Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load

Identifieur interne : 000043 ( Pmc/Corpus ); précédent : 000042; suivant : 000044

RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load

Auteurs : Palmiro Poltronieri ; Binlian Sun ; Massimo Mallardo

Source :

RBID : PMC:4763971

Abstract

The review intends to present and recapitulate the current knowledge on the roles and importance of regulatory RNAs, such as microRNAs and small interfering RNAs, RNA binding proteins and enzymes processing RNAs or activated by RNAs, in cells infected by RNA viruses. The review focuses on how non-coding RNAs are involved in RNA virus replication, pathogenesis and host response, especially in retroviruses HIV, with examples of the mechanisms of action, transcriptional regulation, and promotion of increased stability of their targets or their degradation.


Url:
DOI: 10.2174/1389202916666150707160613
PubMed: 27047253
PubMed Central: 4763971

Links to Exploration step

PMC:4763971

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load</title>
<author>
<name sortKey="Poltronieri, Palmiro" sort="Poltronieri, Palmiro" uniqKey="Poltronieri P" first="Palmiro" last="Poltronieri">Palmiro Poltronieri</name>
<affiliation>
<nlm:aff id="aff1">CNR-ISPA, Institute of Sciences of Food Productions, National Research Council of Italy, Lecce, Italy;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sun, Binlian" sort="Sun, Binlian" uniqKey="Sun B" first="Binlian" last="Sun">Binlian Sun</name>
<affiliation>
<nlm:aff id="aff2">Research Group of HIV Molecular Epidemiology and Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mallardo, Massimo" sort="Mallardo, Massimo" uniqKey="Mallardo M" first="Massimo" last="Mallardo">Massimo Mallardo</name>
<affiliation>
<nlm:aff id="aff3">Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II°, Napoli, Italy</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27047253</idno>
<idno type="pmc">4763971</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763971</idno>
<idno type="RBID">PMC:4763971</idno>
<idno type="doi">10.2174/1389202916666150707160613</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000043</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000043</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load</title>
<author>
<name sortKey="Poltronieri, Palmiro" sort="Poltronieri, Palmiro" uniqKey="Poltronieri P" first="Palmiro" last="Poltronieri">Palmiro Poltronieri</name>
<affiliation>
<nlm:aff id="aff1">CNR-ISPA, Institute of Sciences of Food Productions, National Research Council of Italy, Lecce, Italy;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sun, Binlian" sort="Sun, Binlian" uniqKey="Sun B" first="Binlian" last="Sun">Binlian Sun</name>
<affiliation>
<nlm:aff id="aff2">Research Group of HIV Molecular Epidemiology and Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mallardo, Massimo" sort="Mallardo, Massimo" uniqKey="Mallardo M" first="Massimo" last="Mallardo">Massimo Mallardo</name>
<affiliation>
<nlm:aff id="aff3">Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II°, Napoli, Italy</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current Genomics</title>
<idno type="ISSN">1389-2029</idno>
<idno type="eISSN">1875-5488</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The review intends to present and recapitulate the current knowledge on the roles and importance of regulatory RNAs, such as microRNAs and small interfering RNAs, RNA binding proteins and enzymes processing RNAs or activated by RNAs, in cells infected by RNA viruses. The review focuses on how non-coding RNAs are involved in RNA virus replication, pathogenesis and host response, especially in retroviruses HIV, with examples of the mechanisms of action, transcriptional regulation, and promotion of increased stability of their targets or their degradation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Villarreal, L P" uniqKey="Villarreal L">L.P. Villarreal</name>
</author>
<author>
<name sortKey="Witzany, G" uniqKey="Witzany G">G. Witzany</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sullivan, C S" uniqKey="Sullivan C">C.S. Sullivan</name>
</author>
<author>
<name sortKey="Ganem, D" uniqKey="Ganem D">D. Ganem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cullen, B R" uniqKey="Cullen B">B.R. Cullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luke, G A" uniqKey="Luke G">G.A. Luke</name>
</author>
<author>
<name sortKey="Roulston, C" uniqKey="Roulston C">C. Roulston</name>
</author>
<author>
<name sortKey="Odon, V" uniqKey="Odon V">V. Odon</name>
</author>
<author>
<name sortKey="De Felipe, P" uniqKey="De Felipe P">P. de Felipe</name>
</author>
<author>
<name sortKey="Sukhodub, A" uniqKey="Sukhodub A">A. Sukhodub</name>
</author>
<author>
<name sortKey="Ryan, M D" uniqKey="Ryan M">M.D. Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katoh, I" uniqKey="Katoh I">I. Katoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rebollo, R" uniqKey="Rebollo R">R. Rebollo</name>
</author>
<author>
<name sortKey="Romanish, M T" uniqKey="Romanish M">M.T. Romanish</name>
</author>
<author>
<name sortKey="Mager, D L" uniqKey="Mager D">D.L. Mager</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vitullo, P" uniqKey="Vitullo P">P. Vitullo</name>
</author>
<author>
<name sortKey="Sciamanna, I" uniqKey="Sciamanna I">I. Sciamanna</name>
</author>
<author>
<name sortKey="Baiocchi, M" uniqKey="Baiocchi M">M. Baiocchi</name>
</author>
<author>
<name sortKey="Sinibaldi Vallebona, P" uniqKey="Sinibaldi Vallebona P">P. Sinibaldi-Vallebona</name>
</author>
<author>
<name sortKey="Spadafora, C" uniqKey="Spadafora C">C. Spadafora</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sciamanna, I" uniqKey="Sciamanna I">I. Sciamanna</name>
</author>
<author>
<name sortKey="Gualtieri, A" uniqKey="Gualtieri A">A. Gualtieri</name>
</author>
<author>
<name sortKey="Cossetti, C" uniqKey="Cossetti C">C. Cossetti</name>
</author>
<author>
<name sortKey="Osimo, E F" uniqKey="Osimo E">E.F. Osimo</name>
</author>
<author>
<name sortKey="Ferracin, M" uniqKey="Ferracin M">M. Ferracin</name>
</author>
<author>
<name sortKey="Macchia, G" uniqKey="Macchia G">G. Macchia</name>
</author>
<author>
<name sortKey="Aric, E" uniqKey="Aric E">E. Aricò</name>
</author>
<author>
<name sortKey="Prosseda, G" uniqKey="Prosseda G">G. Prosseda</name>
</author>
<author>
<name sortKey="Vitullo, P" uniqKey="Vitullo P">P. Vitullo</name>
</author>
<author>
<name sortKey="Misteli, T" uniqKey="Misteli T">T. Misteli</name>
</author>
<author>
<name sortKey="Spadafora, C" uniqKey="Spadafora C">C. Spadafora</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohms, S" uniqKey="Ohms S">S. Ohms</name>
</author>
<author>
<name sortKey="Rangasamy, D" uniqKey="Rangasamy D">D. Rangasamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mallardo, M" uniqKey="Mallardo M">M. Mallardo</name>
</author>
<author>
<name sortKey="Poltronieri, P" uniqKey="Poltronieri P">P. Poltronieri</name>
</author>
<author>
<name sortKey="D Rso, O F" uniqKey="D Rso O">O.F. D’Urso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ha, M" uniqKey="Ha M">M. Ha</name>
</author>
<author>
<name sortKey="Kim, V N" uniqKey="Kim V">V.N. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Rivas, F V" uniqKey="Rivas F">F.V. Rivas</name>
</author>
<author>
<name sortKey="Wohlschlegel, J" uniqKey="Wohlschlegel J">J. Wohlschlegel</name>
</author>
<author>
<name sortKey="Yates, J R" uniqKey="Yates J">J.R. Yates</name>
</author>
<author>
<name sortKey="Parker, R" uniqKey="Parker R">R. Parker</name>
</author>
<author>
<name sortKey="Hannon, G J" uniqKey="Hannon G">G.J. Hannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chendrimada, T P" uniqKey="Chendrimada T">T.P. Chendrimada</name>
</author>
<author>
<name sortKey="Gregory, R I" uniqKey="Gregory R">R.I. Gregory</name>
</author>
<author>
<name sortKey="Kumaraswamy, E" uniqKey="Kumaraswamy E">E. Kumaraswamy</name>
</author>
<author>
<name sortKey="Norman, J" uniqKey="Norman J">J. Norman</name>
</author>
<author>
<name sortKey="Cooch, N" uniqKey="Cooch N">N. Cooch</name>
</author>
<author>
<name sortKey="Nishikura, K" uniqKey="Nishikura K">K. Nishikura</name>
</author>
<author>
<name sortKey="Shiekhattar, R" uniqKey="Shiekhattar R">R. Shiekhattar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, P" uniqKey="Jin P">P. Jin</name>
</author>
<author>
<name sortKey="Zarnescu, D C" uniqKey="Zarnescu D">D.C. Zarnescu</name>
</author>
<author>
<name sortKey="Ceman, S" uniqKey="Ceman S">S. Ceman</name>
</author>
<author>
<name sortKey="Nakamoto, M" uniqKey="Nakamoto M">M. Nakamoto</name>
</author>
<author>
<name sortKey="Mowrey, J" uniqKey="Mowrey J">J. Mowrey</name>
</author>
<author>
<name sortKey="Jongens, T A" uniqKey="Jongens T">T.A. Jongens</name>
</author>
<author>
<name sortKey="Nelson, D L" uniqKey="Nelson D">D.L. Nelson</name>
</author>
<author>
<name sortKey="Moses, K" uniqKey="Moses K">K. Moses</name>
</author>
<author>
<name sortKey="Warren, S T" uniqKey="Warren S">S.T. Warren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Homan, P J" uniqKey="Homan P">P.J. Homan</name>
</author>
<author>
<name sortKey="Favorov, O V" uniqKey="Favorov O">O.V. Favorov</name>
</author>
<author>
<name sortKey="Lavender, C A" uniqKey="Lavender C">C.A. Lavender</name>
</author>
<author>
<name sortKey="Kursun, O" uniqKey="Kursun O">O. Kursun</name>
</author>
<author>
<name sortKey="Ge, X" uniqKey="Ge X">X. Ge</name>
</author>
<author>
<name sortKey="Busan, S" uniqKey="Busan S">S. Busan</name>
</author>
<author>
<name sortKey="Dokholyan, N V" uniqKey="Dokholyan N">N.V. Dokholyan</name>
</author>
<author>
<name sortKey="Weeks, K M" uniqKey="Weeks K">K.M. Weeks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegfried, N A" uniqKey="Siegfried N">N.A. Siegfried</name>
</author>
<author>
<name sortKey="Busan, S" uniqKey="Busan S">S. Busan</name>
</author>
<author>
<name sortKey="Rice, G M" uniqKey="Rice G">G.M. Rice</name>
</author>
<author>
<name sortKey="Nelson, J A" uniqKey="Nelson J">J.A. Nelson</name>
</author>
<author>
<name sortKey="Weeks, K M" uniqKey="Weeks K">K.M. Weeks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schroeder, S J" uniqKey="Schroeder S">S.J. Schroeder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buenrostro, J D" uniqKey="Buenrostro J">J.D. Buenrostro</name>
</author>
<author>
<name sortKey="Araya, C L" uniqKey="Araya C">C.L. Araya</name>
</author>
<author>
<name sortKey="Chircus, L M" uniqKey="Chircus L">L.M. Chircus</name>
</author>
<author>
<name sortKey="Layton, C J" uniqKey="Layton C">C.J. Layton</name>
</author>
<author>
<name sortKey="Chang, H Y" uniqKey="Chang H">H.Y. Chang</name>
</author>
<author>
<name sortKey="Snyder, M P" uniqKey="Snyder M">M.P. Snyder</name>
</author>
<author>
<name sortKey="Greenleaf, W J" uniqKey="Greenleaf W">W.J. Greenleaf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bergmann, M" uniqKey="Bergmann M">M. Bergmann</name>
</author>
<author>
<name sortKey="Muster, T" uniqKey="Muster T">T. Muster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toennessen, R" uniqKey="Toennessen R">R. Toennessen</name>
</author>
<author>
<name sortKey="Lauscher, A" uniqKey="Lauscher A">A. Lauscher</name>
</author>
<author>
<name sortKey="Rimstad, E" uniqKey="Rimstad E">E. Rimstad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desselberger, U" uniqKey="Desselberger U">U. Desselberger</name>
</author>
<author>
<name sortKey="Racaniello, V R" uniqKey="Racaniello V">V.R. Racaniello</name>
</author>
<author>
<name sortKey="Zazra, J J" uniqKey="Zazra J">J.J. Zazra</name>
</author>
<author>
<name sortKey="Palese, P" uniqKey="Palese P">P. Palese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sandvik, T" uniqKey="Sandvik T">T. Sandvik</name>
</author>
<author>
<name sortKey="Rimstad, E" uniqKey="Rimstad E">E. Rimstad</name>
</author>
<author>
<name sortKey="Mjaaland, S" uniqKey="Mjaaland S">S. Mjaaland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diaz, A" uniqKey="Diaz A">A. Díaz</name>
</author>
<author>
<name sortKey="Garcia, K" uniqKey="Garcia K">K. García</name>
</author>
<author>
<name sortKey="Navarrete, A" uniqKey="Navarrete A">A. Navarrete</name>
</author>
<author>
<name sortKey="Higuera, G" uniqKey="Higuera G">G. Higuera</name>
</author>
<author>
<name sortKey="Romero, J" uniqKey="Romero J">J. Romero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crescenzo Chaigne, B" uniqKey="Crescenzo Chaigne B">B. Crescenzo-Chaigne</name>
</author>
<author>
<name sortKey="Barbezange, C" uniqKey="Barbezange C">C. Barbezange</name>
</author>
<author>
<name sortKey="Van Der Werf, S" uniqKey="Van Der Werf S">S. van der Werf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Y S" uniqKey="Lee Y">Y.S. Lee</name>
</author>
<author>
<name sortKey="Seong, B L" uniqKey="Seong B">B.L. Seong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fodor, E" uniqKey="Fodor E">E. Fodor</name>
</author>
<author>
<name sortKey="Pritlove, D C" uniqKey="Pritlove D">D.C. Pritlove</name>
</author>
<author>
<name sortKey="Brownlee, G G" uniqKey="Brownlee G">G.G. Brownlee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brinson, R G" uniqKey="Brinson R">R.G. Brinson</name>
</author>
<author>
<name sortKey="Szakal, A L" uniqKey="Szakal A">A.L. Szakal</name>
</author>
<author>
<name sortKey="Marino, J P" uniqKey="Marino J">J.P. Marino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fassati, A" uniqKey="Fassati A">A. Fassati</name>
</author>
<author>
<name sortKey="Gorlich, D" uniqKey="Gorlich D">D. Görlich</name>
</author>
<author>
<name sortKey="Harrison, I" uniqKey="Harrison I">I. Harrison</name>
</author>
<author>
<name sortKey="Zaytseva, L" uniqKey="Zaytseva L">L. Zaytseva</name>
</author>
<author>
<name sortKey="Mingot, J M" uniqKey="Mingot J">J.M. Mingot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamata, M" uniqKey="Kamata M">M. Kamata</name>
</author>
<author>
<name sortKey="Nitahara Kasahara, Y" uniqKey="Nitahara Kasahara Y">Y. Nitahara-Kasahara</name>
</author>
<author>
<name sortKey="Miyamoto, Y" uniqKey="Miyamoto Y">Y. Miyamoto</name>
</author>
<author>
<name sortKey="Yoneda, Y" uniqKey="Yoneda Y">Y. Yoneda</name>
</author>
<author>
<name sortKey="Aida, Y" uniqKey="Aida Y">Y. Aida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, H" uniqKey="Zhou H">H. Zhou</name>
</author>
<author>
<name sortKey="Xu, M" uniqKey="Xu M">M. Xu</name>
</author>
<author>
<name sortKey="Huang, Q" uniqKey="Huang Q">Q. Huang</name>
</author>
<author>
<name sortKey="Gates, A T" uniqKey="Gates A">A.T. Gates</name>
</author>
<author>
<name sortKey="Zhang, X D" uniqKey="Zhang X">X.D. Zhang</name>
</author>
<author>
<name sortKey="Castle, J C" uniqKey="Castle J">J.C. Castle</name>
</author>
<author>
<name sortKey="Stec, E" uniqKey="Stec E">E. Stec</name>
</author>
<author>
<name sortKey="Ferrer, M" uniqKey="Ferrer M">M. Ferrer</name>
</author>
<author>
<name sortKey="Strulovici, B" uniqKey="Strulovici B">B. Strulovici</name>
</author>
<author>
<name sortKey="Hazuda, D J" uniqKey="Hazuda D">D.J. Hazuda</name>
</author>
<author>
<name sortKey="Espeseth, A S" uniqKey="Espeseth A">A.S. Espeseth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeung, M L" uniqKey="Yeung M">M.L. Yeung</name>
</author>
<author>
<name sortKey="Houzet, L" uniqKey="Houzet L">L. Houzet</name>
</author>
<author>
<name sortKey="Yedavalli, V S" uniqKey="Yedavalli V">V.S. Yedavalli</name>
</author>
<author>
<name sortKey="Jeang, K T" uniqKey="Jeang K">K.T. Jeang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houzet, L" uniqKey="Houzet L">L. Houzet</name>
</author>
<author>
<name sortKey="Jeang, K T" uniqKey="Jeang K">K.T. Jeang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lever, A M" uniqKey="Lever A">A.M. Lever</name>
</author>
<author>
<name sortKey="Jeang, K T" uniqKey="Jeang K">K.T. Jeang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kincaid, R P" uniqKey="Kincaid R">R.P. Kincaid</name>
</author>
<author>
<name sortKey="Burke, J M" uniqKey="Burke J">J.M. Burke</name>
</author>
<author>
<name sortKey="Sullivan, C S" uniqKey="Sullivan C">C.S. Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Umbach, J L" uniqKey="Umbach J">J.L. Umbach</name>
</author>
<author>
<name sortKey="Yen, H L" uniqKey="Yen H">H-L. Yen</name>
</author>
<author>
<name sortKey="Poon, L L" uniqKey="Poon L">L.L. Poon</name>
</author>
<author>
<name sortKey="Cullen, B R" uniqKey="Cullen B">B.R. Cullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J. Shi</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B. Wang</name>
