virus (TGEV) infects the enteric and respiratory tissues of newborn piglets resulting in mortalities approaching 100%. The virus infects epithelial cells and, in some cases, lung macrophages.
<sup>
<xref ref-type="bibr" rid="CR64">64</xref>
</sup>
There are several commercially available TGEV vaccines, both inactivated and attenuated; these do not fully protect piglets. Several attempts have been made to develop efficacious recombinant TGEV vaccines.
<sup>
<xref ref-type="bibr" rid="CR65">65</xref>
</sup>
The spike protein (S) was identified as the major inducer of TGEV-neutralizing antibodies and it mediates binding of TGEV to its cellular receptor.
<sup>
<xref ref-type="bibr" rid="CR66">66</xref>
</sup>
Thus, HAd5 expressing the S protein was constructed and used to study the induction of antibodies providing protection in swine.
<sup>
<xref ref-type="bibr" rid="CR67">67</xref>
</sup>
It was observed that porcine serum, elicited by 10
<sup>9</sup>
 PFU/animal in PBS of this recombinant, when mixed with a lethal dose of virus prior to administration to susceptible pigs, prevented the replication of virulent TGEV administered orally as virus–antibody mixtures and fully protected swine from clinical signs and death. Moreover, the used dose did not produce any clinical symptoms in any of the more than 50 animals inoculated up to 10 weeks after inoculation,
<sup>
<xref ref-type="bibr" rid="CR68">68</xref>
</sup>
suggesting that this vector can be used as a live vaccine in swine without secondary complications associated with the vector. However, a PAd vector could be more effective than HAd. Thus, Tuboly and Nagy
<sup>
<xref ref-type="bibr" rid="CR65">65</xref>
</sup>
constructed a rPAd5 expressing the TGEV protein. It was observed that a single oral dose of 5 × 10
<sup>6</sup>
 PFU/animal of the recombinant virus was sufficient to induce both a systemic and a local humoral immune response.
<sup>
<xref ref-type="bibr" rid="CR65">65</xref>
</sup>
Unfortunately, challenge experiments were not carried out.</p>
</sec>
<sec id="Sec18">
<title>Swine influenza virus</title>
<p id="Par25">Swine influenza virus (SIV) is a widespread and important pathogen in species as diverse as poultry, swine, marine mammals and humans. In pigs, influenza can occur either as an enzootic problem in a herd or, more commonly, as explosive outbreaks of ARD. Although rarely fatal, swine influenza can be of substantial economic impact.
<sup>
<xref ref-type="bibr" rid="CR69">69</xref>
</sup>
In addition, there is growing concern for the potential for synergistic infections with influenza and PRRSV. Beyond the impact of influenza for the swine industry, pigs are also very important in the global ecology of influenza A viruses in humans.
<sup>
<xref ref-type="bibr" rid="CR70">70</xref>
</sup>
SIV vaccines that are commercially available are inactivated, whole-virus or subunit vaccines. While these vaccines may decrease the incidence and severity of clinical disease, they do not consistently provide complete protection from virus infection. Two replication-defective HAd5 were developed as potential vaccines against SIV: rHAd5 expressing the influenza virus H3 HA
<sup>
<xref ref-type="bibr" rid="CR71">71</xref>
,
<xref ref-type="bibr" rid="CR72">72</xref>
</sup>
inducing predominately a subtype-specific humural immune response;
<sup>
<xref ref-type="bibr" rid="CR73">73</xref>
</sup>
and rHAd5 expressing the nucleoprotein (NP),
<sup>
<xref ref-type="bibr" rid="CR72">72</xref>
</sup>
a group-specific stimulating cytotoxic T lymphocytes for crossreactive immunity to all influenza A subtypes.
<sup>
<xref ref-type="bibr" rid="CR74">74</xref>
</sup>
It was observed that the immunization of mice with 5 × 10
<sup>8</sup>
TCID
<sub>50</sub>
/animal and pigs with 2 × 10
<sup>10</sup>
TCID
<sub>50</sub>
/animal in PBS with the first recombinant, described above, developed high levels of virus-specific hemagglutination-inhibition antibody to SIV by 4 weeks post vaccination and the animals were partially protected. On the other hand, pigs vaccinated with 2 × 10
<sup>10</sup>
TCID
<sub>50</sub>
/ml in PBS of both recombinant viruses in a mixture were completely protected.</p>
</sec>
</sec>
<sec id="Sec19">
<title>Adenovirus vaccination in cattle</title>
<sec id="Sec20">
<title>Bovine viral diarrhea virus</title>
<p id="Par26">Bovine viral diarrhea virus (BVDV) is responsible for reduced milk production, reduced reproductive performance and growth retardation. In addition, acute infection in adult cattle, congenital defects and increased neonatal mortality are also clinical manifestations of BVDV infection.
<sup>
<xref ref-type="bibr" rid="CR75">75</xref>
</sup>
Finally, it was reported that BVDV may play an indirect role in immunosuppression.
<sup>
<xref ref-type="bibr" rid="CR76">76</xref>
</sup>
Currently, inactivated and modified-live vaccines are used; however, both types of vaccines have significant shortcomings. A rHAd5 expressing the nucleocapsid C protein (p14), which is highly conserved among many different pestiviruses, to which BVDV belongs, was constructed and shown to induced both humoral and cellular immune responses after vaccination with 10
<sup>9</sup>
 PFU/animal, in a mouse model.
<sup>
<xref ref-type="bibr" rid="CR77">77</xref>
</sup>
The E2 protein of BVDV, which is a major viral glycoprotein, was also used for mice immunization using the same vector and dose.
<sup>
<xref ref-type="bibr" rid="CR78">78</xref>
</sup>
A strong humoral immune response was detected as the presence of a strong memory response to the E2 protein. Both strategies used an inducer/promoter allowing the generation of rAd in which the production of the transgene may be toxic and permitting the control of the transgene expression
<italic>in vitro</italic>
and
<italic>in vivo</italic>
. Finally, a rBAd3 expressing BVDV E2 protein was constructed and shown to induce BVDV E2-specific mucosal and systemic immune responses after intranasal immunization with 10
<sup>7</sup>
 PFU/animal of cotton rats.
<sup>
<xref ref-type="bibr" rid="CR79">79</xref>
</sup>
Despite the fact that mice immunized with recombinant fowl pox virus or with a DNA vaccine expressing E2 glycoprotein induced E2-specific immune responses, it was also observed that the neutralization titers were low.
<sup>
<xref ref-type="bibr" rid="CR79">79</xref>
</sup>
</p>
</sec>
<sec id="Sec21">
<title>Bovine parainfluenza virus type 3</title>
<p id="Par27">Bovine parainfluenza virus type 3 (bPIV3) has been isolated from normal cattle, cattle showing signs of respiratory disease and aborted fetuses. An intramammary inoculation of bPIV3 resulted in respiratory signs, fever and malaise. Moreover, the milk showed a color change, an increased pH and increased numbers of glandular epithelial cells, neutrophils, lymphocytes and monocytes.
<sup>
<xref ref-type="bibr" rid="CR76">76</xref>
</sup>
Currently, multivalent vaccines containing killed bPIV3 are used. Breker-Klassen
<italic>et al</italic>
<sup>
<xref ref-type="bibr" rid="CR80">80</xref>
</sup>
constructed two rHAd5 encoding either the F or the HN protein of bPIV3. It was shown that intranasal vaccination with 5 × 10
<sup>7</sup>
 PFU/animal in PBS of cotton rats produced a strong serological response within 21 days, which increased with the second vaccination. Moreover, F and HN proteins produced by rHAd5 either alone or in combination were sufficient to induce a protective immune response.
<sup>
<xref ref-type="bibr" rid="CR80">80</xref>
</sup>
</p>
</sec>
<sec id="Sec22">
<title>Bovine herpes virus 1</title>
<p id="Par28">Bovine herpes virus 1 (BHV-1) causes a variety of diseases in cattle including infectious bovine rhinotrachitis, infectious pustular vulvo-vaginitis, conjunctivitis and occasionally meningo-encephalitis. Live attenuated and killed vaccines are partially effective in reducing the disease incidence and severity.
<sup>
<xref ref-type="bibr" rid="CR76">76</xref>
</sup>
The limitations with the existing vaccines have encouraged the development of alternative, cost-effective vaccination strategies such as recombinant live viral vector-based vaccines. Mittal
<italic>et al</italic>
<sup>
<xref ref-type="bibr" rid="CR81">81</xref>
</sup>
developed the first replication-competent and -defective HAd5 carrying the gD glycoprotein gene from the BHV-1 envelope. They showed that both forms induced immunity in cotton rats after vaccination with 10
<sup>7</sup>
 PFU/animal in PBS and no infectious BHV-1 virions were isolated from the trachea of these rats after challenge. The same strategy was used with a rBAd3 and tested in its ability to induce mucosal and systemic immune response in cotton rats
<sup>
<xref ref-type="bibr" rid="CR82">82</xref>
</sup>
and calves
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
with success. More recently, newborn lambs were immunized with 2 × 10
<sup>9</sup>
 PFU/animal of replication-defective HAd5 expressing the gD protein of BHV-1.
<sup>
<xref ref-type="bibr" rid="CR83">83</xref>
</sup>
Both humoral and cell-mediated gD-specific mucosal immune responses were detected in 1–4-day-old lambs after a single immunization and these responses were qualitatively and quantitatively similar to those detected in 5–6 week-old lambs. Moreover, gD-specific maternal antibody did not significantly alter either mucosal or systemic gD-specific immune response. In addition, BHV-1 glycoprotein gC was also tested in its ability to induce protective immunity to BHV-1 in cattle by intranasal administration of 10
<sup>10</sup>
 PFU/animal using a replication-defective HAd5.
<sup>
<xref ref-type="bibr" rid="CR84">84</xref>
</sup>
However, it was observed that the highest BHV-1 neutralizing antibody titers were obtained with rHAd5 expressing the gD protein followed by the live vaccine.</p>
</sec>
<sec id="Sec23">
<title>Rinderpest virus and peste des petits ruminants virus</title>
<p id="Par29">Because of their high mortality and high morbidity rates, rinderpest (RP) and peste des petits ruminants (PPR) are dreaded animal diseases that are drawing back the animal production in many developing countries (Africa and Asia). They affect both domestic and wild ruminants and belong to the list A of the Office International des Epizooties where highly contagious animal diseases with high economic importance are grouped. Currently, attenuated tissue culture vaccines used to control RP and PPR viruses have been successfully used for many years. Being safe and effective, they provide complete and lifelong protection with a single subcutaneous inoculation.
<sup>
<xref ref-type="bibr" rid="CR85">85</xref>
,
<xref ref-type="bibr" rid="CR86">86</xref>
</sup>
However, for vaccination programs, the oral route of administration would be more economical. Moreover, the parenteral way of administration means that the current vaccine cannot be used in wildlife. In our laboratory, the production purification, and encapsulation processes for a replication-defective HAd5 expressing two different morbillivirus capsids proteins, the responsible agent of both diseases, is in progress. The aim is the development of heat stable RP/PPR oral vaccines better adapted for mass vaccination in hot climate developing countries. Animal vaccination and challenge testes are ongoing with promising preliminary results.</p>
<p id="Par30">In summary, according to the numerous reported studies, live human or non-human rAds, either infectious or not, appear to be attractive candidates for vaccination against several animal disease (
<xref rid="Tab1" ref-type="table">Table 1</xref>
). Success situations are clear against most pathogens reported and intermediate successes are apparent against CDV and RP virus (RPV)/PPR virus (PPRV), whereas vaccination against FIV have, thus far, yielded poor or inconclusive results. Nevertheless, this is not a comprehensive picture, since more than 50 viral agents of veterinary importance are known (
<xref rid="Tab2" ref-type="table">Table 2</xref>
).