</author>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M. Wu</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Duan, Z" uniqKey="Duan Z">Z. Duan</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Hu, N" uniqKey="Hu N">N. Hu</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weng, K F" uniqKey="Weng K">K.F. Weng</name>
</author>
<author>
<name sortKey="Hung, C T" uniqKey="Hung C">C.T. Hung</name>
</author>
<author>
<name sortKey="Hsieh, P T" uniqKey="Hsieh P">P.T. Hsieh</name>
</author>
<author>
<name sortKey="Li, M L" uniqKey="Li M">M.L. Li</name>
</author>
<author>
<name sortKey="Chen, G W" uniqKey="Chen G">G.W. Chen</name>
</author>
<author>
<name sortKey="Kung, Y A" uniqKey="Kung Y">Y.A. Kung</name>
</author>
<author>
<name sortKey="Huang, P N" uniqKey="Huang P">P.N. Huang</name>
</author>
<author>
<name sortKey="Kuo, R L" uniqKey="Kuo R">R.L. Kuo</name>
</author>
<author>
<name sortKey="Chen, L L" uniqKey="Chen L">L.L. Chen</name>
</author>
<author>
<name sortKey="Lin, J Y" uniqKey="Lin J">J.Y. Lin</name>
</author>
<author>
<name sortKey="Wang, R Y" uniqKey="Wang R">R.Y. Wang</name>
</author>
<author>
<name sortKey="Chen, S J" uniqKey="Chen S">S.J. Chen</name>
</author>
<author>
<name sortKey="Tang, P" uniqKey="Tang P">P. Tang</name>
</author>
<author>
<name sortKey="Horng, J T" uniqKey="Horng J">J.T. Horng</name>
</author>
<author>
<name sortKey="Huang, H I" uniqKey="Huang H">H.I. Huang</name>
</author>
<author>
<name sortKey="Wang, J R" uniqKey="Wang J">J.R. Wang</name>
</author>
<author>
<name sortKey="Ojcius, D M" uniqKey="Ojcius D">D.M. Ojcius</name>
</author>
<author>
<name sortKey="Brewer, G" uniqKey="Brewer G">G. Brewer</name>
</author>
<author>
<name sortKey="Shih, S R" uniqKey="Shih S">S.R. Shih</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kincaid, R P" uniqKey="Kincaid R">R.P. Kincaid</name>
</author>
<author>
<name sortKey="Sullivan, C S" uniqKey="Sullivan C">C.S. Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Omoto, S" uniqKey="Omoto S">S. Omoto</name>
</author>
<author>
<name sortKey="Fujii, Y R" uniqKey="Fujii Y">Y.R. Fujii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qureshi, A" uniqKey="Qureshi A">A. Qureshi</name>
</author>
<author>
<name sortKey="Thakur, N" uniqKey="Thakur N">N. Thakur</name>
</author>
<author>
<name sortKey="Monga, I" uniqKey="Monga I">I. Monga</name>
</author>
<author>
<name sortKey="Thakur, A" uniqKey="Thakur A">A. Thakur</name>
</author>
<author>
<name sortKey="Kumar, M" uniqKey="Kumar M">M. Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Fan, M" uniqKey="Fan M">M. Fan</name>
</author>
<author>
<name sortKey="Geng, G" uniqKey="Geng G">G. Geng</name>
</author>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B. Liu</name>
</author>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z. Huang</name>
</author>
<author>
<name sortKey="Luo, H" uniqKey="Luo H">H. Luo</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J. Zhou</name>
</author>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X. Guo</name>
</author>
<author>
<name sortKey="Cai, W" uniqKey="Cai W">W. Cai</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klase, Z" uniqKey="Klase Z">Z. Klase</name>
</author>
<author>
<name sortKey="Kale, P" uniqKey="Kale P">P. Kale</name>
</author>
<author>
<name sortKey="Winograd, R" uniqKey="Winograd R">R. Winograd</name>
</author>
<author>
<name sortKey="Gupta, M V" uniqKey="Gupta M">M.V. Gupta</name>
</author>
<author>
<name sortKey="Heydarian, M" uniqKey="Heydarian M">M. Heydarian</name>
</author>
<author>
<name sortKey="Berro, R" uniqKey="Berro R">R. Berro</name>
</author>
<author>
<name sortKey="Mccaffrey, T" uniqKey="Mccaffrey T">T. McCaffrey</name>
</author>
<author>
<name sortKey="Kashanchi, F" uniqKey="Kashanchi F">F. Kashanchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ouellet, D L" uniqKey="Ouellet D">D.L. Ouellet</name>
</author>
<author>
<name sortKey="Plante, I" uniqKey="Plante I">I. Plante</name>
</author>
<author>
<name sortKey="Landry, P" uniqKey="Landry P">P. Landry</name>
</author>
<author>
<name sortKey="Barat, C" uniqKey="Barat C">C. Barat</name>
</author>
<author>
<name sortKey="Janelle, M E" uniqKey="Janelle M">M.E. Janelle</name>
</author>
<author>
<name sortKey="Flamand, L" uniqKey="Flamand L">L. Flamand</name>
</author>
<author>
<name sortKey="Tremblay, M J" uniqKey="Tremblay M">M.J. Tremblay</name>
</author>
<author>
<name sortKey="Provost, P" uniqKey="Provost P">P. Provost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klase, Z" uniqKey="Klase Z">Z. Klase</name>
</author>
<author>
<name sortKey="Winograd, R" uniqKey="Winograd R">R. Winograd</name>
</author>
<author>
<name sortKey="Davis, J" uniqKey="Davis J">J. Davis</name>
</author>
<author>
<name sortKey="Carpio, L" uniqKey="Carpio L">L. Carpio</name>
</author>
<author>
<name sortKey="Hildreth, R" uniqKey="Hildreth R">R. Hildreth</name>
</author>
<author>
<name sortKey="Heydarian, M" uniqKey="Heydarian M">M. Heydarian</name>
</author>
<author>
<name sortKey="Fu, S" uniqKey="Fu S">S. Fu</name>
</author>
<author>
<name sortKey="Mccaffrey, T" uniqKey="Mccaffrey T">T. McCaffrey</name>
</author>
<author>
<name sortKey="Meiri, E" uniqKey="Meiri E">E. Meiri</name>
</author>
<author>
<name sortKey="Ayash Rashkovsky, M" uniqKey="Ayash Rashkovsky M">M. Ayash-Rashkovsky</name>
</author>
<author>
<name sortKey="Gilad, S" uniqKey="Gilad S">S. Gilad</name>
</author>
<author>
<name sortKey="Bentwich, Z" uniqKey="Bentwich Z">Z. Bentwich</name>
</author>
<author>
<name sortKey="Kashanchi, F" uniqKey="Kashanchi F">F. Kashanchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schopman, N C" uniqKey="Schopman N">N.C. Schopman</name>
</author>
<author>
<name sortKey="Willemsen, M" uniqKey="Willemsen M">M. Willemsen</name>
</author>
<author>
<name sortKey="Liu, Y P" uniqKey="Liu Y">Y.P. Liu</name>
</author>
<author>
<name sortKey="Bradley, T" uniqKey="Bradley T">T. Bradley</name>
</author>
<author>
<name sortKey="Van Kampen, A" uniqKey="Van Kampen A">A. van Kampen</name>
</author>
<author>
<name sortKey="Baas, F" uniqKey="Baas F">F. Baas</name>
</author>
<author>
<name sortKey="Berkhout, B" uniqKey="Berkhout B">B. Berkhout</name>
</author>
<author>
<name sortKey="Haasnoot, J" uniqKey="Haasnoot J">J. Haasnoot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clerc, I" uniqKey="Clerc I">I. Clerc</name>
</author>
<author>
<name sortKey="Laverdure, S" uniqKey="Laverdure S">S. Laverdure</name>
</author>
<author>
<name sortKey="Torresilla, C" uniqKey="Torresilla C">C. Torresilla</name>
</author>
<author>
<name sortKey="Landry, S" uniqKey="Landry S">S. Landry</name>
</author>
<author>
<name sortKey="Borel, S" uniqKey="Borel S">S. Borel</name>
</author>
<author>
<name sortKey="Vargas, A" uniqKey="Vargas A">A. Vargas</name>
</author>
<author>
<name sortKey="Arpin Andre, C" uniqKey="Arpin Andre C">C. Arpin-André</name>
</author>
<author>
<name sortKey="Gay, B" uniqKey="Gay B">B. Gay</name>
</author>
<author>
<name sortKey="Briant, L" uniqKey="Briant L">L. Briant</name>
</author>
<author>
<name sortKey="Gross, A" uniqKey="Gross A">A. Gross</name>
</author>
<author>
<name sortKey="Barbeau, B" uniqKey="Barbeau B">B. Barbeau</name>
</author>
<author>
<name sortKey="Mesnard, J M" uniqKey="Mesnard J">J.M. Mesnard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barbagallo, M S" uniqKey="Barbagallo M">M.S. Barbagallo</name>
</author>
<author>
<name sortKey="Birch, K E" uniqKey="Birch K">K.E. Birch</name>
</author>
<author>
<name sortKey="Deacon, N J" uniqKey="Deacon N">N.J. Deacon</name>
</author>
<author>
<name sortKey="Mosse, J A" uniqKey="Mosse J">J.A. Mosse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi Ishihara, M" uniqKey="Kobayashi Ishihara M">M. Kobayashi-Ishihara</name>
</author>
<author>
<name sortKey="Yamagishi, M" uniqKey="Yamagishi M">M. Yamagishi</name>
</author>
<author>
<name sortKey="Hara, T" uniqKey="Hara T">T. Hara</name>
</author>
<author>
<name sortKey="Matsuda, Y" uniqKey="Matsuda Y">Y. Matsuda</name>
</author>
<author>
<name sortKey="Takahashi, R" uniqKey="Takahashi R">R. Takahashi</name>
</author>
<author>
<name sortKey="Miyake, A" uniqKey="Miyake A">A. Miyake</name>
</author>
<author>
<name sortKey="Nakano, K" uniqKey="Nakano K">K. Nakano</name>
</author>
<author>
<name sortKey="Yamochi, T" uniqKey="Yamochi T">T. Yamochi</name>
</author>
<author>
<name sortKey="Ishida, T" uniqKey="Ishida T">T. Ishida</name>
</author>
<author>
<name sortKey="Watanabe, T" uniqKey="Watanabe T">T. Watanabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swaminathan, G" uniqKey="Swaminathan G">G. Swaminathan</name>
</author>
<author>
<name sortKey="Martin Garcia, J" uniqKey="Martin Garcia J">J. Martin-Garcia</name>
</author>
<author>
<name sortKey="Navas Martin, S" uniqKey="Navas Martin S">S. Navas-Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lecellier, C H" uniqKey="Lecellier C">C.H. Lecellier</name>
</author>
<author>
<name sortKey="Dunoyer, P" uniqKey="Dunoyer P">P. Dunoyer</name>
</author>
<author>
<name sortKey="Arar, K" uniqKey="Arar K">K. Arar</name>
</author>
<author>
<name sortKey="Lehmann Che, J" uniqKey="Lehmann Che J">J. Lehmann-Che</name>
</author>
<author>
<name sortKey="Eyquem, S" uniqKey="Eyquem S">S. Eyquem</name>
</author>
<author>
<name sortKey="Himber, C" uniqKey="Himber C">C. Himber</name>
</author>
<author>
<name sortKey="Saib, A" uniqKey="Saib A">A. Saïb</name>
</author>
<author>
<name sortKey="Voinnet, O" uniqKey="Voinnet O">O. Voinnet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klase, Z" uniqKey="Klase Z">Z. Klase</name>
</author>
<author>
<name sortKey="Houzet, L" uniqKey="Houzet L">L. Houzet</name>
</author>
<author>
<name sortKey="Jeang, K T" uniqKey="Jeang K">K.T. Jeang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jopling, C" uniqKey="Jopling C">C. Jopling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, H S" uniqKey="Zhang H">H.S. Zhang</name>
</author>
<author>
<name sortKey="Wu, T C" uniqKey="Wu T">T.C. Wu</name>
</author>
<author>
<name sortKey="Sang, W W" uniqKey="Sang W">W.W. Sang</name>
</author>
<author>
<name sortKey="Ruan, Z" uniqKey="Ruan Z">Z. Ruan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sung, T L" uniqKey="Sung T">T.L. Sung</name>
</author>
<author>
<name sortKey="Rice, A P" uniqKey="Rice A">A.P. Rice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hariharan, M" uniqKey="Hariharan M">M. Hariharan</name>
</author>
<author>
<name sortKey="Scaria, V" uniqKey="Scaria V">V. Scaria</name>
</author>
<author>
<name sortKey="Pillai, B" uniqKey="Pillai B">B. Pillai</name>
</author>
<author>
<name sortKey="Brahmachari, S K" uniqKey="Brahmachari S">S.K. Brahmachari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nathans, R" uniqKey="Nathans R">R. Nathans</name>
</author>
<author>
<name sortKey="Chu, C Y" uniqKey="Chu C">C.Y. Chu</name>
</author>
<author>
<name sortKey="Serquina, A K" uniqKey="Serquina A">A.K. Serquina</name>
</author>
<author>
<name sortKey="Lu, C C" uniqKey="Lu C">C.C. Lu</name>
</author>
<author>
<name sortKey="Cao, H" uniqKey="Cao H">H. Cao</name>
</author>
<author>
<name sortKey="Rana, T M" uniqKey="Rana T">T.M. Rana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, G" uniqKey="Sun G">G. Sun</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Covarrubias, M" uniqKey="Covarrubias M">M. Covarrubias</name>
</author>
<author>
<name sortKey="Scherer, L" uniqKey="Scherer L">L. Scherer</name>
</author>
<author>
<name sortKey="Meinking, K" uniqKey="Meinking K">K. Meinking</name>
</author>
<author>
<name sortKey="Luk, B" uniqKey="Luk B">B. Luk</name>
</author>
<author>
<name sortKey="Chomchan, P" uniqKey="Chomchan P">P. Chomchan</name>
</author>
<author>
<name sortKey="Alluin, J" uniqKey="Alluin J">J. Alluin</name>
</author>
<author>
<name sortKey="Gombart, A F" uniqKey="Gombart A">A.F. Gombart</name>
</author>
<author>
<name sortKey="Rossi, J J" uniqKey="Rossi J">J.J. Rossi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F. Wang</name>
</author>
<author>
<name sortKey="Argyris, E" uniqKey="Argyris E">E. Argyris</name>
</author>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K. Chen</name>
</author>
<author>
<name sortKey="Liang, Z" uniqKey="Liang Z">Z. Liang</name>
</author>
<author>
<name sortKey="Tian, H" uniqKey="Tian H">H. Tian</name>
</author>
<author>
<name sortKey="Huang, W" uniqKey="Huang W">W. Huang</name>
</author>
<author>
<name sortKey="Squires, K" uniqKey="Squires K">K. Squires</name>
</author>
<author>
<name sortKey="Verlinghieri, G" uniqKey="Verlinghieri G">G. Verlinghieri</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Ye, L" uniqKey="Ye L">L. Ye</name>
</author>
<author>
<name sortKey="Hou, W" uniqKey="Hou W">W. Hou</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Wang, Y J" uniqKey="Wang Y">Y.J. Wang</name>
</author>
<author>
<name sortKey="Metzger, D S" uniqKey="Metzger D">D.S. Metzger</name>
</author>
<author>
<name sortKey="Ho, W Z" uniqKey="Ho W">W.Z. Ho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houzet, L" uniqKey="Houzet L">L. Houzet</name>
</author>
<author>
<name sortKey="Klase, Z" uniqKey="Klase Z">Z. Klase</name>
</author>
<author>
<name sortKey="Yeung, M L" uniqKey="Yeung M">M.L. Yeung</name>
</author>
<author>
<name sortKey="Wu, A" uniqKey="Wu A">A. Wu</name>
</author>
<author>
<name sortKey="Le, S Y" uniqKey="Le S">S.Y. Le</name>
</author>
<author>
<name sortKey="Qui Ones, M" uniqKey="Qui Ones M">M. Quiñones</name>
</author>
<author>
<name sortKey="Jeang, K T" uniqKey="Jeang K">K.T. Jeang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L. Ma</name>
</author>
<author>
<name sortKey="Shen, C J" uniqKey="Shen C">C.J. Shen</name>
</author>
<author>
<name sortKey="Cohen, E A" uniqKey="Cohen E">É.A. Cohen</name>
</author>
<author>
<name sortKey="Xiong, S D" uniqKey="Xiong S">S.D. Xiong</name>
</author>
<author>
<name sortKey="Wang, J H" uniqKey="Wang J">J.H. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hou, W" uniqKey="Hou W">W. Hou</name>
</author>
<author>
<name sortKey="Bonkovsky, H L" uniqKey="Bonkovsky H">H.L. Bonkovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leung, A K" uniqKey="Leung A">A.K. Leung</name>
</author>
<author>
<name sortKey="Vyas, S" uniqKey="Vyas S">S. Vyas</name>
</author>
<author>
<name sortKey="Rood, J E" uniqKey="Rood J">J.E. Rood</name>
</author>
<author>
<name sortKey="Bhutkar, A" uniqKey="Bhutkar A">A. Bhutkar</name>
</author>
<author>
<name sortKey="Sharp, P A" uniqKey="Sharp P">P.A. Sharp</name>
</author>
<author>
<name sortKey="Chang, P" uniqKey="Chang P">P. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lloyd, R E" uniqKey="Lloyd R">R.E. Lloyd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banfield, B W" uniqKey="Banfield B">B.W. Banfield</name>
</author>
<author>
<name sortKey="Mouland, A J" uniqKey="Mouland A">A.J. Mouland</name>
</author>
<author>
<name sortKey="Mccormick, C" uniqKey="Mccormick C">C. McCormick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srivastava, S" uniqKey="Srivastava S">S. Srivastava</name>
</author>
<author>
<name sortKey="Swanson, S K" uniqKey="Swanson S">S.K. Swanson</name>
</author>
<author>
<name sortKey="Manel, N" uniqKey="Manel N">N. Manel</name>
</author>
<author>
<name sortKey="Florens, L" uniqKey="Florens L">L. Florens</name>
</author>
<author>
<name sortKey="Washburn, M P" uniqKey="Washburn M">M.P. Washburn</name>
</author>
<author>
<name sortKey="Skowronski, J" uniqKey="Skowronski J">J. Skowronski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Singh, S" uniqKey="Singh S">S. Singh</name>
</author>
<author>
<name sortKey="Jung, H Y" uniqKey="Jung H">H.Y. Jung</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G. Yang</name>
</author>
<author>
<name sortKey="Jun, S" uniqKey="Jun S">S. Jun</name>
</author>
<author>
<name sortKey="Sastry, K J" uniqKey="Sastry K">K.J. Sastry</name>
</author>
<author>
<name sortKey="Park, J I" uniqKey="Park J">J.I. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakagawa, T" uniqKey="Nakagawa T">T. Nakagawa</name>
</author>
<author>
<name sortKey="Mondal, K" uniqKey="Mondal K">K. Mondal</name>
</author>
<author>
<name sortKey="Swanson, P C" uniqKey="Swanson P">P.C. Swanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hakata, Y" uniqKey="Hakata Y">Y. Hakata</name>
</author>
<author>
<name sortKey="Miyazawa, M" uniqKey="Miyazawa M">M. Miyazawa</name>
</author>
<author>
<name sortKey="Landau, N R" uniqKey="Landau N">N.R. Landau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romani, B" uniqKey="Romani B">B. Romani</name>
</author>
<author>
<name sortKey="Cohen, E A" uniqKey="Cohen E">E.A. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, E A" uniqKey="Cohen E">E.A. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shapshak, P" uniqKey="Shapshak P">P. Shapshak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casey Klockow, L" uniqKey="Casey Klockow L">L. Casey Klockow</name>
</author>
<author>
<name sortKey="Sharifi, H J" uniqKey="Sharifi H">H.J. Sharifi</name>
</author>
<author>
<name sortKey="Wen, X" uniqKey="Wen X">X. Wen</name>
</author>
<author>
<name sortKey="Flagg, M" uniqKey="Flagg M">M. Flagg</name>
</author>
<author>
<name sortKey="Furuya, A K" uniqKey="Furuya A">A.K. Furuya</name>
</author>
<author>
<name sortKey="Nekorchuk, M" uniqKey="Nekorchuk M">M. Nekorchuk</name>
</author>
<author>
<name sortKey="De Noronha, C M" uniqKey="De Noronha C">C.M. de Noronha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, A" uniqKey="Deng A">A. Deng</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Ishizaka, Y" uniqKey="Ishizaka Y">Y. Ishizaka</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Sun, B" uniqKey="Sun B">B. Sun</name>
</author>
<author>
<name sortKey="Yang, R" uniqKey="Yang R">R. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okumura, A" uniqKey="Okumura A">A. Okumura</name>
</author>
<author>
<name sortKey="Alce, T" uniqKey="Alce T">T. Alce</name>
</author>
<author>
<name sortKey="Lubyova, B" uniqKey="Lubyova B">B. Lubyova</name>
</author>
<author>
<name sortKey="Ezelle, H" uniqKey="Ezelle H">H. Ezelle</name>
</author>
<author>
<name sortKey="Strebel, K" uniqKey="Strebel K">K. Strebel</name>
</author>
<author>
<name sortKey="Pitha, P M" uniqKey="Pitha P">P.M. Pitha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, D" uniqKey="Zhou D">D. Zhou</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Tokunaga, K" uniqKey="Tokunaga K">K. Tokunaga</name>
</author>
<author>
<name sortKey="Huang, F" uniqKey="Huang F">F. Huang</name>
</author>
<author>
<name sortKey="Sun, B" uniqKey="Sun B">B. Sun</name>
</author>
<author>
<name sortKey="Yang, R" uniqKey="Yang R">R. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, T" uniqKey="Yuan T">T. Yuan</name>
</author>
<author>
<name sortKey="Yao, W" uniqKey="Yao W">W. Yao</name>
</author>
<author>
<name sortKey="Huang, F" uniqKey="Huang F">F. Huang</name>
</author>
<author>
<name sortKey="Sun, B" uniqKey="Sun B">B. Sun</name>
</author>
<author>
<name sortKey="Yang, R" uniqKey="Yang R">R. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahn, J" uniqKey="Ahn J">J. Ahn</name>
</author>
<author>
<name sortKey="Vu, T" uniqKey="Vu T">T. Vu</name>
</author>
<author>
<name sortKey="Novince, Z" uniqKey="Novince Z">Z. Novince</name>
</author>
<author>
<name sortKey="Guerrero Santoro, J" uniqKey="Guerrero Santoro J">J. Guerrero-Santoro</name>
</author>
<author>
<name sortKey="Rapic Otrin, V" uniqKey="Rapic Otrin V">V. Rapic-Otrin</name>
</author>
<author>
<name sortKey="Gronenborn, A M" uniqKey="Gronenborn A">A.M. Gronenborn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laguette, N" uniqKey="Laguette N">N. Laguette</name>
</author>
<author>
<name sortKey="Bregnard, C" uniqKey="Bregnard C">C. Brégnard</name>
</author>
<author>
<name sortKey="Hue, P" uniqKey="Hue P">P. Hue</name>
</author>
<author>
<name sortKey="Basbous, J" uniqKey="Basbous J">J. Basbous</name>
</author>
<author>
<name sortKey="Yatim, A" uniqKey="Yatim A">A. Yatim</name>
</author>
<author>
<name sortKey="Larroque, M" uniqKey="Larroque M">M. Larroque</name>
</author>
<author>
<name sortKey="Kirchhoff, F" uniqKey="Kirchhoff F">F. Kirchhoff</name>
</author>
<author>
<name sortKey="Constantinou, A" uniqKey="Constantinou A">A. Constantinou</name>
</author>
<author>
<name sortKey="Sobhian, B" uniqKey="Sobhian B">B. Sobhian</name>
</author>
<author>
<name sortKey="Benkirane, M" uniqKey="Benkirane M">M. Benkirane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zahoor, M A" uniqKey="Zahoor M">M.A. Zahoor</name>
</author>
<author>
<name sortKey="Xue, G" uniqKey="Xue G">G. Xue</name>
</author>
<author>
<name sortKey="Sato, H" uniqKey="Sato H">H. Sato</name>
</author>
<author>
<name sortKey="Murakami, T" uniqKey="Murakami T">T. Murakami</name>
</author>
<author>
<name sortKey="Takeshima, S N" uniqKey="Takeshima S">S.N. Takeshima</name>
</author>
<author>
<name sortKey="Aida, Y" uniqKey="Aida Y">Y. Aida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collins, D R" uniqKey="Collins D">D.R. Collins</name>
</author>
<author>
<name sortKey="Collins, K L" uniqKey="Collins K">K.L. Collins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foley, J F" uniqKey="Foley J">J.F. Foley</name>
</author>
<author>
<name sortKey="Yu, C R" uniqKey="Yu C">C.R. Yu</name>
</author>
<author>
<name sortKey="Solow, R" uniqKey="Solow R">R. Solow</name>
</author>
<author>
<name sortKey="Yacobucci, M" uniqKey="Yacobucci M">M. Yacobucci</name>
</author>
<author>
<name sortKey="Peden, K W" uniqKey="Peden K">K.W. Peden</name>
</author>
<author>
<name sortKey="Farber, J M" uniqKey="Farber J">J.M. Farber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desimmie, B A" uniqKey="Desimmie B">B.A. Desimmie</name>
</author>
<author>
<name sortKey="Delviks Frankenberrry, K A" uniqKey="Delviks Frankenberrry K">K.A. Delviks-Frankenberrry</name>
</author>
<author>
<name sortKey="Burdick, R C" uniqKey="Burdick R">R.C. Burdick</name>
</author>
<author>
<name sortKey="Qi, D" uniqKey="Qi D">D. Qi</name>
</author>
<author>
<name sortKey="Izumi, T" uniqKey="Izumi T">T. Izumi</name>
</author>
<author>
<name sortKey="Pathak, V K" uniqKey="Pathak V">V.K. Pathak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Yu, F" uniqKey="Yu F">F. Yu</name>
</author>
<author>
<name sortKey="Du, L Y" uniqKey="Du L">L.Y. Du</name>
</author>
<author>
<name sortKey="Xu, W" uniqKey="Xu W">W. Xu</name>
</author>
<author>
<name sortKey="Jiang, S B" uniqKey="Jiang S">S.B. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, F" uniqKey="Guo F">F. Guo</name>
</author>
<author>
<name sortKey="Liang, C" uniqKey="Liang C">C. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schrofelbauer, B" uniqKey="Schrofelbauer B">B. Schröfelbauer</name>
</author>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q. Yu</name>
</author>
<author>
<name sortKey="Zeitlin, S G" uniqKey="Zeitlin S">S.G. Zeitlin</name>
</author>
<author>
<name sortKey="Landau, N R" uniqKey="Landau N">N.R. Landau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sze, A" uniqKey="Sze A">A. Sze</name>
</author>
<author>
<name sortKey="Olagnier, D" uniqKey="Olagnier D">D. Olagnier</name>
</author>
<author>
<name sortKey="Lin, R" uniqKey="Lin R">R. Lin</name>
</author>
<author>
<name sortKey="Van Grevenynghe, J" uniqKey="Van Grevenynghe J">J. van Grevenynghe</name>
</author>
<author>
<name sortKey="Hiscott, J" uniqKey="Hiscott J">J. Hiscott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brass, A L" uniqKey="Brass A">A.L. Brass</name>
</author>
<author>
<name sortKey="Dykxhoorn, D M" uniqKey="Dykxhoorn D">D.M. Dykxhoorn</name>
</author>
<author>
<name sortKey="Benita, Y" uniqKey="Benita Y">Y. Benita</name>
</author>
<author>
<name sortKey="Yan, N" uniqKey="Yan N">N. Yan</name>
</author>
<author>
<name sortKey="Engelman, A" uniqKey="Engelman A">A. Engelman</name>
</author>
<author>
<name sortKey="Xavier, R J" uniqKey="Xavier R">R.J. Xavier</name>
</author>
<author>
<name sortKey="Lieberman, J" uniqKey="Lieberman J">J. Lieberman</name>
</author>
<author>
<name sortKey="Elledge, S J" uniqKey="Elledge S">S.J. Elledge</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Curr Genomics</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr. Genomics</journal-id>
<journal-id journal-id-type="publisher-id">CG</journal-id>
<journal-title-group>
<journal-title>Current Genomics</journal-title>
</journal-title-group>
<issn pub-type="ppub">1389-2029</issn>
<issn pub-type="epub">1875-5488</issn>
<publisher>
<publisher-name>Bentham Science Publishers</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27047253</article-id>
<article-id pub-id-type="pmc">4763971</article-id>
<article-id pub-id-type="publisher-id">CN-16-327</article-id>
<article-id pub-id-type="doi">10.2174/1389202916666150707160613</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Poltronieri</surname>
<given-names>Palmiro</given-names>
</name>
<xref ref-type="aff" rid="aff1">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sun</surname>
<given-names>Binlian</given-names>
</name>
<xref ref-type="aff" rid="aff2">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mallardo</surname>
<given-names>Massimo</given-names>
</name>
<xref ref-type="aff" rid="aff3">c</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>a</label>
CNR-ISPA, Institute of Sciences of Food Productions, National Research Council of Italy, Lecce, Italy;</aff>
<aff id="aff2">
<label>b</label>
Research Group of HIV Molecular Epidemiology and Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China;</aff>
<aff id="aff3">
<label>c</label>
Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II°, Napoli, Italy</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
Address correspondence to this author at the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Napoli, Italy; Fax: +39-081-7463205; E-mail:
<email xlink:href="massimo.mallardo@unina.it">massimo.mallardo@unina.it</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>10</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<month>10</month>
<year>2015</year>
</pub-date>
<volume>16</volume>
<issue>5</issue>
<fpage>327</fpage>
<lpage>335</lpage>
<history>
<date date-type="received">
<day>28</day>
<month>3</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>10</day>
<month>4</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>14</day>
<month>4</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>©2015 Bentham Science Publishers</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Massimo Mallardo</copyright-holder>
<license license-type="open-access" xlink:href="https://creativecommons.org/licenses/by-nc/4.0/legalcode">
<license-p>This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0)
<uri xlink:type="simple" xlink:href="https://creativecommons.org/licenses/by-nc/4.0/legalcode">(https://creativecommons.org/licenses/by-nc/4.0/legalcode</uri>
), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>The review intends to present and recapitulate the current knowledge on the roles and importance of regulatory RNAs, such as microRNAs and small interfering RNAs, RNA binding proteins and enzymes processing RNAs or activated by RNAs, in cells infected by RNA viruses. The review focuses on how non-coding RNAs are involved in RNA virus replication, pathogenesis and host response, especially in retroviruses HIV, with examples of the mechanisms of action, transcriptional regulation, and promotion of increased stability of their targets or their degradation.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>Argonaute</kwd>
<kwd>DICER</kwd>
<kwd>HIV</kwd>
<kwd>RNA binding proteins</kwd>
<kwd>RNA secondary structure</kwd>
<kwd>RNA viruses</kwd>
<kwd>Small RNAs.</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<label>1.</label>
<title>INTRODUCTION</title>
<p>RNA agents have been shown to play essential roles in evolution and regulation in all DNA/protein based life: based on RNA stem-loop secondary structures (built of paired stems and not-paired loops), pseudoknots, and loops with sequences showing affinity to target proteins. Group I and group II introns, viroids, viral (RNA and DNA viruses, bacteriophages, retrotransposons, Long Terminal Repeats) networks cooperate within cellular genomes as modular. Some non-coding RNAs have built complementary consortia, such as rRNAs, tRNAs, spliceosomes, editosomes, and other ribonucleoprotein particles (RNPs) [
<xref rid="R1" ref-type="bibr">1</xref>
]. Additionally, counterbalancing modules such as restriction/modification (RM) modules have evolved, assuring identity (self/non-self) of organisms. All fine-tuned steps of key cellular processes such as gene expression, transcription, translation, DNA recombination and repair, epigenetic imprinting, as well as various forms of innate and adaptive immunity, are essentially constituted by natural genetic content operators.</p>
<p>There are many reports showing that virus infection can alter the cellular microRNAs (miRNAs) to affect virus replication, some of them oppose the function of host restriction factors to enhance virus proliferation [
<xref rid="R2" ref-type="bibr">2</xref>
,
<xref rid="R3" ref-type="bibr"> 3</xref>
]. Nowadays, researchers are trying to design miRNAs against virus proteins to control virus replication.</p>
<p>In the organisms, RNAs are associated to RNA binding proteins, helicases and RNases involved in RNA degradation and turnover. </p>
<p>This review discusses how these RNA interacting proteins and networks of regulatory RNAs are integrated intothe general network of pathogenesis’ control, especially during RNA virus infection.</p>
<sec>
<label>1.1</label>
<title>RNA Viruses</title>
<p>Human diseases causing RNA viruses include Orthomyxoviruses, Hepatitis C Virus (HCV), Ebola disease, SARS, influenza, polio measles and retrovirus including adult Human T-cell lymphotropic virus type 1 (HTLV-1) and human immunodeficiency virus (HIV). RNA viruses have RNA as genetic material, that may be a single-stranded RNA or a double stranded RNA. Viruses may exploit the presence of RNA-dependent RNA polymerases for replication of their genomes or, in retroviruses, with two copies of single strand RNA genomes, reverse transcriptase produces viral DNA which can be integrated into the host DNA under its integrase function. Studies showed that endogenous retroviruses are long-terminal repeat (LTR)-type retroelements that account for approximately 10% of human or murine genomic DNA. </p>
<p>Among human retroviruses, HIV-1 is a lentivirus with an RNA genome formed by two copies of a single-stranded, positive-sense RNA. The HIV-1 RNA genome is associated to the nucleocapsid protein (NC) and to viral enzymes, thus it is “protected” within the viral capsid mainly formed by the p24 protein. Upon entry into the target cell, the viral RNA genome is reverse transcribed into double-stranded DNA by a virally encoded reverse transcriptase that is transported along with the viral genome into the virus particle. The viral DNA is imported into the cell nucleus and integrated into the cellular DNA by a virally encoded integrase and host co-factors. Once integrated, the virus may become latent, or may be transcribed, producing new RNA genomes and viral proteins that are packaged and released from the infected cell as new virus particles that will infect other cells to begin the new replication cycle. Many aspects of the life cycle of retroviruses are intimately linked to the functions of cellular proteins and RNAs. HIV-1 and Moloney Murine Leukemia Virus (MoMuLV) have been studied for the dimerization of two RNAs. </p>
</sec>
<sec>
<label>1.2</label>
<title>Retrotransposons, LTRs, Retrotranscriptases</title>
<p>Long Interspersed Nuclear Elements-1 (LINE-1) and endogenous retroviruses (HERVs) encode reverse transcriptase (RT) proteins in vertebrates. LINE-1s (L1s), the most studied, active autonomous mobile DNA in humans, accounts for about 17% of human DNA while HERVs account for about 8% and, together with the non-autonomous SINE/Alu family (about 10%) constitute a large proportion of the human genome. L1s encode two open reading frames (ORFs 1 and 2). The shorter ORF1 translation product (ORF1p) is an RNA binding protein, thought to also bind to non-retroviral transcripts, protects against nuclease degradation and specify nuclear import of the ribonuclear protein complex (RNP). ORF2 encodes a multifunctional protein (ORF2p) comprising apurinic/apyrimidinic endonuclease (APE) and reverse-transcriptase (RT) activities, responsible for retroelement’s replication and their integration into chromosomal DNA. However, some clades of APE-type retroelements only encode a single ORF-corresponding to the multifunctional ORF2p [
<xref rid="R4" ref-type="bibr">4</xref>
]. HERVs, closely resembling infectious retroviruses, have mutated and/or truncated provirus structures and have lost their ability to replicate or retrotranspose. Nonetheless, proteins encoded by different types of HERVs are still exerting biological activities and most of the HERV-associated regulatory regions, termed “long terminal repeats” (LTRs), preserve their functions as a promoter–enhancer region. Functional “awakening” of HERVs and LTRs from their epigenetic silencing can play causative roles in tumorigenesis; in particular, HERV-K (HML-2), the most recently integrated family with a nearly complete retroviral structure, is involved in neoplastic and autoimmune pathological processes [