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Host and pathogens for which Ad vaccines have been tested in companion animal, poultry and livestock</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>
<italic>Species</italic>
</th>
<th>
<italic>Pathogen</italic>
</th>
<th>
<italic>Protection</italic>
</th>
<th>
<italic>Reference(s)</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feline</td>
<td>FIV</td>
<td>No</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
</td>
</tr>
<tr>
<td>Canine</td>
<td>CDV</td>
<td>Partial</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>RV</td>
<td>Yes
<sup>a</sup>
</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
,
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
</td>
</tr>
<tr>
<td>Chicken</td>
<td>IBV</td>
<td>Yes</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>IBDV</td>
<td>Yes</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
</td>
</tr>
<tr>
<td>Swine</td>
<td>CSFV</td>
<td>Yes</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR48">48</xref>
,
<xref ref-type="bibr" rid="CR49">49</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>PrV</td>
<td>Yes</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>FMDV</td>
<td>Yes</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR55">55</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
,
<xref ref-type="bibr" rid="CR57">57</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
,
<xref ref-type="bibr" rid="CR59">59</xref>
,
<xref ref-type="bibr" rid="CR60">60</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>PRRSV</td>
<td>Yes</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR63">63</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>TGEV</td>
<td>Yes</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR65">65</xref>
,
<xref ref-type="bibr" rid="CR67">67</xref>
,
<xref ref-type="bibr" rid="CR68">68</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>SIV</td>
<td>Yes</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR71">71</xref>
,
<xref ref-type="bibr" rid="CR72">72</xref>
,
<xref ref-type="bibr" rid="CR73">73</xref>
</sup>
</td>
</tr>
<tr>
<td>Bovine</td>
<td>BVDV</td>
<td>Yes
<sup>b</sup>
</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR77">77</xref>
,
<xref ref-type="bibr" rid="CR79">79</xref>
,
<xref ref-type="bibr" rid="CR81">81</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>bPIV3</td>
<td>Yes
<sup>b</sup>
</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR80">80</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>BHV-1</td>
<td>Yes</td>
<td>
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR81">81</xref>
,
<xref ref-type="bibr" rid="CR82">82</xref>
,
<xref ref-type="bibr" rid="CR83">83</xref>
,
<xref ref-type="bibr" rid="CR84">84</xref>
</sup>
</td>
</tr>
<tr>
<td></td>
<td>RPV/PPRV</td>
<td>Partial</td>
<td>Unpublished</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
Obtained in mice.</p>
<p>
<sup>b</sup>
Obtained in cotton rats.</p>
</table-wrap-foot>
</table-wrap>
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Over 50 viral agents are available in the veterinary vaccine market</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>
<italic>Species</italic>
</th>
<th>
<italic>Pathogen</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine</td>
<td>Coronavirus; foot and mouth disease O, A, C; infectious rhinotracheitis; papillomavirus; parainfluenza 3; respiratory syncytial virus; rotavirus; bovine viral diarrhea 1 and 2</td>
</tr>
<tr>
<td>Porcine</td>
<td>Encephalomyocarditis; influenza; parvovirus; pseudorabies; reproductive and respiratory syndrome; rotavirus; transmissible gastroenteritis; rabies</td>
</tr>
<tr>
<td>Equine</td>
<td>Eastern encephalitis; Venezuelan encephalitis; Western encephalitis; herpesvirus 1 and 4; influenza; rabies</td>
</tr>
<tr>
<td>Caprine/Ovine</td>
<td>Bluetongue; ecthyma (Orfvirus); rabies</td>
</tr>
<tr>
<td>Avian</td>
<td>Encephalomyelitis; fowl pox; hemorrhagic enteritis; infectious bronchitis; infectious bursal disease; laryngotracheitis; marble spleen disease; Marek's disease; newcastle disease; paramyxovirus; pigeon pox; reovirus; tenosynovitis</td>
</tr>
<tr>
<td>Feline</td>
<td>Calicivirus; leukaemia; panleukopenia; peritonitis; rabies; rhinotracheitis; lentivirus</td>
</tr>
<tr>
<td>Canine</td>
<td>Adenovirus; coronavirus; distemper; hepatitis; measles parainfluenza; parvovirus; rabies</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
</sec>
</sec>
<sec id="Sec24">
<title>Ad production and purification as veterinary vaccines</title>
<p id="Par31">Process design is critical when developing cost-effective veterinary vaccines. The goal of minimizing the number of process steps is a prerequisite if industrial application is intended. In addition, veterinary vaccines do not impose the same final purity requirement as human vaccines, which should reflect on the purification schemes.</p>
<p id="Par32">The production of Ad vaccines for veterinary applications is mainly based upon the use of continuous cell lines such as 293,
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
MDBK,
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
VR1BL, HeLa and A549.
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
During the cell proliferation step, various animal sera are used to enhance cell growth. However, supplementing cell culture media with such components presents several drawbacks like lot to lot variation, potential risk of contamination by viruses, mycoplasma, prions, etc.
<sup>
<xref ref-type="bibr" rid="CR87">87</xref>
</sup>
Furthermore, regulatory authorities in Europe (European Medicines Agency (EMEA)) and in the United States (Food and Drug Administration (FDA)) have encouraged biological manufacturers to reduce or eliminate the use of substances of animal origin in their manufacturing processes. Recently, several serum and protein-free culture media became commercially available. Although the use of such defined media is still expensive, the large-scale production of Ad vectors will require the use of this type of culture media to facilitate downstream processing and, in time, decrease the overall process cost.</p>
<p id="Par33">Production methods differ according to the cell type used: adherent
<italic>versus</italic>
suspension cell culture. For manufacturing purposes, suspension adapted cell lines are more convenient for production at large scale and different operation modes have been developed for Ad production (
<xref rid="Fig2" ref-type="fig">Figure 2</xref>
): (i) batch mode providing the easiest way to proceed as no extra feeding is required and the risk of contamination is lowered given the simplicity of operation; (ii) fed-batch mode, easy to operate and readily scalable, is employed to extend culture lifetime by supplementing limiting nutrients or reducing the accumulation of toxic metabolites; and (iii) perfusion mode, consisting in cell retention at a relatively high concentration inside the bioreactor, while fresh nutrient supply and metabolite removal takes place (see Kamen and Henry
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
for a review).
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>Bioreactors operation modes: (a) batch; (b) fed-batch; (c) perfusion, s=substrate; x=cells; F=flow of fresh substrate; F
<sub>b</sub>
=bleed, flow of broth with cells out of the bioreactor; F
<sub>p</sub>
=permeate flow, cell free flow of product; V
<sub>L</sub>
=working volume; p=product; S
<sub>0</sub>
=substrate in the flow.</p>
</caption>
<graphic xlink:href="41434_2005_Article_BF3302618_Fig2_HTML" id="d29e1464"></graphic>
</fig>
</p>
<p id="Par34">Methodologies for production of concentrated Ad vectors at low cost are mandatory as the market needs for Ad are increasing. Although Ad has the advantage to be produced at high titers (10
<sup>10</sup>
–10
<sup>11</sup>
 PFU/ml),
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
to obtain a good immune response in a large proportion of treated animals, particularly for mucosal vaccination, large doses and thus culture volumes are required. Further process development aiming at higher yields of product is clearly necessary. Improvements in volumetric production can be achieved by increasing the cell density at which cells can be infected without lowering the specific yield of the product; however, production of Ad vectors that maintain a high specific yield in batch operation is limited to cell densities in the range of 1 × 10
<sup>6</sup>
 cells/ml; several approaches have been made in order to overcome this so-called ‘cell density effect’:
<sup>
<xref ref-type="bibr" rid="CR88">88</xref>
</sup>
Garnier
<italic>et al</italic>
<sup>
<xref ref-type="bibr" rid="CR89">89</xref>
</sup>
demonstrated that medium replacement at infection and the addition of glucose at 24 h postinfection (hpi) together with periodical pH adjustments, allowed a sustained maximum specific productivity at 1.6 × 10
<sup>6</sup>
 cells/ml whereas Nadeau
<italic>et al</italic>
,
<sup>
<xref ref-type="bibr" rid="CR90">90</xref>
</sup>
further improved this strategy by also adding essential amino acids at 24 hpi thereby stabilizing volumetric productivity at cell densities above 2 × 10
<sup>6</sup>
and below 3 × 10
<sup>6</sup>
 cells/ml. Such results hint at the existence of substrate limitation and/or byproduct inhibition at high cell densities. At production scale, medium exchange will increase the cost of the final product, which is even more critical when this is to be used in the veterinary field. Perfusion mode operation has been attempted as a means to control the culture environment and remove toxic byproducts;
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
,
<xref ref-type="bibr" rid="CR91">91</xref>
</sup>
nevertheless, the cell-specific productivity could only be maintained by infecting cells at densities up to 3 × 10
<sup>6</sup>
 cells/ml using high perfusions rates of two reactor volumes
<italic>per</italic>
day, at 2 days postinfection, a very costly proposition.
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
In our laboratory, by understanding kinetics and metabolism of infection, typical cell concentration at infection have already been doubled and further improvements seem possible using a simple and nonexpensive fed-batch mode.</p>
<p id="Par35">The importance of infection kinetics on Ad production and the significance of variables such as multiplicity of infection (MOI) and harvesting time in process optimization is also mandatory to increase production yields, to avoid rapid depletion of costly and certified master virus banks as well as to ensure that the infection kinetics is reproducible between different production scales. Moreover, the use of low MOI at large scale would be preferential since an intermediate step of virus inoculum production would be avoided.</p>
<p id="Par36">Finally, veterinary products should be purified with a minimal number of steps and the unit operations employed should be simple and nonexpensive. Traditionally, laboratory purification of rAd was achieved using two rounds of cesium chloride (CsCl) density gradient ultracentrifugation. However, CsCl density gradient method is not scaleable. Despite the fact that chromatographic purification is an expensive method, ion exchange, hydrophobic interaction, metal chelate and size-exclusion chromatography have been evaluated for capture and purification of HAd5.
<sup>
<xref ref-type="bibr" rid="CR92">92</xref>
</sup>
Kamen and Henry
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
developed a complex and expensive method for gene therapy application consisting of: (i) harvest of infected cells by continuous centrifugation, (ii) cell lysis by osmotic shock, (iii) DNAse treatment with centrifugal/conditioning, (iv) filtration, (v) anion-exhange chromatography, (vi) ultrafiltration/concentration and (vii) size exclusion chromatography. This protocol allows large-scale purification of Ad vectors with purity comparable to the CsCl gradient method; however, it dramatically increases the final product price, well beyond the reach of veterinary utilization. Introgen developed a method consisting of a single ion chromatography run, after concentration/diafiltration and nuclease treatment, with a total recovery of the virus product of 70%.
<sup>
<xref ref-type="bibr" rid="CR93">93</xref>
</sup>
In our laboratory, a protocol to purify HAd5 from the bulk harvested directly from the bioreactor after lysis (without a concentration step) using an ion exchange chromatographic step, ultrafiltration and a final polishing step with gel filtration is in progress with promising preliminary results.</p>
</sec>
<sec id="Sec25">
<title>Perspectives and conclusion</title>
<p id="Par37">To improve access to the veterinary marketplace, some hurdles still need to be overcome, as efficacy, safety, ease of delivery and cost of production.
<sup>
<xref ref-type="bibr" rid="CR94">94</xref>
</sup>
Some of these factors are dependent from the EMEA and its Committee for Veterinary Medical Products (CVMP) who regulate vaccines developed in the European Union (EU); meanwhile, the United States Department of Agriculture (USDA) and its Animal and Plant Health Inspection Service (APHIS) regulate the development of animal vaccines in the United States (US). Unfortunately, government regulators can often become extremely cautious when confronted with new technology and they not always follow a strictly science-based assessment approach, which should be the only criteria for regulation of products. The regulatory issues governing the use of Ad vaccines on the farm and in the veterinary clinical are not yet well defined, although guidelines on live recombinant vector vaccines for veterinary use are available (EMEA/CVMP/004/04) in EU, while the Rules Governing Medicinal Products in the UE and the code of US Federal Regulations Title 9 (9 CFR) are the main regulatory texts on animal veterinary vaccine production.</p>
<p id="Par38">The drawbacks of the use of Ad vectors as veterinary vaccine is the rare but possible emergence of E1-containing vectors, due to rare eventual minute homologous recombination events between the viral E1-containing (permissive) mammalian host cell genome and the virus itself, restoring the E1 gene to the viral genome (RCA). To reduce or eliminate the problem of RCA, an E1-trasformed human cell line PER.C6 was constructed.
<sup>
<xref ref-type="bibr" rid="CR95">95</xref>
</sup>
PER.C6 was made by transformation of primary human embryonic retinoblasts with limited homology with viral sequences, expected to reduce or eliminate the emergence of RCA during virus amplification.</p>
<p id="Par39">Up to now, many viruses have been used as viral vectors for delivery of foreign antigens (see Yokoyama
<italic>et al</italic>
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
for a review). The development of these recombinant vaccines may be of value in the veterinary field, especially when attenuation of the target pathogen is not possible, when immunity to one or more pathogens must be raised at the same time or when satisfactory quantities of the target pathogen or the live vaccine cannot be produced easily or safely. On the other hand, for their practical use, there might be still some potential problems that must be overcome, for example, safety issues such as reversion of virulence or recombination with field-type viruses spread in the environment and genetic stability. The selection of a good viral vector as recombinant viral vaccine should be determined by the host range of the vector, safety consideration, replication properties, stability, the amount of foreign DNA, which can be inserted and the place where the primary immune reaction is induced by antigens expressed by the vector.</p>
<p id="Par40">Exciting advances in biotechnology are enabling the development of new vaccines with enormous possibilities that were considered unthinkable. These newer vaccine approaches have benefited from an improved basic understanding of the immunology of antigen presentation and the factors important in sustaining memory immune responses. The continued improvement in our understanding of the nature of protective immunity against various infectious diseases should allow the rational design of vaccines and immunization strategies that generate protective immune responses against infectious diseases for which no vaccines yet exist.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>We acknowledge and appreciate the financial support received from the European Commission (Project ICF599A4PR01) and from Fundação para a Ciência e Tecnologia – Portugal (Project POCTI/BIO/46515/2002) and student grant (SFRH/BD/10614/2002).</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plotkin</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Rabies</article-title>
<source>Clin Infect Dis</source>
<year>2000</year>
<volume>30</volume>
<fpage>4</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">10619725</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doel</surname>
<given-names>TR</given-names>
</name>
</person-group>
<article-title>FMD vaccines</article-title>
<source>Virus Res</source>
<year>2003</year>
<volume>91</volume>
<fpage>81</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">12527439</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paoletti</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Applications of pox virus vectors to vaccination: an update</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1996</year>
<volume>93</volume>
<fpage>11349</fpage>
<lpage>11353</lpage>
<pub-id pub-id-type="pmid">8876138</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Risk of aseptic meningitis after measles, mumps, and rubella vaccine in UK children</article-title>
<source>Lancet</source>
<year>1993</year>
<volume>341</volume>
<fpage>979</fpage>
<lpage>982</lpage>
<pub-id pub-id-type="pmid">8096942</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wood</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Macadam</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Laboratory tests for live attenuated poliovirus vaccines</article-title>
<source>Biologicals</source>
<year>1997</year>
<volume>25</volume>
<fpage>3</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">9167004</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yokoyama</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mikami</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Recombinant viral vector vaccines for the veterinary use</article-title>
<source>J Vet Med Sci</source>
<year>1997</year>
<volume>59</volume>
<fpage>311</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="pmid">9192350</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dunham</surname>
<given-names>SP</given-names>
</name>
</person-group>
<article-title>The application of nucleic acid vaccines in veterinary medicine</article-title>
<source>Res Vet Sci</source>
<year>2002</year>
<volume>73</volume>
<fpage>9</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="pmid">12208102</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giese</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>DNA-antiviral vaccines: new developments and approaches – a review</article-title>