<xref rid="R5" ref-type="bibr">5</xref>
]. Retroelements, which mobilize throughout the genomes by a copy-and-paste process involving RNA intermediates, have the potential to modify mammalian genomes not only through insertional mutagenesis yet generating many other novelties that alter genomes both structurally and functionally [
<xref rid="R6" ref-type="bibr">6</xref>
]. Not surprisingly, cells have adopted strategies aiming at restricting the mobility and deleterious consequences of uncontrolled retrotransposition [
<xref rid="R6" ref-type="bibr">6</xref>
].</p>
<p>Although heavily mutagenic and responsible for deleterious gene disruptions, retroelements may have provided some beneficial genomic functions with potential evolutionary advantages. </p>
<p>Incubation of mouse zygotes with 5′-bromodeoxyuridine (BrdU) yields massive incorporation of this nucleoside analogue in newly synthesized DNA; surprisingly, a significant incorporation still occurs in both zygotic pronuclei in the presence of aphidicolin, a specific inhibitor of DNA replication. This aphidicolin-resistant BrdU incorporation is quantitatively abolished when embryos are simultaneously exposed to abacavir, a nucleoside RT inhibitor, thus revealing its RT-dependent nature. Moreover, quantitative PCR analysis showed that LINE-1 copies are newly synthesized at the zygote- and two-cell embryo stages and nearly doubled compared to gamete copy number. These findings support the conclusion that RT-dependent amplification of LINE-1 retrotransposons is a distinctive feature of early embryonic genomes [
<xref rid="R7" ref-type="bibr">7</xref>
].</p>
<p>Inhibition of RT activity in cancer cell lines, either by LINE-1-specific RNA interference or by RT inhibitory drugs, was found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Using CsCl density gradients, Alu- and LINE-1-containing DNA:RNA hybrid structures were identified in cancer yet not in normal cell lines [
<xref rid="R8" ref-type="bibr">8</xref>
]. In cancer cells the highly abundant RT activity intercepts various RNA classes and reverse transcribes them generating RNA:DNA hybrids. This may impair the formation of double-stranded RNAs required in the production of small regulatory RNAs (miRNA in particular), with a direct impact on gene expression. RT inhibition restores the 'normal' small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells.</p>
<p>Recent computational studies confirm the association between L1 expression and the generation of small RNAs. L1 expression seems to have a role in the activation of small RNA expression as emerged comparing data from L1-active and L1-silenced breast cancer cells. Cells in which L1 expression was silenced greatly increased the expression of a number of miRNAs, in particular members of the let-7 family, few piwiRNAs and several repeat-RNAs targeting LTRs, LINEs and SINE elements [
<xref rid="R9" ref-type="bibr">9</xref>
]. </p>
</sec>
<sec>
<label>1.3</label>
<title>Small RNAs, miRNAs, RNA Interference and Immunity</title>
<p>miRNAs have become a prototype of several classes of small RNAs (sRNAs) [
<xref rid="R10" ref-type="bibr">10</xref>
]. These sRNAs act as single strand filaments incorporated into the RNA induced silencing complexes (RISC) acting as guides to Argonaute (Ago) enzymes degrading the target RNA complementary to these sRNAs. The processing into mature sRNAs requires protein complexes containing endoribonucleases: DROSHA in the nucleus, cleaving the dsRNA precursors into pre-miRNAs. The pre-miRNA hairpin structure is then exported into the cytoplasm via exportin-5. In the cytoplasm it assembles in RNA induced silencing complex (RISC) which includes Dicer ribonucleases that cleave pre-miRNAs into mature single strand sRNAs, Ago enzymes cleaving the mRNAs with sequences complementary to the microRNAs [
<xref rid="R11" ref-type="bibr">11</xref>
], and other associated proteins, such as PW182/Argonaute-2, a 182 kDa RNAse associated to P-bodies [
<xref rid="R12" ref-type="bibr">12</xref>
], HIV transactivating response RNA-binding protein (TRBP) [
<xref rid="R13" ref-type="bibr">13</xref>
], and fragile X mental retardation protein (FMRP1) [
<xref rid="R14" ref-type="bibr">14</xref>
]. Mature miRNAs play important roles in the regulation of mammalian genes. It has been suggested that over 30% of all human genes are regulated by miRNAs. While recent genome-wide siRNA and shRNA screenings have shown that several hundred host cell proteins contribute to the regulation of HIV-1 infection in human cells, how miRNA-mediated regulation complements this picture is poorly understood. Other processing complexes are involved in the production of sRNA with various sizes: piwiRNA and siRNA, with size ranging from 21-nt to 25-nt, is the output of this processes. Their role is in the amplification of signals such as RNA primed RNA amplification, and the spreading of anti-viral RNA interference mechanism. </p>
</sec>
<sec>
<label>1.4</label>
<title>RNA Pseudoknots, Hairpins and Secondary Structures</title>
<p>RNA can both store information in its linear sequence and take on critical structural and catalytic roles in the cell, such as during the translation of messenger RNA into proteins [
<xref rid="R15" ref-type="bibr">15</xref>
]. These latter functions depend on the complex higher-order structures RNA is able to form. Homan
<italic>et al.</italic>
reported a method to probe the intricate conformational states in the analysis of HIV-1 NL4-3 RNA genome [
<xref rid="R15" ref-type="bibr">15</xref>
]. They chemically modified exposed segments of three complex RNA structures. They then sequenced the RNA to map the locations of the multiple modifications in each individual linear RNA molecule. This allowed the researchers to deduce interactions in three-dimensional space, and to uncover the local conformation, providing valuable information on the folding and function of RNAs [
<xref rid="R15" ref-type="bibr">15</xref>
]. Single-molecule RNA structure was tagged, i.e. multiple sites were chemically modified are identified by massively parallel sequencing of single RNA strands, and then analyzed for correlated and clustered interactions. The strategy thus identified RNA interaction groups by mutational profiling (RING-MaP) and made possible two applications. Firstly, through space interactions, 3D models were created for RNAs, spanning 80–265 nucleotides, and intramolecular interactions that stabilize RNA were characterized. Secondly, distinct conformations in solution were identified and revealed previously undetected hidden states and large-scale structural reconfigurations that occur in unfolded RNAs relative to native states. RING-MaP analysis of single-molecule nucleic acid structure enabled a novel view of the global architecture and multiple conformations that govern the functions in RNAs.</p>
<p>Additional methodologies that have been used in testing the secondary structure of RNA genomes have been published. 2’-hydroxy acylation of RNA was analysed by primer extension and mutational profiling (SHAPE-MaP) [
<xref rid="R16" ref-type="bibr">16</xref>
] and used to define a new model of HIV-1 RNA genome. </p>
<p>Advances in RNA structure prediction from sequence are currently made by setting and testing new tools for generating hypotheses and confirming viral RNA structure-function relationships [
<xref rid="R17" ref-type="bibr">17</xref>
]. On this basis, novel methods have been tested to investigate the sequence-dependence of RNA-protein interactions [
<xref rid="R18" ref-type="bibr">18</xref>
]. RNA substrates demonstrate diverse intramolecular interactions, including mismatched base bulges, stem loops, pseudoknots, g-quartets, divalent cation interactions and noncanonical base pairs, determining three-dimensional RNA structure. The molecular evolution of MS2 from low- to high-affinity hairpins, was analysed and quantified. The results suggest that quantitative analysis of RNA on a massively parallel array (RNA-MaP) provided an insight into the biophysics of RNAs and on consequences of sequence-function relationships.</p>
<p>Several RNA secondary structures have been shown important for the virus functions: internal ribosomal entry structure, internal ribosomal entry site, and 5' UTRs regulate the start of translation of operons. For example, in influenza virus type C, there are seven vRNA segments with non-coding regions (NCR) at the extremities, that affects transcription and replication, by the type-C and type-A polymerase complexes [
<xref rid="R19" ref-type="bibr">19</xref>
]. To determine the molecular structure adopted by these NCR, various bioinformatics tools, including RNAfold, RNAstructure, Sfold, and Mfold, have been used. Various nucleotide polymorphisms (SNPs) in these non-coding regions may differentiate infective strains, such as major or minor read-through activity and differential expression of ORFs in operons. In Orthomyxoviridae, such as human influenza viruses or infective salmon anemia virus (ISAV), studies suggest an association between the molecular architecture of NCR regions and their role in the viral life cycle [
<xref rid="R20" ref-type="bibr">20</xref>
]. The 3' and 5'-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity [
<xref rid="R21" ref-type="bibr">21</xref>
]. The viral RNA 3’- and 5’-end structure and mRNA transcription of infectious salmon anaemia virus resemble those of influenza viruses [
<xref rid="R22" ref-type="bibr">22</xref>
]. The aligned Non-Coding Region (NCR) sequences from ISAV isolates were compared with those from influenza virus, and consensus sequences were found, based on conserved regions identified in the consensus sequence [
<xref rid="R23" ref-type="bibr">23</xref>
]. This hypothetical structure, together with a comparison with influenza viruses, yielded reliable secondary structure models that lead to identification of conserved nucleotide positions at inter-genus level to determine which nucleotide positions are involved in the recognition of the vRNA/cRNA by RNA-dependent RNA polymerase (RdRp) or mRNA by the ribosome. The NCR contain conserved sequences that vary in length among the various genera of the family Orthomyxoviridae [
<xref rid="R24" ref-type="bibr">24</xref>
]. It has been reported that the first 12 and 13 nucleotides correspond to conserved sequences in the 3’ and 5’ ends, respectively, of all segments of the influenza A vRNA [
<xref rid="R25" ref-type="bibr">25</xref>
]. Structurally, these conserved sequences in influenza A have been described as partially complementary and capable of interacting in cis within each segment of RNA, forming structures called panhandles [
<xref rid="R26" ref-type="bibr">26</xref>
,
<xref rid="R27" ref-type="bibr"> 27</xref>
] In Orthomyxoviruses, transcription of the genome requires the vRNA to act as template for each genomic segment, and for transcription to occur, the conformation adopted via the folding of the NCR is essential [
<xref rid="R26" ref-type="bibr">26</xref>
]. </p>
</sec>
<sec>
<label>1.5</label>
<title>HIV-1: Host Factors Supporting From the Entry to Virus Replication</title>
<p>Recently importin 7 and importin α have been shown to enhance nuclear entry of HIV-1 (but not HIV-2) correlating with its ability to bind to the viral integrase and the virus accessory protein Vpr which are components of pre-integration complex (PIC) [
<xref rid="R28" ref-type="bibr">28</xref>
,
<xref rid="R29" ref-type="bibr"> 29</xref>
]. Transportin 2, identified using siRNA screens [
<xref rid="R30" ref-type="bibr">30</xref>
-
<xref rid="R32" ref-type="bibr">32</xref>
], is also able to enhance nuclear import of PIC. The most important finding was that tRNA molecules themselves can act as nuclear entry chaperones for the HIV PIC. HIV-1 transcription is regulated by the viral promoter located in the 5′LTR of the provirus. The LTR contains binding sites for several transcription factors such as Sp1 and NF-κB, NFAT, LEF-1, COUP-TF, Ets1, USF and AP-1 [
<xref rid="R33" ref-type="bibr">33</xref>
]. </p>
<p>The RNA binding protein Staufen appears to act as a chaperone to the RNA and has been detected in viral particles. Similarities between this and the known HIV TAR RNA binding protein TRBP may promote further investigations.</p>
<p>RNA cap methylases are cellular factors that regulate post transcriptional HIV-1 RNA expression in order to produce a viral mRNA camouflaged by cellular mRNA showing a 7-methylguanosine (m7G) cap.</p>
</sec>
<sec>
<label>1.6</label>
<title>RNA Silencing and Host-virus Interaction</title>
<p>Plants and lower eukaryotes produce miRNAs and siRNAs as a form of RNA-interference (RNAi) to restrict infecting viruses. While mammals conserve the same functional miRNA repertoire and RNA-silencing machinery, some have debated whether they employ a miRNA-based antiviral strategy. For endogenous mammalian retroviruses, there is a large body of literature demonstrating that a variety of small non-coding RNA forms are employed to silence these elements.
<italic>In silico</italic>
analyses have also indicated that exogenous mammalian viruses may be similarly susceptible to miRNA-based restriction. The notion that miRNAs restrict viruses in mammals as they do in invertebrate or plant cells is supported by increasing examples of RNAi-silencing suppressors encoded by mammalian viruses such as Adenovirus, HCV, Ebola, Influenza A virus, primate foamy virus, HIV, SARS corona virus and HTLV-1. Further investigation is needed to understand how RNA-based and protein-based viral restriction mechanisms cooperate together in human cells.</p>
<p>Considering tumour- associated viruses (oncoviruses), it is estimated that 20% of all cancers are linked to infectious agents. Studies of oncogenic DNA viruses have contributed to the understanding of key molecular mechanisms of tumorigenesis and viral oncogenicity [
<xref rid="R10" ref-type="bibr">10</xref>
]. Virally encoded oncoproteins such as adenovirus E1A and human papillomavirus (HPV) E7 can bind an array of cellular proteins to override proliferation arrest. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis, both by inhibiting nuclear export of shRNA or pre-miRNA precursors, competing for the Exportin 5 nuclear export factor, and inhibiting Dicer function by direct binding to Dicer [
<xref rid="R10" ref-type="bibr">10</xref>
]. Recently, many viral-encoded miRNAs have been discovered, especially abundant in viruses transcribed from double-stranded DNA genomes. Several virus-encoded miRNAs have unique aspects to their biogenesis, such as the location within the precursor transcript. </p>
<p>Bovine leukemia virus, a member of the retrovirus family, was the first RNA virus shown to synthesize a viral RNA that is proficiently processed in cells into small ncRNAs [
<xref rid="R34" ref-type="bibr">34</xref>
], producing numerous miRNAs. BLV avoids Drosha-mediated cleavage of its genome and mRNAs, which overlap the miRNA cluster, since BLV miRNAs, unlike most known miRNAs, are encoded as shorter RNA polymerase III (pol III) transcribed hairpins that can directly serve as Dicer substrates. Thus, BLV transcripts are not cleaved by Drosha, while subgenomic small RNAs are processed into miRNAs.</p>
<p>Influenza A virus replicates its genome in the nucleus and is exposed to the nuclear microRNA processing factors Drosha and DGCR8. At 8 hours after infection, 18- to 27-nt small viral leader RNAs (leRNAs) bearing a 5'-terminal triphosphate are produced from the 5' ends of all eight influenza virus genomic RNA (vRNA) segments [
<xref rid="R35" ref-type="bibr">35</xref>
]. The high-level production of leRNAs may imply a role in the regulation of the switch from viral mRNA transcription to genomic RNA synthesis.</p>
<p>It is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. In a genome-wide analysis and identification of miRNAs originating from hepatitis A virus (HAV), a typical cytoplasmic RNA virus [
<xref rid="R36" ref-type="bibr">36</xref>
], two novel virally encoded miRNAs, hav-miR-1-5p and hav-miR-2-5p, were identified, generated from viral miRNA precursors (pre-miRNA). </p>