<source>Virus Genes</source>
<year>1998</year>
<volume>17</volume>
<fpage>219</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="pmid">9926398</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babiuk</surname>
<given-names>LA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel viral vaccines for livestock</article-title>
<source>Vet Immunol Immunopathol</source>
<year>1996</year>
<volume>54</volume>
<fpage>355</fpage>
<lpage>363</lpage>
<pub-id pub-id-type="pmid">8988880</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jalava</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bacterial ghosts as vaccine candidates for veterinary applications</article-title>
<source>J Control Release</source>
<year>2002</year>
<volume>85</volume>
<fpage>17</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">12480307</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lewis</surname>
<given-names>AM</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>SV40 in adenovirus vaccines and adenovirus-SV40 recombinants</article-title>
<source>Dev Biol Stand</source>
<year>1998</year>
<volume>94</volume>
<fpage>207</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="pmid">9776241</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>FL</given-names>
</name>
<name>
<surname>Smiley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Nairn</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Characteristics of a human cell line transformed by DNA from human adenovirus type 5</article-title>
<source>J Gen Virol</source>
<year>1977</year>
<volume>36</volume>
<fpage>59</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1099/0022-1317-36-1-59</pub-id>
<pub-id pub-id-type="pmid">886304</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bloom</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Lambert</surname>
<given-names>P</given-names>
</name>
</person-group>
<source>The Vaccine Book</source>
<year>2003</year>
</element-citation>
</ref>
<ref id="CR14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Randrianarison-Jewtoukoff</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Perricaudet</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Recombinant adenoviruses as vaccines</article-title>
<source>Biologicals</source>
<year>1995</year>
<volume>23</volume>
<fpage>145</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="pmid">7546657</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jooss</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ertl</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Cytotoxic T-lymphocyte target proteins and their major histocompatibility complex class I restriction in response to adenovirus vectors delivered to mouse liver</article-title>
<source>J Virol</source>
<year>1998</year>
<volume>72</volume>
<fpage>2945</fpage>
<lpage>2954</lpage>
<pub-id pub-id-type="pmid">9525615</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs</article-title>
<source>J Virol</source>
<year>1996</year>
<volume>70</volume>
<fpage>7209</fpage>
<lpage>7212</lpage>
<pub-id pub-id-type="pmid">8794368</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Dayball</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Bramson</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Detailed analysis of the CD8+ T-cell response following adenovirus vaccination</article-title>
<source>J Virol</source>
<year>2003</year>
<volume>77</volume>
<fpage>13407</fpage>
<lpage>13411</lpage>
<pub-id pub-id-type="pmid">14645597</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Russell</surname>
<given-names>WC</given-names>
</name>
</person-group>
<article-title>Update on adenovirus and its vectors</article-title>
<source>J Gen Virol</source>
<year>2000</year>
<volume>81</volume>
<fpage>2573</fpage>
<lpage>2604</lpage>
<pub-id pub-id-type="pmid">11038369</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babiuk</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Tikoo</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>Adenoviruses as vectors for delivering vaccines to mucosal surfaces</article-title>
<source>J Biotechnol</source>
<year>2000</year>
<volume>83</volume>
<fpage>105</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="pmid">11000466</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Imler</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Adenovirus vectors as recombinant viral vaccines</article-title>
<source>Vaccine</source>
<year>1995</year>
<volume>13</volume>
<fpage>1143</fpage>
<lpage>1151</lpage>
<pub-id pub-id-type="pmid">8578797</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bett</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Prevec</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>FL</given-names>
</name>
</person-group>
<article-title>Packaging capacity and stability of human adenovirus type 5 vectors</article-title>
<source>J Virol</source>
<year>1993</year>
<volume>67</volume>
<fpage>5911</fpage>
<lpage>5921</lpage>
<pub-id pub-id-type="pmid">8371349</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harui</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kochanek</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mitani</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Frequency and stability of chromosomal integration of adenovirus vectors</article-title>
<source>J Virol</source>
<year>1999</year>
<volume>73</volume>
<fpage>6141</fpage>
<lpage>6146</lpage>
<pub-id pub-id-type="pmid">10364373</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danthinne</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Imperiale</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Production of first generation adenovirus vectors: a review</article-title>
<source>Gene Therapy</source>
<year>2000</year>
<volume>7</volume>
<fpage>1707</fpage>
<lpage>1714</lpage>
<pub-id pub-id-type="pmid">11083491</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Henry</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Development and optimization of an adenovirus production process</article-title>
<source>J Gene Med</source>
<year>2004</year>
<volume>6</volume>
<issue>Suppl 1</issue>
<fpage>S184</fpage>
<lpage>S192</lpage>
<pub-id pub-id-type="pmid">14978761</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murakami</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A single short stretch of homology between adenoviral vector and packaging cell line can give rise to cytopathic effect-inducing, helper-dependent E1-positive particles</article-title>
<source>Hum Gene Ther</source>
<year>2002</year>
<volume>13</volume>
<fpage>909</fpage>
<lpage>920</lpage>
<pub-id pub-id-type="pmid">12031124</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Volpers</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kochanek</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Adenoviral vectors for gene transfer and therapy</article-title>
<source>J Gene Med</source>
<year>2004</year>
<volume>6</volume>
<issue>Supp l</issue>
<fpage>S164</fpage>
<lpage>S171</lpage>
<pub-id pub-id-type="pmid">14978759</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Papp</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mucosal immunization with recombinant adenoviruses: induction of immunity and protection of cotton rats against respiratory bovine herpesvirus type 1 infection</article-title>
<source>J Gen Virol</source>
<year>1997</year>
<volume>78</volume>
<issue>Part 11</issue>
<fpage>2933</fpage>
<lpage>2943</lpage>
<pub-id pub-id-type="pmid">9367381</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fischer</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vaccination of puppies born to immune dams with a canine adenovirus-based vaccine protects against a canine distemper virus challenge</article-title>
<source>Vaccine</source>
<year>2002</year>
<volume>20</volume>
<fpage>3485</fpage>
<lpage>3497</lpage>
<pub-id pub-id-type="pmid">12297394</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Papp</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Babiuk</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Baca-Estrada</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>The effect of pre-existing adenovirus-specific immunity on immune responses induced by recombinant adenovirus expressing glycoprotein D of bovine herpesvirus type 1</article-title>
<source>Vaccine</source>
<year>1999</year>
<volume>17</volume>
<fpage>933</fpage>
<lpage>943</lpage>
<pub-id pub-id-type="pmid">10067700</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reddy</surname>
<given-names>PS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The immunogenicity and efficacy of replication-defective and replication-competent bovine adenovirus-3 expressing bovine herpesvirus-1 glycoprotein gD in cattle</article-title>
<source>Vet Immunol Immunopathol</source>
<year>2000</year>
<volume>76</volume>
<fpage>257</fpage>
<lpage>268</lpage>