<p>Presently, functions have been proposed for viral miRNAs from three different viral families: herpesviruses, polyomaviruses and retroviruses. </p>
<p>Four vsRNAs were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>10
<sup>5</sup>
copy numbers per cell) of vsRNA1, one of the four vsRNAs. Dicer was shown to be involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and IRES activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. vsRNA1 targets stem-loop II of the viral 5' untranslated region and inhibits the activity of the IRES through this sequence-specific targeting [
<xref rid="R37" ref-type="bibr">37</xref>
].</p>
<p>Websites and databases are available that classify most of the small RNAs and mRNAs produced by virus families [
<xref rid="R38" ref-type="bibr">38</xref>
]; In VIRMir database four miRNAs are recorded derived from HIV genome hiv1-miR-tar-5p, hiv1-miR-tar-3p, hiv1-miR-n367, originating from
<italic>nef</italic>
gene and targeting nef mRNA [
<xref rid="R39" ref-type="bibr">39</xref>
], hiv1-miR-h1 [
<xref rid="R40" ref-type="bibr">40</xref>
]. In addition to these four, another one, hiv1-miRH3, was reported more recently [
<xref rid="R41" ref-type="bibr">41</xref>
], which locates in the mRNA region encoding the active centre of reverse transcriptase (RT), targets HIV 5’-LTR and binds to the TATA box, upregulating promoter activity [
<xref rid="R41" ref-type="bibr">41</xref>
]. </p>
<p>The HIV-1 Trans-Activation Response (TAR) element is a hairpin structure of ~50 nucleotides found at the 5' end of the HIV viral mRNA. TAR element is recognized by the RNAi machinery and it has been shown to be processed by Dicer yielding a viral miRNA involved in chromatin remodelling of the viral LTR [
<xref rid="R42" ref-type="bibr">42</xref>
] and targeting the apoptosis genes ERCC1 and IER3 [
<xref rid="R43" ref-type="bibr">43</xref>
,
<xref rid="R44" ref-type="bibr"> 44</xref>
]. This viral miRNA is detectable in infected cells and appears to contribute to viral latency. </p>
<p>In a recent publication [
<xref rid="R45" ref-type="bibr">45</xref>
] numerous small RNAs were found deriving from HIV-1 RNA genome. Most of the sequences, with positive polarity (98.1%) could be structured RNAs (sRNAs) or miRNA-like (vmiRNAs). A small portion of the viRNAs, with negative polarity, is encoded within the 3′-UTR. These viral siRNAs (vsiRNAs) were shown to act inhibiting virus replication, since their inhibition using antagomiRs increases virus replication. Three of the HIV-1 small RNAs were shown to be processed by the RNAi machinery. There are data showing that HIV-1 can express an antisense transcript from the 3'-end of its genome that forms long RNA duplexes with counterpart sense HIV-1 RNAs [
<xref rid="R46" ref-type="bibr">46</xref>
-
<xref rid="R48" ref-type="bibr">48</xref>
]. Most HIV sRNAs are not supposed to function as miRNAs, because of lack of evolutionary conservation amongst strains, but may still assume a hairpin structure in the regions containing the conserved bases. </p>
<sec>
<label>1.6.1</label>
<title>Host miRNAs Deregulated by Virus Infection</title>
<p>Presently, viral interactions with cellular miRNAs have been identified, expanding the knowledge of miRNA functions [
<xref rid="R49" ref-type="bibr">49</xref>
].</p>
<p>One of the first host miRNAs shown to block retrovirus was miR-32, effectively limiting primate foamy virus type 1 (PFV-1) replication [
<xref rid="R50" ref-type="bibr">50</xref>
]. </p>
<p>Inhibition of influenza virus replication has been described for four miRNAs: miR-323, miR-491, miR-654, and let-7c. Vesicular stomatitis virus is inhibited by miR-24 and miR-93, hepatitis B virus by miR-125a-5p, miR-199a-3p and miR-210; and HCV by miR-196, miR-296, miR-351, miR-431, and miR-448 [
<xref rid="R51" ref-type="bibr">51</xref>
]. In the case of HCV, a liver-specific miRNA, miR-122, was found to directly target HCV RNA sequence to up-regulate viral replication [
<xref rid="R52" ref-type="bibr">52</xref>
]. </p>
<p>Substantial advances have been made in the understanding of the interplay between HIV-1 and the cell's RNAi activity. HIV-1 infection can change the miRNA expression profiles in the circulating blood cells from infected individuals [
<xref rid="R51" ref-type="bibr">51</xref>
]. </p>
<p>Host miRNAs can modulate HIV replication either directly by targeting HIV RNA, or targeting the mRNAs that encode host cell factors relevant to HIV replication. miR-217 was found induced by Tat and increased HIV-1 expression by targeting sirtuin-1 (SIRT-1) with deacetylase activity inactivating Tat function [
<xref rid="R53" ref-type="bibr">53</xref>
]. miR-198 was shown to inhibit HIV-1 gene expression and replication in monocytes, action linked to its down-regulation of cyclin T1 [
<xref rid="R54" ref-type="bibr">54</xref>
]. </p>
<p>Recent reports studied several human miRNAs targeting HIV-1 sequences. Using target prediction software, five miRNA (miR-29a, miR-29b, miR-149, miR-324-5p, and miR-378) were found to target sequences, two of them located in the viral nef gene, of the HIV-1 genome [
<xref rid="R55" ref-type="bibr">55</xref>
]. miR-29a was shown to inhibit nef expression, and to repress HIV replication in Jurkat cells. Recently inhibition of HIV-1 infection by miR-29a and miR-29b was confirmed [
<xref rid="R56" ref-type="bibr">56</xref>
,
<xref rid="R57" ref-type="bibr"> 57</xref>
], however, HIV-1 is protected by a complex RNA secondary structure surrounding the target site. A different group of five miRNAs (miR-28, miR-125b, miR-150, miR-223, and miR-382) that target the 3'-UTR of the HIV genome was reported [
<xref rid="R58" ref-type="bibr">58</xref>
]. These “anti-HIV” miRNAs were shown to be enriched in resting CD4+ T cells and were hypothesized to be involved in proviral latency. In another study, four of these miRNAs were found responsible for differences between monocytes and macrophages in their permissivity to HIV infection [
<xref rid="R59" ref-type="bibr">59</xref>
]. Recently the action of miR-29, miR-133b, miR-138, miR-149 and miR-326, targeting HIV-1 sequences, was shown [
<xref rid="R60" ref-type="bibr">60</xref>
]. Therefore, in divergent cells and in varying contexts different miRNAs may selectively regulate HIV-1 infection through direct targeting viral sequences. Thus, a complex set of miRNA-mediated positive and negative regulatory events is influencing viral replication [
<xref rid="R51" ref-type="bibr">51</xref>
]. In monocytes, miR-1236 was shown to inhibit HIV-1 infection by repressing translation of cellular factor Vpr binding protein, VprBP/DCAF1 [
<xref rid="R61" ref-type="bibr">61</xref>
].</p>
<p>A significant number of host non-coding RNAs have been found in Hepatocellular carcinoma (HCC) caused by HCV infection, and are involved in pathogenesis of HCV and HCV-induced HCC [
<xref rid="R62" ref-type="bibr">62</xref>
].</p>
</sec>
</sec>
<sec>
<label>1.7</label>
<title>Subversion of IFN Responses</title>
<p>The role of type I-IFNs in increasing host susceptibility could be explained by modulation of components of the immune response involved in controlling the growth of infective agents, such as induction of T cell apoptosis, resulting in greater IL-10 secretion by phagocytic cells, in turn dampening the innate immune response. A mechanism by which viruses survive inside cells is by inactivating the cellular antiviral machinery, or inactivating the RNA interference response, acting on the dsRNA-activated protein kinase (PKR). Infection thus can escape from the immune response by deregulation of the interferon signaling and the processes forming small RNAs acting in RNA silencing pathways.</p>
</sec>
<sec>
<label>1.8</label>
<title>Virus Deregulation of Stress Granule Function</title>
<p>It was shown that viral life cycle within cells involves hijacking cellular processes and nuclear targeting. This is also at the base of redistribution of translation machinery during the stress response involving the formation of stress granules, processing bodies (P-bodies, PB), and perinuclear paraspeckles. During oxidative stress, arsenite, or by phosphorylation of eIF2α, cells undergo a translation arrest, stalling the RNAs in the form of ternary complexes that include eukaryotic initiation factor 2 (eIF2)/GTP/Met-tRNA. These stress granules, containing the RNA to be translated, have a role in spatial and temporal inhibition of mRNAs, until resolving the stress for processing the mRNAs, or degrading it in case of non recovery from the stress. Stress granules are formed by a nucleation process that involves several principal factors, such as the RNA decay factor G3BP, which prevents the localisation of ribosome and initiation factors in silenced SG foci, the translational suppressor TIA1, TIAR, Caprin1, USP10, DDX6 (Rck/p54), DDX3 helicase, poly-A binding protein PAPB and Lsm1. Additionally, SGs contain enzymes of the RNA silencing pathway, such as Argoanute-2, trans-acting factors, Hsp90 complexes and RNA binding proteins, found at the site of small RNA-mediated repression of RNA targets [
<xref rid="R63" ref-type="bibr">63</xref>
].</p>
<p>Different viruses exploit the binding to protein scaffolds to avoid SG formation or to assemble their RNA into SGs devoid of cellular RNA, thus exploiting the transcriptional machinery for their own means [
<xref rid="R64" ref-type="bibr">64</xref>
]. In RNA viruses, the knowledge has increased recently, especially focusing on HCV infected cells, where SG and P-body components are relocalised to the periphery of lipid droplets, and an oscillation between SG assembly and disassembly is observed upon interferon I treatment, depending on the inhibition of PKR by the eIF2 phosphatase GADD34 [
<xref rid="R65" ref-type="bibr">65</xref>
]. West Nile Virus (WNV) inhibits SG formation by scavenging Reactive Oxygen Species (ROS), and also relocalising the SG scaffolding proteins into perinuclear foci where WNV replication occurs by exploiting cell translation machinery. HIV-1 blocks SG assembly
<italic>in vitro</italic>
and
<italic>ex vivo</italic>
in patient samples. Gag has an important role in inhibition of SG, dependent on the interaction between host factors EIF2 and G3BP1. Influenza A virus (IAV) proteins can block SG formation: IAV polymerase complexes function in the nuclei of infected cells, generating mRNAs with a 5’ cap and polyA-tail that are transferred into the cytoplasm for translation. Non-structural protein 1 (NS1) inactivates PKR, preventing eIF2 phoshorylation; nucleoprotein (NP) inhibits SG formation through eIF independent mechanisms; host-shutoff protein polymerase-acidic protein-X (PA-X) is essential to block SG formation. Measles virus infection progresses through the synthesis of 5’-copyback defective-interfering RNA (DI-RNAs), that are complementary in the 5’ and 3’ termini, forming double stranded RNAs, efficient in activation of PKR and PKR signaling. Downstream to this event, measles protein C is required for alleviation of SG translation inhibition, while A-to-C mutation events dependent on ADAR modify the virus genome. In picornaviruses, such as enteroviruses, proteinases have been shown involved in disassembly of SG, while in kobuviruses other factors, such as a small leader peptide, are important in SG inhibition.</p>
<sec>
<label>1.8.1</label>
<title>Vpr/Vpx</title>
<p>The viral accessory protein Vpr is a component of the PIC. It is reported that Vpr is important on the nuclear import of PIC by interacting with a nuclear pore protein, importin α [
<xref rid="R29" ref-type="bibr">29</xref>
]. Since PIC is larger than a nuclear pore, various other nuclear pore complex proteins have also been identified in PIC nuclear entry, including Nup 98, Nup 124p, Nup 358 and Nup 153. </p>
<p>Vpr belongs to the RAD23-like family of proteins, similarly to Vpx [
<xref rid="R66" ref-type="bibr">66</xref>
]. Vpr is a chaperone that guides target proteins to bind to VprVP/DCAF1, a receptor of the CULLIN E3 ubiquitin ligase (Cul4-DDB1, Cul5) [
<xref rid="R67" ref-type="bibr">67</xref>
-
<xref rid="R69" ref-type="bibr">69</xref>
]. Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses, a Vpr paralogue, that enables these viruses to infect monocyte-derived cells.</p>
<p>One of the main activities of Vpr/Vpx is the degradation of target proteins through binding to VprBP, thus recruiting the 26S proteasomal pathway. Several studies showed the potentiality of Vpr to interact with many E2 and E3 enzymes [
<xref rid="R70" ref-type="bibr">70</xref>
]. Vpr has been shown to affect, either directly or indirectly, the modification of proteins, such as ubiquitinylation, phosphorylation and neddylation. In this way, Vpr influences and regulates the levels of many proteins [
<xref rid="R71" ref-type="bibr">71</xref>
]. </p>
<p>Vpr has been found to affect the levels of few miRNAs among which is miR-34a, as well as the genes IRBIT, SERP1, SIRT1, NEFM, Drp-1, Orai, STIM1, IP3R and CREB [
<xref rid="R72" ref-type="bibr">72</xref>
]. It was reported that Vpr inhibits short hairpin RNA function as expected upon reduction of endoribonuclease Dicer levels by binding with VprBP to block maturation of miRNAs [
<xref rid="R73" ref-type="bibr">73</xref>
]. </p>
<p>Also it was reported that Vpr can interact with spliceosomal protein SAP145 to mediate cellular pre-mRNA splicing inhibition. Although the mechanism is not clarified, Vpr is sufficient alone to promote HCV RNA replication [
<xref rid="R74" ref-type="bibr">74</xref>
]. Vpr is reported to be a component of the reverse transcription complex (RTC) and co-localizes with the viral nucleic acid and integrase within purified HIV-1 RTCs. </p>
<p>Vpr also can regulate several proteins and host factors, some of them can affect RNA replication. The most interesting are TERT [
<xref rid="R67" ref-type="bibr">67</xref>
], the type I interferon regulatory factor 3 (IRF-3) [
<xref rid="R75" ref-type="bibr">75</xref>
], A3G [
<xref rid="R76" ref-type="bibr">76</xref>
], TRIM proteins [
<xref rid="R77" ref-type="bibr">77</xref>
], uracil DNA glycosylase 2 (UNG2) [
<xref rid="R78" ref-type="bibr">78</xref>
] and single strand selective monofunctional uracil-DNA glycosylase 1 (SMUG1). A premature activation of the SLX4 complex has been shown dependent on Vpr, promoting G2/M arrest and escape from innate immune sensing [
<xref rid="R79" ref-type="bibr">79</xref>
].</p>
<p>Zahoor
<italic>et al.</italic>
using microarray system found that Vpr protein enhanced the mRNA level of interferon (IFN)-stimulated genes (ISGs), and causes phosphorylation of STAT1 at tyrosine 701 in human monocyte-derived macrophages (MDMs) infected with a recombinant adenovirus expressing Vpr [
<xref rid="R80" ref-type="bibr">80</xref>
]. These findings enhance the current understanding of HIV-1 replication and pathogenesis in human macrophages. Vpr, together with other HIV factors, recruits cellular adaptors to facilitate immune evasion [
<xref rid="R81" ref-type="bibr">81</xref>
]. HIV-1 Vpr differentially regulates the expression levels of chemotactic cytokines such as CXCL1, CXCL5, CXCL7, CXCL9, CXCL10, and CXCL11. A report showed that CXCL10 and CXCL11 are up-regulated in HIV-1-infected macrophages and play a key role in the recruitment and spread of HIV-1 to susceptible CD4+ T-cells [
<xref rid="R82" ref-type="bibr">82</xref>
]. </p>
</sec>
</sec>
<sec>
<label>1.9</label>
<title>Intracellular Defences Against HIV</title>
<p>Clearly the cell is not a passive participant in virus replication. In addition to the cellular pathways subverted by the virus for its own use there are inhibitory factors within cells which act as intracellular defences and whose presence inhibits or ‘restricts’ the virus. The first one, identified in retrovirus infected cells, was Fv1 which restricts ecotropic murine leukemia viruses. Following this finding, other similar factors restricting HIV were identified. Because of their potential importance in novel antiviral approaches, they have been extensively investigated in recent years. APOBEC3 family [
<xref rid="R83" ref-type="bibr">83</xref>
], TRIM family [
<xref rid="R77" ref-type="bibr">77</xref>
,
<xref rid="R84" ref-type="bibr"> 84</xref>
], Tetherin [
<xref rid="R85" ref-type="bibr">85</xref>
], IRF3 [
<xref rid="R75" ref-type="bibr">75</xref>
], SMUG1, UNG2 [
<xref rid="R86" ref-type="bibr">86</xref>
], SAMHD1 [
<xref rid="R87" ref-type="bibr">87</xref>
] and SLX4 [
<xref rid="R79" ref-type="bibr">79</xref>
] were well known for being involved in HIV infectivity, indicating that the viral proteins can interact and modulate their activity. </p>
<p>As an adaptive response, viruses develop the ability to interact and deactivate these defences, a mechanism named pathogen mimicry. Among several mechanisms, there are: a) the development of proteins and molecules that act interfering with cellular processes; b) virus miRNA analogs of host miRNAs, exploiting the presence of a network of cell effectors and antiapoptotic factors; c) incorporating protein-protein interaction domains or association modules in their genome; d) through increased mutation rates evolving the recognition domains of proteins targeted by cellular defences.</p>
<sec>
<label>1.9.1</label>
<title>Epigenetics. Resetting of Epigenetic Marks</title>
<p>Infective agents and bacteria when entering inside the cells activate several mechanisms to avoid immune detection [
<xref rid="R84" ref-type="bibr">84</xref>
]. Many viruses entering inside the cells are able to derail the cellular machinery, including the epigenetic control. A large set of host proteins required for HIV infection have been identified through a functional genomic screen [
<xref rid="R88" ref-type="bibr">88</xref>
]. RNAi screens have been performed for host factors required for HIV replication [
<xref rid="R30" ref-type="bibr">30</xref>
].</p>
<p>HIV-1 integration is generally random but it has more easier access into active genes; however, independent of the site of integration in human chromosomes, two nucleosomes, named nuc-0 and nuc-1, are precisely organized in the 5′LTR. In particular, the histone organized nuc-1 structure (located at position −2 to +140 of the LTR) normally serves to down modulate basal transcription.</p>
<p>The HIV-1 transcriptional activator Tat has evolved mechanisms to resolve the transcription block. Tat is associated with histone acetyl transferase (HAT) proteins whose activities remodel nucleosomes to allow transcriptional access. Tat has been shown to bind several different HATs: CBP/p300, p/CAF, GCN5, Tip60, and TAFII250. Through binding to the HAT proteins, Tat relieves chromatin repression at the HIV-1 LTR. Recently, Tat has also been found to bind a histone chaperone protein, hNAP-1, which acts with ATP-dependent chromatin remodeling complexes to facilitate transcription. </p>
<p>Counteracting the effect of HATs, the histone deacetylase proteins (HDAC) remove the acetyl-group from HAT-acetylated histones to enforce transcriptional silencing. In the HIV-1 LTR, it is thought that the LSF protein binds at position −10 to +27 of the LTR to recruit the YY1 factor which further binds HDAC-1 to silence viral transcription. Tat expression down regulates HDAC-1 to remove the transcription repression. A similar recovery from repressive inhibition has been obtained through treatment with HDAC inhibitors (HDACIs) such as Trichostatin A (TSA), Valproic Acid (VPA), and sodium butyrate.</p>
</sec>
</sec>
<sec sec-type="conclusion">
<label>1.10.</label>
<title> Conclusion</title>
<p>In this review we highlighted the importance of cellular and viral RNAs in the cell response to RNA viruses, especially to retroviruses and endogenous L1 remnants of viral DNA integration. In addition, we reviewed several pathways involving small RNAs and short interfering RNAs deregulated in various states, from active infection to virus-associated cancers and defective immune signaling. A special role has been assigned to the deregulation of interferon response and the inhibition of protein complexes in stress granules and P-bodies, RNA binding proteins, RISC components and the RNA silencing machinery. </p>
</sec>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGEMENTS</title>
<p>PP was supported by the national project PON 02_0186_3417512 Strumenti Innovativi per il Miglioramento della Sicurezza Alimentare (S.I.MI.S.A.). BS was supported by the National Science Foundation of China (31470270).</p>
<p>We thank Dr. Concetta Ambrosino and Dr. Giuseppe Fiume for the critical reading of the manuscript.</p>
</ack>
<sec>
<title>CONFLICT OF INTEREST</title>
<p>The author(s) confirm that this article content has no conflict of interest.</p>
</sec>
<ref-list>
<title>REFERENCES</title>
<ref id="R1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Villarreal</surname>
<given-names>L.P.</given-names>
</name>
<name>
<surname>Witzany</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Rethinking quasispecies theory: From fittest type to cooperative consortia.</article-title>
<source>World J. Biol. Chem.</source>
<year>2013</year>
<volume>4</volume>
<issue>4</issue>
<fpage>79</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="pmid">24340131</pub-id>
</element-citation>
</ref>
<ref id="R2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sullivan</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Ganem</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>MicroRNAs and viral infection.</article-title>
<source>Mol. Cell</source>
<year>2005</year>
<volume>20</volume>
<issue>1</issue>
<fpage>3</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">16209940</pub-id>
</element-citation>
</ref>
<ref id="R3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cullen</surname>
<given-names>B.R.</given-names>
</name>
</person-group>
<article-title>How do viruses avoid inhibition by endogenous cellular microRNAs?</article-title>
<source>PLoS Pathog.</source>
<year>2013</year>
<volume>9</volume>
<issue>11</issue>
<fpage>e1003694</fpage>
<pub-id pub-id-type="pmid">24244153</pub-id>
</element-citation>
</ref>
<ref id="R4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luke</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>Roulston</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Odon</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>de Felipe</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sukhodub</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>M.D.</given-names>
</name>
</person-group>
<article-title>Lost in translation: The biogenesis of non-LTR retrotransposon proteins.</article-title>
<source>Mob. Genet. Elements</source>
<year>2013</year>
<volume>3</volume>
<issue>6</issue>
<fpage>e27525</fpage>
<pub-id pub-id-type="pmid">24475367</pub-id>
</element-citation>
</ref>
<ref id="R5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katoh</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Impacts of endogenous retroviruses on tumorigenesis, immunity, stem cells, and research safety.</article-title>
<source>Front. Oncol.</source>
<year>2014</year>
<volume>4</volume>
<fpage>66</fpage>
<pub-id pub-id-type="pmid">24744991</pub-id>
</element-citation>
</ref>
<ref id="R6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rebollo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Romanish</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Mager</surname>
<given-names>D.L.</given-names>
</name>
</person-group>
<article-title>Transposable elements: an abundant and natural source of regulatory sequences for host genes.</article-title>
<source>Annu. Rev. Genet.</source>
<year>2012</year>
<volume>46</volume>
<fpage>21</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">22905872</pub-id>
</element-citation>
</ref>
<ref id="R7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vitullo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sciamanna</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Baiocchi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sinibaldi-Vallebona</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Spadafora</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>LINE-1 retrotransposon copies are amplified during murine early embryo development.</article-title>
<source>Mol. Reprod. Dev.</source>
<year>2012</year>
<volume>79</volume>
<issue>2</issue>
<fpage>118</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="pmid">22139884</pub-id>
</element-citation>
</ref>
<ref id="R8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sciamanna</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Gualtieri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cossetti</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Osimo</surname>
<given-names>E.F.</given-names>
</name>
<name>
<surname>Ferracin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Macchia</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Aricò</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Prosseda</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Vitullo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Misteli</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Spadafora</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines.</article-title>
<source>Oncotarget</source>
<year>2013</year>
<volume>4</volume>
<issue>12</issue>
<fpage>2271</fpage>
<lpage>2287</lpage>
<pub-id pub-id-type="pmid">24345856</pub-id>
</element-citation>
</ref>
<ref id="R9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohms</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rangasamy</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Silencing of LINE-1 retrotransposons contributes to variation in small noncoding RNA expression in human cancer cells.</article-title>
<source>Oncotarget</source>
<year>2014</year>
<volume>5</volume>
<issue>12</issue>
<fpage>4103</fpage>
<lpage>4117</lpage>
<pub-id pub-id-type="pmid">24980824</pub-id>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mallardo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Poltronieri</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>D’Urso</surname>
<given-names>O.F.</given-names>
</name>
</person-group>
<article-title>Non-protein coding RNA biomarkers and differential expression in cancers: a review.</article-title>
<source>J. Exp. Clin. Cancer Res.</source>
<year>2008</year>
<volume>27</volume>
<fpage>19</fpage>
<pub-id pub-id-type="pmid">18631387</pub-id>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ha</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>V.N.</given-names>
</name>
</person-group>
<article-title>Regulation of microRNA biogenesis.</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2014</year>
<volume>15</volume>
<issue>8</issue>
<fpage>509</fpage>
<lpage>524</lpage>
<pub-id pub-id-type="pmid">25027649</pub-id>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rivas</surname>
<given-names>F.V.</given-names>
</name>
<name>
<surname>Wohlschlegel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yates</surname>
<given-names>J.R.</given-names>
<suffix>III</suffix>
</name>
<name>
<surname>Parker</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hannon</surname>
<given-names>G.J.</given-names>
</name>
</person-group>
<article-title>A role for the P-body component GW182 in microRNA function.</article-title>
<source>Nat. Cell Biol.</source>
<year>2005</year>
<volume>7</volume>
<issue>12</issue>
<fpage>1261</fpage>
<lpage>1266</lpage>
<pub-id pub-id-type="pmid">16284623</pub-id>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chendrimada</surname>
<given-names>T.P.</given-names>
</name>
<name>
<surname>Gregory</surname>
<given-names>R.I.</given-names>
</name>
<name>
<surname>Kumaraswamy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Norman</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cooch</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Nishikura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shiekhattar</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.</article-title>
<source>Nature</source>
<year>2005</year>
<volume>436</volume>
<issue>7051</issue>
<fpage>740</fpage>
<lpage>744</lpage>
<pub-id pub-id-type="pmid">15973356</pub-id>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zarnescu</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Ceman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nakamoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mowrey</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jongens</surname>
<given-names>T.A.</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Moses</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>S.T.</given-names>
</name>
</person-group>
<article-title>Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway.</article-title>
<source>Nat. Neurosci.</source>
<year>2004</year>
<volume>7</volume>
<issue>2</issue>
<fpage>113</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="pmid">14703574</pub-id>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Homan</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Favorov</surname>
<given-names>O.V.</given-names>
</name>
<name>
<surname>Lavender</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Kursun</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Busan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dokholyan</surname>
<given-names>N.V.</given-names>
</name>
<name>
<surname>Weeks</surname>
<given-names>K.M.</given-names>
</name>
</person-group>
<article-title>Single-molecule correlated chemical probing of RNA.</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2014</year>
<volume>111</volume>
<issue>38</issue>
<fpage>13858</fpage>
<lpage>13863</lpage>
<pub-id pub-id-type="pmid">25205807</pub-id>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegfried</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Busan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Weeks</surname>
<given-names>K.M.</given-names>
</name>
</person-group>
<article-title>RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP).</article-title>
<source>Nat. Methods</source>
<year>2014</year>
<volume>11</volume>
<issue>9</issue>
<fpage>959</fpage>
<lpage>965</lpage>
<pub-id pub-id-type="pmid">25028896</pub-id>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schroeder</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships.</article-title>
<source>J. Virol.</source>
<year>2009</year>
<volume>83</volume>
<issue>13</issue>
<fpage>6326</fpage>
<lpage>6334</lpage>
<pub-id pub-id-type="pmid">19369331</pub-id>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buenrostro</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Araya</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Chircus</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Layton</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Snyder</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Greenleaf</surname>
<given-names>W.J.</given-names>
</name>
</person-group>
<article-title>Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes.</article-title>
<source>Nat. Biotechnol.</source>
<year>2014</year>
<volume>32</volume>
<issue>6</issue>
<fpage>562</fpage>
<lpage>568</lpage>
<pub-id pub-id-type="pmid">24727714</pub-id>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bergmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Muster</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Mutations in the nonconserved noncoding sequences of the influenza A virus segments affect viral vRNA formation.</article-title>
<source>Virus Res.</source>
<year>1996</year>
<volume>44</volume>
<issue>1</issue>
<fpage>23</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">8873410</pub-id>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Toennessen</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lauscher</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rimstad</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Comparative aspects of infectious salmon anemia virus, an orthomyxovirus of fish, to influenza viruses.</article-title>
<source>Indian J. Microbiol.</source>
<year>2009</year>
<volume>49</volume>
<issue>4</issue>
<fpage>308</fpage>
<lpage>314</lpage>
<pub-id pub-id-type="pmid">23100790</pub-id>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desselberger</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Racaniello</surname>
<given-names>V.R.</given-names>
</name>
<name>
<surname>Zazra</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Palese</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>The 3′ and 5′-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity.</article-title>
<source>Gene</source>
<year>1980</year>
<volume>8</volume>
<issue>3</issue>
<fpage>315</fpage>
<lpage>328</lpage>
<pub-id pub-id-type="pmid">7358274</pub-id>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sandvik</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Rimstad</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mjaaland</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The viral RNA 3′- and 5′-end structure and mRNA transcription of infectious salmon anaemia virus resemble those of influenza viruses.</article-title>
<source>Arch. Virol.</source>