<pub-id pub-id-type="pmid">11044558</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soudais</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Canine adenovirus type 2 attachment and internalization: coxsackievirus-adenovirus receptor, alternative receptors, and an RGD-independent pathway</article-title>
<source>J Virol</source>
<year>2000</year>
<volume>74</volume>
<fpage>10639</fpage>
<lpage>10649</lpage>
<pub-id pub-id-type="pmid">11044108</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheppard</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fowl adenovirus recombinant expressing VP2 of infectious bursal disease virus induces protective immunity against bursal disease</article-title>
<source>Arch Virol</source>
<year>1998</year>
<volume>143</volume>
<fpage>915</fpage>
<lpage>930</lpage>
<pub-id pub-id-type="pmid">9645198</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hammond</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vaccination of pigs with a recombinant porcine adenovirus expressing the gD gene from pseudorabies virus</article-title>
<source>Vaccine</source>
<year>2001</year>
<volume>19</volume>
<fpage>3752</fpage>
<lpage>3758</lpage>
<pub-id pub-id-type="pmid">11395210</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zakhartchouk</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tikoo</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>A recombinant E1-deleted porcine adenovirus-3 as an expression vector</article-title>
<source>Virology</source>
<year>2003</year>
<volume>313</volume>
<fpage>377</fpage>
<lpage>386</lpage>
<pub-id pub-id-type="pmid">12954206</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benko</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harrach</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>A proposal for a new (third) genus within the family Adenoviridae</article-title>
<source>Arch Virol</source>
<year>1998</year>
<volume>143</volume>
<fpage>829</fpage>
<lpage>837</lpage>
<pub-id pub-id-type="pmid">9638153</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uhl</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Heaton-Jones</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Pu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>FIV vaccine development and its importance to veterinary and human medicine: a review FIV vaccine 2002 update and review</article-title>
<source>Vet Immunol Immunopathol</source>
<year>2002</year>
<volume>90</volume>
<fpage>113</fpage>
<lpage>132</lpage>
<pub-id pub-id-type="pmid">12459160</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gonin</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immunization trial of cats with a replication-defective adenovirus type 5 expressing the ENV gene of feline immunodeficiency virus</article-title>
<source>Vet Microbiol</source>
<year>1995</year>
<volume>45</volume>
<fpage>393</fpage>
<lpage>401</lpage>
<pub-id pub-id-type="pmid">7483252</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrett</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Morbillivirus infections, with special emphasis on morbilliviruses of carnivores</article-title>
<source>Vet Microbiol</source>
<year>1999</year>
<volume>69</volume>
<fpage>3</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">10515262</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirama</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cytotoxic T-lymphocyte activity specific for hemagglutinin (H) protein of canine distemper virus in dogs</article-title>
<source>J Vet Med Sci</source>
<year>2003</year>
<volume>65</volume>
<fpage>109</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="pmid">12576714</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vos</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immunogenicity of an E1-deleted recombinant human adenovirus against rabies by different routes of administration</article-title>
<source>J Gen Virol</source>
<year>2001</year>
<volume>82</volume>
<fpage>2191</fpage>
<lpage>2197</lpage>
<pub-id pub-id-type="pmid">11514729</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiang</surname>
<given-names>ZQ</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ertl</surname>
<given-names>HC</given-names>
</name>
</person-group>
<article-title>A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier</article-title>
<source>Virology</source>
<year>1996</year>
<volume>219</volume>
<fpage>220</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="pmid">8623532</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tims</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adult dogs receiving a rabies booster dose with a recombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizing antibodies</article-title>
<source>Vaccine</source>
<year>2000</year>
<volume>18</volume>
<fpage>2804</fpage>
<lpage>2807</lpage>
<pub-id pub-id-type="pmid">10812222</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Pasquini</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ertl</surname>
<given-names>HC</given-names>
</name>
</person-group>
<article-title>The use of an E1-deleted, replication-defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus</article-title>
<source>J Virol</source>
<year>1997</year>
<volume>71</volume>
<fpage>3677</fpage>
<lpage>3683</lpage>
<pub-id pub-id-type="pmid">9094641</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Pooley</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ignjatovic</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tyack</surname>
<given-names>SG</given-names>
</name>
</person-group>
<article-title>A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus</article-title>
<source>Vaccine</source>
<year>2003</year>
<volume>21</volume>
<fpage>2730</fpage>
<lpage>2736</lpage>
<pub-id pub-id-type="pmid">12798610</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Islam</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Raue</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Research on infectious bursal disease – the past, the present and the future</article-title>
<source>Vet Microbiol</source>
<year>2003</year>
<volume>97</volume>
<fpage>153</fpage>
<lpage>165</lpage>
<pub-id pub-id-type="pmid">14637046</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paton</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Greiser-Wilke</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Classical swine fever – an update</article-title>
<source>Res Vet Sci</source>
<year>2003</year>
<volume>75</volume>
<fpage>169</fpage>
<lpage>178</lpage>
<pub-id pub-id-type="pmid">13129664</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Oirschot</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Vaccinology of classical swine fever: from lab to field</article-title>
<source>Vet Microbiol</source>
<year>2003</year>
<volume>96</volume>
<fpage>367</fpage>
<lpage>384</lpage>
<pub-id pub-id-type="pmid">14599784</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hammond</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vaccination with a single dose of a recombinant porcine adenovirus expressing the classical swine fever virus gp55 (E2) gene protects pigs against classical swine fever</article-title>
<source>Vaccine</source>
<year>2000</year>
<volume>18</volume>
<fpage>1040</fpage>
<lpage>1050</lpage>
<pub-id pub-id-type="pmid">10590324</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hammond</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oral and sub-cutaneous vaccination of commercial pigs with a recombinant porcine adenovirus expressing the classical swine fever virus gp55 gene</article-title>
<source>Arch Virol</source>
<year>2001</year>
<volume>146</volume>
<fpage>1787</fpage>
<lpage>1793</lpage>
<pub-id pub-id-type="pmid">11699963</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hammond</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protection of pigs against ‘in contact’ challenge with classical swine fever following oral or subcutaneous vaccination with a recombinant porcine adenovirus</article-title>
<source>Virus Res</source>
<year>2003</year>
<volume>97</volume>
<fpage>151</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="pmid">14602208</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roth</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Mechanistic bases for adverse vaccine reactions and vaccine failures</article-title>
<source>Adv Vet Med</source>
<year>1999</year>
<volume>41</volume>
<fpage>681</fpage>
<lpage>700</lpage>
<pub-id pub-id-type="pmid">9890054</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monteil</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Single inoculation of replication-defective adenovirus-vectored vaccines at birth in piglets with maternal antibodies induces high level of antibodies and protection against pseudorabies</article-title>
<source>Vaccine</source>
<year>2000</year>
<volume>18</volume>
<fpage>1738</fpage>
<lpage>1742</lpage>
<pub-id pub-id-type="pmid">10699321</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alexandersen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Donaldson</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Garland</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>The pathogenesis and diagnosis of foot-and-mouth disease</article-title>