<year>2000</year>
<volume>145</volume>
<issue>8</issue>
<fpage>1659</fpage>
<lpage>1669</lpage>
<pub-id pub-id-type="pmid">11003475</pub-id>
</element-citation>
</ref>
<ref id="R23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Díaz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>García</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Navarrete</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Higuera</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Romero</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Virtual screening of gene expression regulatory sites in non-coding regions of the infectious salmon anemia virus.</article-title>
<source>BMC Res. Notes</source>
<year>2014</year>
<volume>7</volume>
<fpage>477</fpage>
<pub-id pub-id-type="pmid">25069483</pub-id>
</element-citation>
</ref>
<ref id="R24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crescenzo-Chaigne</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Barbezange</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>van der Werf</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Non coding extremities of the seven influenza virus type C vRNA segments: effect on transcription and replication by the type C and type A polymerase complexes.</article-title>
<source>Virol. J.</source>
<year>2008</year>
<volume>5</volume>
<fpage>132</fpage>
<pub-id pub-id-type="pmid">18973655</pub-id>
</element-citation>
</ref>
<ref id="R25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>Y.S.</given-names>
</name>
<name>
<surname>Seong</surname>
<given-names>B.L.</given-names>
</name>
</person-group>
<article-title>Nucleotides in the panhandle structure of the influenza B virus virion RNA are involved in the specificity between influenza A and B viruses.</article-title>
<source>J. Gen. Virol.</source>
<year>1998</year>
<volume>79</volume>
<issue>Pt 4</issue>
<fpage>673</fpage>
<lpage>681</lpage>
<pub-id pub-id-type="pmid">9568960</pub-id>
</element-citation>
</ref>
<ref id="R26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fodor</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pritlove</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Brownlee</surname>
<given-names>G.G.</given-names>
</name>
</person-group>
<article-title>The influenza virus panhandle is involved in the initiation of transcription.</article-title>
<source>J. Virol.</source>
<year>1994</year>
<volume>68</volume>
<issue>6</issue>
<fpage>4092</fpage>
<lpage>4096</lpage>
<pub-id pub-id-type="pmid">8189550</pub-id>
</element-citation>
</ref>
<ref id="R27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brinson</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Szakal</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Marino</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>Structural characterization of the viral and cRNA panhandle motifs from the infectious salmon anemia virus.</article-title>
<source>J. Virol.</source>
<year>2011</year>
<volume>85</volume>
<issue>24</issue>
<fpage>13398</fpage>
<lpage>13408</lpage>
<pub-id pub-id-type="pmid">21994446</pub-id>
</element-citation>
</ref>
<ref id="R28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fassati</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Görlich</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Zaytseva</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mingot</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7.</article-title>
<source>EMBO J.</source>
<year>2003</year>
<volume>22</volume>
<issue>14</issue>
<fpage>3675</fpage>
<lpage>3685</lpage>
<pub-id pub-id-type="pmid">12853482</pub-id>
</element-citation>
</ref>
<ref id="R29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamata</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nitahara-Kasahara</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Miyamoto</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yoneda</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Aida</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Importin-alpha promotes passage through the nuclear pore complex of human immunodeficiency virus type 1 Vpr.</article-title>
<source>J. Virol.</source>
<year>2005</year>
<volume>79</volume>
<issue>6</issue>
<fpage>3557</fpage>
<lpage>3564</lpage>
<pub-id pub-id-type="pmid">15731250</pub-id>
</element-citation>
</ref>
<ref id="R30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Gates</surname>
<given-names>A.T.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.D.</given-names>
</name>
<name>
<surname>Castle</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Stec</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ferrer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Strulovici</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hazuda</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Espeseth</surname>
<given-names>A.S.</given-names>
</name>
</person-group>
<article-title>Genome-scale RNAi screen for host factors required for HIV replication.</article-title>
<source>Cell Host Microbe</source>
<year>2008</year>
<volume>4</volume>
<issue>5</issue>
<fpage>495</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="pmid">18976975</pub-id>
</element-citation>
</ref>
<ref id="R31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeung</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Houzet</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yedavalli</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Jeang</surname>
<given-names>K.T.</given-names>
</name>
</person-group>
<article-title>A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication.</article-title>
<source>J. Biol. Chem.</source>
<year>2009</year>
<volume>284</volume>
<issue>29</issue>
<fpage>19463</fpage>
<lpage>19473</lpage>
<pub-id pub-id-type="pmid">19460752</pub-id>
</element-citation>
</ref>
<ref id="R32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Houzet</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jeang</surname>
<given-names>K.T.</given-names>
</name>
</person-group>
<article-title>Genome-wide screening using RNA interference to study host factors in viral replication and pathogenesis.</article-title>
<source>Exp. Biol. Med. (Maywood)</source>
<year>2011</year>
<volume>236</volume>
<issue>8</issue>
<fpage>962</fpage>
<lpage>967</lpage>
<pub-id pub-id-type="pmid">21727185</pub-id>
</element-citation>
</ref>
<ref id="R33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lever</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Jeang</surname>
<given-names>K.T.</given-names>
</name>
</person-group>
<article-title>Insights into cellular factors that regulate HIV-1 replication in human cells.</article-title>
<source>Biochemistry</source>
<year>2011</year>
<volume>50</volume>
<issue>6</issue>
<fpage>920</fpage>
<lpage>931</lpage>
<pub-id pub-id-type="pmid">21218853</pub-id>
</element-citation>
</ref>
<ref id="R34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kincaid</surname>
<given-names>R.P.</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>RNA virus microRNA that mimics a B-cell oncomiR.</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2012</year>
<volume>109</volume>
<issue>8</issue>
<fpage>3077</fpage>
<lpage>3082</lpage>
<pub-id pub-id-type="pmid">22308400</pub-id>
</element-citation>
</ref>
<ref id="R35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Umbach</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Yen</surname>
<given-names>H-L.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Cullen</surname>
<given-names>B.R.</given-names>
</name>
</person-group>
<article-title>Influenza A virus expresses high levels of an unusual class of small viral leader RNAs in infected cells.</article-title>
<source>MBio</source>
<year>2010</year>
<volume>1</volume>
<issue>4</issue>
<fpage>e00204</fpage>
<lpage>e00210</lpage>
<pub-id pub-id-type="pmid">20842206</pub-id>
</element-citation>
</ref>
<ref id="R36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.</article-title>
<source>FASEB J.</source>
<year>2014</year>
<volume>28</volume>
<issue>10</issue>
<fpage>4381</fpage>
<lpage>4393</lpage>
<pub-id pub-id-type="pmid">25002121</pub-id>
</element-citation>
</ref>
<ref id="R37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weng</surname>
<given-names>K.F.</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>C.T.</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>P.T.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.W.</given-names>
</name>
<name>
<surname>Kung</surname>
<given-names>Y.A.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>P.N.</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>R.Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Horng</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H.I.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Ojcius</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Brewer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Shih</surname>
<given-names>S.R.</given-names>
</name>
</person-group>
<article-title>A cytoplasmic RNA virus generates functional viral small RNAs and regulates viral IRES activity in mammalian cells.</article-title>
<source>Nucleic Acids Res.</source>
<year>2014</year>
<volume>42</volume>
<issue>20</issue>
<fpage>12789</fpage>
<lpage>12805</lpage>
<pub-id pub-id-type="pmid">25352551</pub-id>
</element-citation>
</ref>
<ref id="R38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kincaid</surname>
<given-names>R.P.</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Virus-encoded microRNAs: an overview and a look to the future.</article-title>
<source>PLoS Pathog.</source>
<year>2012</year>
<volume>8</volume>
<issue>12</issue>
<fpage>e1003018</fpage>
<pub-id pub-id-type="pmid">23308061</pub-id>
</element-citation>
</ref>
<ref id="R39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Omoto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>Y.R.</given-names>
</name>
</person-group>
<article-title>Regulation of human immunodeficiency virus 1 transcription by nef microRNA.</article-title>
<source>J. Gen. Virol.</source>
<year>2005</year>
<volume>86</volume>
<issue>Pt 3</issue>
<fpage>751</fpage>
<lpage>755</lpage>
<pub-id pub-id-type="pmid">15722536</pub-id>
</element-citation>
</ref>
<ref id="R40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qureshi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Thakur</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Monga</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Thakur</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.</article-title>
<source>Database (Oxford)</source>
<year>2014</year>
<volume>2014</volume>
<fpage>bau103</fpage>
<comment>[Oxford].</comment>
<pub-id pub-id-type="doi">10.1093/database/bau103</pub-id>
<pub-id pub-id-type="pmid">25380780</pub-id>
</element-citation>
</ref>
<ref id="R41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Geng</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region.</article-title>
<source>Retrovirology</source>
<year>2014</year>
<volume>11</volume>
<fpage>23</fpage>
<pub-id pub-id-type="pmid">24620741</pub-id>
</element-citation>
</ref>
<ref id="R42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klase</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Kale</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Winograd</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Heydarian</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Berro</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>McCaffrey</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kashanchi</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR.</article-title>
<source>BMC Mol. Biol.</source>
<year>2007</year>
<volume>8</volume>
<fpage>63</fpage>
<pub-id pub-id-type="pmid">17663774</pub-id>
</element-citation>
</ref>
<ref id="R43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ouellet</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Plante</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Landry</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Barat</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Janelle</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Flamand</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tremblay</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Provost</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element.</article-title>
<source>Nucleic Acids Res.</source>
<year>2008</year>
<volume>36</volume>
<issue>7</issue>
<fpage>2353</fpage>
<lpage>2365</lpage>
<pub-id pub-id-type="pmid">18299284</pub-id>
</element-citation>
</ref>
<ref id="R44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klase</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Winograd</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Carpio</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hildreth</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Heydarian</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>McCaffrey</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Meiri</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ayash-Rashkovsky</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gilad</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bentwich</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Kashanchi</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression.</article-title>
<source>Retrovirology</source>
<year>2009</year>
<volume>6</volume>
<issue>1</issue>
<fpage>18</fpage>
<pub-id pub-id-type="pmid">19220914</pub-id>
</element-citation>
</ref>
<ref id="R45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schopman</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Willemsen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.P.</given-names>
</name>
<name>
<surname>Bradley</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>van Kampen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Baas</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Berkhout</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Haasnoot</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs.</article-title>
<source>Nucleic Acids Res.</source>
<year>2012</year>
<volume>40</volume>
<issue>1</issue>
<fpage>414</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="pmid">21911362</pub-id>
</element-citation>
</ref>
<ref id="R46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clerc</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Laverdure</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Torresilla</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Landry</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Borel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vargas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Arpin-André</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gay</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Briant</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gross</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Barbeau</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mesnard</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells.</article-title>
<source>Retrovirology</source>
<year>2011</year>
<volume>8</volume>
<fpage>74</fpage>
<pub-id pub-id-type="pmid">21929758</pub-id>
</element-citation>
</ref>
<ref id="R47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barbagallo</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Birch</surname>
<given-names>K.E.</given-names>
</name>
<name>
<surname>Deacon</surname>
<given-names>N.J.</given-names>
</name>
<name>
<surname>Mosse</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Potential control of human immunodeficiency virus type 1 asp expression by alternative splicing in the upstream untranslated region.</article-title>
<source>DNA Cell Biol.</source>
<year>2012</year>
<volume>31</volume>
<issue>7</issue>
<fpage>1303</fpage>
<lpage>1313</lpage>
<pub-id pub-id-type="pmid">22455394</pub-id>
</element-citation>
</ref>
<ref id="R48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kobayashi-Ishihara</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yamagishi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Miyake</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nakano</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamochi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ishida</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period.</article-title>
<source>Retrovirology</source>
<year>2012</year>
<volume>9</volume>
<fpage>38</fpage>
<pub-id pub-id-type="pmid">22569184</pub-id>