<source>J Comp Pathol</source>
<year>2003</year>
<volume>129</volume>
<fpage>1</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="pmid">12859905</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thomson</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Vosloo</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Bastos</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Foot and mouth disease in wildlife</article-title>
<source>Virus Res</source>
<year>2003</year>
<volume>91</volume>
<fpage>145</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="pmid">12527441</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mayr</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Chinsangaram</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Grubman</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Development of replication-defective adenovirus serotype 5 containing the capsid and 3C protease coding regions of foot-and-mouth disease virus as a vaccine candidate</article-title>
<source>Virology</source>
<year>1999</year>
<volume>263</volume>
<fpage>496</fpage>
<lpage>506</lpage>
<pub-id pub-id-type="pmid">10544121</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mayr</surname>
<given-names>GA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immune responses and protection against foot-and-mouth disease virus (FMDV) challenge in swine vaccinated with adenovirus-FMDV constructs</article-title>
<source>Vaccine</source>
<year>2001</year>
<volume>19</volume>
<fpage>2152</fpage>
<lpage>2162</lpage>
<pub-id pub-id-type="pmid">11228388</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moraes</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Mayr</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Mason</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Grubman</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Early protection against homologous challenge after a single dose of replication-defective human adenovirus type 5 expressing capsid proteins of foot-and-mouth disease virus (FMDV) strain A24</article-title>
<source>Vaccine</source>
<year>2002</year>
<volume>20</volume>
<fpage>1631</fpage>
<lpage>1639</lpage>
<pub-id pub-id-type="pmid">11858872</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Moraes</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Grubman</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Recombinant adenovirus co-expressing capsid proteins of two serotypes of foot-and-mouth disease virus (FMDV):
<italic>in vitro</italic>
characterization and induction of neutralizing antibodies against FMDV in swine</article-title>
<source>Virus Res</source>
<year>2003</year>
<volume>93</volume>
<fpage>211</fpage>
<lpage>219</lpage>
<pub-id pub-id-type="pmid">12782369</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moraes</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Chinsangaram</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brum</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Grubman</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Immediate protection of swine from foot-and-mouth disease: a combination of adenoviruses expressing interferon alpha and a foot-and-mouth disease virus subunit vaccine</article-title>
<source>Vaccine</source>
<year>2003</year>
<volume>22</volume>
<fpage>268</fpage>
<lpage>279</lpage>
<pub-id pub-id-type="pmid">14615155</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chinsangaram</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Moraes</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Koster</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Grubman</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease</article-title>
<source>J Virol</source>
<year>2003</year>
<volume>77</volume>
<fpage>1621</fpage>
<lpage>1625</lpage>
<pub-id pub-id-type="pmid">12502879</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rossow</surname>
<given-names>KD</given-names>
</name>
</person-group>
<article-title>Porcine reproductive and respiratory syndrome</article-title>
<source>Vet Pathol</source>
<year>1998</year>
<volume>35</volume>
<fpage>1</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="pmid">9545131</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gonin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Pirzadeh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gagnon</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Dea</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Seroneutralization of porcine reproductive and respiratory syndrome virus correlates with antibody response to the GP5 major envelope glycoprotein</article-title>
<source>J Vet Diagn Invest</source>
<year>1999</year>
<volume>11</volume>
<fpage>20</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">9925207</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gagnon</surname>
<given-names>CA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adenoviral-expressed GP5 of porcine respiratory and reproductive syndrome virus differs in its cellular maturation from the authentic viral protein but maintains known biological functions</article-title>
<source>Arch Virol</source>
<year>2003</year>
<volume>148</volume>
<fpage>951</fpage>
<lpage>972</lpage>
<pub-id pub-id-type="pmid">12721802</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garwes</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Transmissible gastroenteritis</article-title>
<source>Vet Rec</source>
<year>1988</year>
<volume>122</volume>
<fpage>462</fpage>
<lpage>463</lpage>
<pub-id pub-id-type="pmid">2839932</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuboly</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nagy</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Construction and characterization of recombinant porcine adenovirus serotype 5 expressing the transmissible gastroenteritis virus spike gene</article-title>
<source>J Gen Virol</source>
<year>2001</year>
<volume>82</volume>
<fpage>183</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="pmid">11125171</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jimenez</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Critical epitopes in transmissible gastroenteritis virus neutralization</article-title>
<source>J Virol</source>
<year>1986</year>
<volume>60</volume>
<fpage>131</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="pmid">2427744</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torres</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein</article-title>
<source>Virology</source>
<year>1995</year>
<volume>213</volume>
<fpage>503</fpage>
<lpage>516</lpage>
<pub-id pub-id-type="pmid">7491775</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torres</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tropism of human adenovirus type 5-based vectors in swine and their ability to protect against transmissible gastroenteritis coronavirus</article-title>
<source>J Virol</source>
<year>1996</year>
<volume>70</volume>
<fpage>3770</fpage>
<lpage>3780</lpage>
<pub-id pub-id-type="pmid">8648712</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Reeth</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nauwynck</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Proinflammatory cytokines and viral respiratory disease in pigs</article-title>
<source>Vet Res</source>
<year>2000</year>
<volume>31</volume>
<fpage>187</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="pmid">10779199</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>NN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic reassortment of avian, swine, and human influenza A viruses in American pigs</article-title>
<source>J Virol</source>
<year>1999</year>
<volume>73</volume>
<fpage>8851</fpage>
<lpage>8856</lpage>
<pub-id pub-id-type="pmid">10482643</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harp</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Wesley</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Recombinant adenovirus encoding the HA gene from swine H3N2 influenza virus partially protects mice from challenge with heterologous virus: A/HK/1/68 (H3N2)</article-title>
<source>Arch Virol</source>
<year>2002</year>
<volume>147</volume>
<fpage>2125</fpage>
<lpage>2141</lpage>
<pub-id pub-id-type="pmid">12417948</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wesley</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lager</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Protection of weaned pigs by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of H3N2 swine influenza virus</article-title>
<source>Vaccine</source>
<year>2004</year>
<volume>22</volume>
<fpage>3427</fpage>
<lpage>3434</lpage>
<pub-id pub-id-type="pmid">15308368</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macklin</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immunization of pigs with a particle-mediated DNA vaccine to influenza A virus protects against challenge with homologous virus</article-title>
<source>J Virol</source>
<year>1998</year>
<volume>72</volume>
<fpage>1491</fpage>
<lpage>1496</lpage>
<pub-id pub-id-type="pmid">9445052</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ulmer</surname>
<given-names>JB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA</article-title>
<source>J Virol</source>
<year>1998</year>
<volume>72</volume>
<fpage>5648</fpage>
<lpage>5653</lpage>
<pub-id pub-id-type="pmid">9621023</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goens</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>The evolution of bovine viral diarrhea: a review</article-title>
<source>Can Vet J</source>
<year>2002</year>
<volume>43</volume>
<fpage>946</fpage>
<lpage>954</lpage>
<pub-id pub-id-type="pmid">12561689</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wellenberg</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>van der Poel</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Van Oirschot</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Viral infections and bovine mastitis: a review</article-title>
<source>Vet Microbiol</source>
<year>2002</year>
<volume>88</volume>
<fpage>27</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">12119136</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elahi</surname>
<given-names>SM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of humoral and cellular immune responses against the nucleocapsid of bovine viral diarrhea virus by an adenovirus vector with an inducible promoter</article-title>
<source>Virology</source>
<year>1999</year>
<volume>261</volume>
<fpage>1</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">10441551</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elahi</surname>
<given-names>SM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recombinant adenoviruses expressing the E2 protein of bovine viral diarrhea virus induce humoral and cellular immune responses</article-title>
<source>FEMS Microbiol Lett</source>
<year>1999</year>
<volume>177</volume>
<fpage>159</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="pmid">10436933</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baxi</surname>
<given-names>MK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recombinant bovine adenovirus type 3 expressing bovine viral diarrhea virus glycoprotein E2 induces an immune response in cotton rats</article-title>
<source>Virology</source>
<year>2000</year>
<volume>278</volume>
<fpage>234</fpage>
<lpage>243</lpage>
<pub-id pub-id-type="pmid">11112498</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breker-Klassen</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recombinant type 5 adenoviruses expressing bovine parainfluenza virus type 3 glycoproteins protect Sigmodon hispidus cotton rats from bovine parainfluenza virus type 3 infection</article-title>
<source>J Virol</source>
<year>1995</year>
<volume>69</volume>
<fpage>4308</fpage>
<lpage>4315</lpage>
<pub-id pub-id-type="pmid">7769692</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mittal</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of systemic and mucosal immune responses in cotton rats immunized with human adenovirus type 5 recombinants expressing the full and truncated forms of bovine herpesvirus type 1 glycoprotein gD</article-title>
<source>Virology</source>
<year>1996</year>
<volume>222</volume>
<fpage>299</fpage>
<lpage>309</lpage>
<pub-id pub-id-type="pmid">8806514</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zakhartchouk</surname>
<given-names>AN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Construction and characterization of E3-deleted bovine adenovirus type 3 expressing full-length and truncated form of bovine herpesvirus type 1 glycoprotein gD</article-title>
<source>Virology</source>
<year>1998</year>
<volume>250</volume>
<fpage>220</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="pmid">9770436</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mutwiri</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of immune responses in newborn lambs following enteric immunization with a human adenovirus vaccine vector</article-title>
<source>Vaccine</source>
<year>2000</year>
<volume>19</volume>
<fpage>1284</fpage>
<lpage>1293</lpage>
<pub-id pub-id-type="pmid">11137268</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gogev</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD</article-title>
<source>Vaccine</source>
<year>2002</year>
<volume>20</volume>
<fpage>1451</fpage>
<lpage>1465</lpage>
<pub-id pub-id-type="pmid">11818166</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diallo</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Control of peste des petits ruminants: classical and new generation vaccines</article-title>
<source>Dev Biol (Basel)</source>
<year>2003</year>
<volume>114</volume>
<fpage>113</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="pmid">14677682</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamanouchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Barrett</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Progress in the development of a heat-stable recombinant rinderpest vaccine using an attenuated vaccinia virus vector</article-title>
<source>Rev Sci Tech</source>
<year>1994</year>
<volume>13</volume>
<fpage>721</fpage>
<lpage>735</lpage>
<pub-id pub-id-type="pmid">7949348</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Freshney</surname>
<given-names>RI</given-names>
</name>
</person-group>
<source>Animal Cell Culture: A Pratical Approach</source>
<year>1986</year>
<publisher-loc>Oxford</publisher-loc>
<publisher-name>IRL Press</publisher-name>
</element-citation>
</ref>
<ref id="CR88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nadeau</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kamen</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Production of adenovirus vector for gene therapy</article-title>
<source>Biotechnol Adv</source>
<year>2003</year>
<volume>20</volume>
<fpage>475</fpage>
<lpage>489</lpage>
<pub-id pub-id-type="pmid">14550017</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garnier</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Scale-up of the adenovirus expression system for the production of recombinant protein in human 293S cells</article-title>
<source>Cytotechnology</source>
<year>1994</year>
<volume>15</volume>
<fpage>145</fpage>
<lpage>155</lpage>
<pub-id pub-id-type="pmid">7765926</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nadeau</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Improvement of recombinant protein production with human adenovirus/293S expression system using fed-batch Strategies</article-title>
<source>Biotechnol Bioeng</source>
<year>1996</year>
<volume>51</volume>
<fpage>613</fpage>
<lpage>623</lpage>
<pub-id pub-id-type="pmid">18629828</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Henry</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Dormond</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Perrier</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kamen</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Insights into adenoviral vector production kinetics in acoustic filter-based perfusion cultures</article-title>
<source>Biotechnol Bioeng</source>
<year>2004</year>
<volume>86</volume>
<fpage>765</fpage>
<lpage>774</lpage>
<pub-id pub-id-type="pmid">15162452</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huyghe</surname>
<given-names>BG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Purification of a type 5 recombinant adenovirus encoding human p53 by column chromatography</article-title>
<source>Hum Gene Ther</source>
<year>1995</year>
<volume>6</volume>
<fpage>1403</fpage>
<lpage>1416</lpage>
<pub-id pub-id-type="pmid">8573613</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thwin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Method for the Production and Purification of Adenoviral Vectors</source>
<year>2001</year>
<fpage>89</fpage>
</element-citation>
</ref>
<ref id="CR94">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babiuk</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Babiuk</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Loehr</surname>
<given-names>BI</given-names>
</name>
<name>
<surname>van Drunnen Littel-van den</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Nucleic acid vaccines: research tool or commercial reality</article-title>
<source>Vet Immunol Immunopathol</source>
<year>2000</year>
<volume>76</volume>
<fpage>1</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">10973683</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fallaux</surname>
<given-names>FJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses</article-title>
<source>Hum Gene Ther</source>
<year>1998</year>
<volume>9</volume>
<fpage>1909</fpage>
<lpage>1917</lpage>
<pub-id pub-id-type="pmid">9741429</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000258 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000258 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7091679
   |texte=   Use of adenoviral vectors as veterinary vaccines
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:16231058" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021