</element-citation>
</ref>
<ref id="R49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swaminathan</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Martin-Garcia</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Navas-Martin</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>RNA viruses and microRNAs: challenging discoveries for the 21st century.</article-title>
<source>Physiol. Genomics</source>
<year>2013</year>
<volume>45</volume>
<issue>22</issue>
<fpage>1035</fpage>
<lpage>1048</lpage>
<pub-id pub-id-type="pmid">24046280</pub-id>
</element-citation>
</ref>
<ref id="R50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lecellier</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Dunoyer</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Arar</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lehmann-Che</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Eyquem</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Himber</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Saïb</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Voinnet</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>A cellular microRNA mediates antiviral defense in human cells.</article-title>
<source>Science</source>
<year>2005</year>
<volume>308</volume>
<issue>5721</issue>
<fpage>557</fpage>
<lpage>560</lpage>
<pub-id pub-id-type="pmid">15845854</pub-id>
</element-citation>
</ref>
<ref id="R51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klase</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Houzet</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jeang</surname>
<given-names>K.T.</given-names>
</name>
</person-group>
<article-title>MicroRNAs and HIV-1: complex interactions.</article-title>
<source>J. Biol. Chem.</source>
<year>2012</year>
<volume>287</volume>
<issue>49</issue>
<fpage>40884</fpage>
<lpage>40890</lpage>
<pub-id pub-id-type="pmid">23043098</pub-id>
</element-citation>
</ref>
<ref id="R52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jopling</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Liver-specific microRNA-122: Biogenesis and function.</article-title>
<source>RNA Biol.</source>
<year>2012</year>
<volume>9</volume>
<issue>2</issue>
<fpage>137</fpage>
<lpage>142</lpage>
<pub-id pub-id-type="pmid">22258222</pub-id>
</element-citation>
</ref>
<ref id="R53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Sang</surname>
<given-names>W.W.</given-names>
</name>
<name>
<surname>Ruan</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>MiR-217 is involved in Tat-induced HIV-1 long terminal repeat (LTR) transactivation by down-regulation of SIRT1.</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2012</year>
<volume>1823</volume>
<issue>5</issue>
<fpage>1017</fpage>
<lpage>1023</lpage>
<pub-id pub-id-type="pmid">22406815</pub-id>
</element-citation>
</ref>
<ref id="R54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sung</surname>
<given-names>T.L.</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>A.P.</given-names>
</name>
</person-group>
<article-title>miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1.</article-title>
<source>PLoS Pathog.</source>
<year>2009</year>
<volume>5</volume>
<issue>1</issue>
<fpage>e1000263</fpage>
<pub-id pub-id-type="pmid">19148268</pub-id>
</element-citation>
</ref>
<ref id="R55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hariharan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Scaria</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pillai</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Brahmachari</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Targets for human encoded microRNAs in HIV genes.</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2005</year>
<volume>337</volume>
<issue>4</issue>
<fpage>1214</fpage>
<lpage>1218</lpage>
<pub-id pub-id-type="pmid">16236258</pub-id>
</element-citation>
</ref>
<ref id="R56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nathans</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Serquina</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rana</surname>
<given-names>T.M.</given-names>
</name>
</person-group>
<article-title>Cellular microRNA and P bodies modulate host-HIV-1 interactions.</article-title>
<source>Mol. Cell</source>
<year>2009</year>
<volume>34</volume>
<issue>6</issue>
<fpage>696</fpage>
<lpage>709</lpage>
<pub-id pub-id-type="pmid">19560422</pub-id>
</element-citation>
</ref>
<ref id="R57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Covarrubias</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Scherer</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Meinking</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Luk</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chomchan</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Alluin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gombart</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>J.J.</given-names>
</name>
</person-group>
<article-title>Interplay between HIV-1 infection and host microRNAs.</article-title>
<source>Nucleic Acids Res.</source>
<year>2012</year>
<volume>40</volume>
<issue>5</issue>
<fpage>2181</fpage>
<lpage>2196</lpage>
<pub-id pub-id-type="pmid">22080513</pub-id>
</element-citation>
</ref>
<ref id="R58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Argyris</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Squires</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Verlinghieri</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes.</article-title>
<source>Nat. Med.</source>
<year>2007</year>
<volume>13</volume>
<issue>10</issue>
<fpage>1241</fpage>
<lpage>1247</lpage>
<pub-id pub-id-type="pmid">17906637</pub-id>
</element-citation>
</ref>
<ref id="R59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Metzger</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>W.Z.</given-names>
</name>
</person-group>
<article-title>Cellular microRNA expression correlates with susceptibility of monocytes/macrophages to HIV-1 infection.</article-title>
<source>Blood</source>
<year>2009</year>
<volume>113</volume>
<issue>3</issue>
<fpage>671</fpage>
<lpage>674</lpage>
<pub-id pub-id-type="pmid">19015395</pub-id>
</element-citation>
</ref>
<ref id="R60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Houzet</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Klase</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Yeung</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Quiñones</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jeang</surname>
<given-names>K.T.</given-names>
</name>
</person-group>
<article-title>The extent of sequence complementarity correlates with the potency of cellular miRNA-mediated restriction of HIV-1.</article-title>
<source>Nucleic Acids Res.</source>
<year>2012</year>
<volume>40</volume>
<issue>22</issue>
<fpage>11684</fpage>
<lpage>11696</lpage>
<pub-id pub-id-type="pmid">23042677</pub-id>
</element-citation>
</ref>
<ref id="R61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>É.A.</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>miRNA-1236 inhibits HIV-1 infection of monocytes by repressing translation of cellular factor VprBP.</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>6</issue>
<fpage>e99535</fpage>
<pub-id pub-id-type="pmid">24932481</pub-id>
</element-citation>
</ref>
<ref id="R62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hou</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Bonkovsky</surname>
<given-names>H.L.</given-names>
</name>
</person-group>
<article-title>Non-coding RNAs in hepatitis C-induced hepatocellular carcinoma: dysregulation and implications for early detection, diagnosis and therapy.</article-title>
<source>World J. Gastroenterol.</source>
<year>2013</year>
<volume>19</volume>
<issue>44</issue>
<fpage>7836</fpage>
<lpage>7845</lpage>
<pub-id pub-id-type="pmid">24307777</pub-id>
</element-citation>
</ref>
<ref id="R63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leung</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Vyas</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rood</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Bhutkar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sharp</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm.</article-title>
<source>Mol. Cell</source>
<year>2011</year>
<volume>42</volume>
<issue>4</issue>
<fpage>489</fpage>
<lpage>499</lpage>
<pub-id pub-id-type="pmid">21596313</pub-id>
</element-citation>
</ref>
<ref id="R64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lloyd</surname>
<given-names>R.E.</given-names>
</name>
</person-group>
<article-title>How do viruses interact with stress-associated RNA granules?</article-title>
<source>PLoS Pathog.</source>
<year>2012</year>
<volume>8</volume>
<issue>6</issue>
<fpage>e1002741</fpage>
<pub-id pub-id-type="pmid">22761570</pub-id>
</element-citation>
</ref>
<ref id="R65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banfield</surname>
<given-names>B.W.</given-names>
</name>
<name>
<surname>Mouland</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>McCormick</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>1
<sup>st</sup>
international symposium on stress-associated RNA granules in human disease and viral infection.</article-title>
<source>Viruses</source>
<year>2014</year>
<volume>6</volume>
<issue>9</issue>
<fpage>3500</fpage>
<lpage>3513</lpage>
<pub-id pub-id-type="pmid">25256393</pub-id>
</element-citation>
</ref>
<ref id="R66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srivastava</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Swanson</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Manel</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Florens</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Washburn</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Skowronski</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection.</article-title>
<source>PLoS Pathog.</source>
<year>2008</year>
<volume>4</volume>
<issue>5</issue>
<fpage>e1000059</fpage>
<pub-id pub-id-type="pmid">18464893</pub-id>
</element-citation>
</ref>
<ref id="R67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Jun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sastry</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.I.</given-names>
</name>
</person-group>
<article-title>HIV-1 Vpr protein inhibits telomerase activity via the EDD-DDB1-VPRBP E3 ligase complex.</article-title>
<source>J. Biol. Chem.</source>
<year>2013</year>
<volume>288</volume>
<issue>22</issue>
<fpage>15474</fpage>
<lpage>15480</lpage>
<pub-id pub-id-type="pmid">23612978</pub-id>
</element-citation>
</ref>
<ref id="R68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakagawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mondal</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Swanson</surname>
<given-names>P.C.</given-names>
</name>
</person-group>
<article-title>VprBP (DCAF1): a promiscuous substrate recognition subunit that incorporates into both RING-family CRL4 and HECT-family EDD/UBR5 E3 ubiquitin ligases.</article-title>
<source>BMC Mol. Biol.</source>
<year>2013</year>
<volume>14</volume>
<fpage>22</fpage>
<pub-id pub-id-type="pmid">24028781</pub-id>
</element-citation>
</ref>
<ref id="R69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hakata</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Miyazawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Landau</surname>
<given-names>N.R.</given-names>
</name>
</person-group>
<article-title>Interactions with DCAF1 and DDB1 in the CRL4 E3 ubiquitin ligase are required for Vpr-mediated G2 arrest.</article-title>
<source>Virol. J.</source>
<year>2014</year>
<volume>11</volume>
<fpage>108</fpage>
<pub-id pub-id-type="pmid">24912982</pub-id>
</element-citation>
</ref>
<ref id="R70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Romani</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>E.A.</given-names>
</name>
</person-group>
<article-title>Lentivirus Vpr and Vpx accessory proteins usurp the cullin4-DDB1 (DCAF1) E3 ubiquitin ligase.</article-title>
<source>Curr. Opin. Virol.</source>
<year>2012</year>
<volume>2</volume>
<issue>6</issue>
<fpage>755</fpage>
<lpage>763</lpage>
<pub-id pub-id-type="pmid">23062609</pub-id>
</element-citation>
</ref>
<ref id="R71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>E.A.</given-names>
</name>
</person-group>
<article-title>From arrest to escape: HIV-1 Vpr cuts a deal.</article-title>
<source>Cell Host Microbe</source>
<year>2014</year>
<volume>15</volume>
<issue>2</issue>
<fpage>125</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="pmid">24528857</pub-id>
</element-citation>
</ref>
<ref id="R72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shapshak</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Molecule of the month: HIV-1 protein Vpr and miRNA.</article-title>
<source>Bioinformation</source>
<year>2012</year>
<volume>8</volume>
<issue>25</issue>
<fpage>1243</fpage>
<lpage>1244</lpage>
<pub-id pub-id-type="pmid">23275727</pub-id>
</element-citation>
</ref>
<ref id="R73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casey Klockow</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sharifi</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Flagg</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Furuya</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Nekorchuk</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>de Noronha</surname>
<given-names>C.M.</given-names>
</name>
</person-group>
<article-title>The HIV-1 protein Vpr targets the endoribonuclease Dicer for proteasomal degradation to boost macrophage infection.</article-title>
<source>Virology</source>
<year>2013</year>
<volume>444</volume>
<issue>1-2</issue>
<fpage>191</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="pmid">23849790</pub-id>
</element-citation>
</ref>
<ref id="R74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deng</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ishizaka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Human immunodeficiency virus type 1 Vpr increases hepatitis C virus RNA replication in cell culture.</article-title>
<source>Virus Res.</source>
<year>2014</year>
<volume>184</volume>
<fpage>93</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="pmid">24589706</pub-id>
</element-citation>
</ref>
<ref id="R75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okumura</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Alce</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lubyova</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ezelle</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Strebel</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Pitha</surname>
<given-names>P.M.</given-names>
</name>
</person-group>
<article-title>HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation.</article-title>
<source>Virology</source>
<year>2008</year>
<volume>373</volume>
<issue>1</issue>
<fpage>85</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="pmid">18082865</pub-id>
</element-citation>
</ref>
<ref id="R76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tokunaga</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The HIV-1 accessory protein Vpr induces the degradation of the anti-HIV-1 agent APOBEC3G through a VprBP-mediated proteasomal pathway.</article-title>
<source>Virus Res.</source>
<year>2015</year>
<volume>195</volume>
<fpage>25</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">25200749</pub-id>
</element-citation>
</ref>
<ref id="R77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The human antiviral factor TRIM11 is under the regulation of HIV-1 Vpr.</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>8</issue>
<fpage>e104269</fpage>
<pub-id pub-id-type="pmid">25105968</pub-id>
</element-citation>
</ref>
<ref id="R78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahn</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Vu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Novince</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Guerrero-Santoro</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rapic-Otrin</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Gronenborn</surname>
<given-names>A.M.</given-names>
</name>
</person-group>
<article-title>HIV-1 Vpr loads uracil DNA glycosylase-2 onto DCAF1, a substrate recognition subunit of a cullin 4A-ring E3 ubiquitin ligase for proteasome-dependent degradation.</article-title>
<source>J. Biol. Chem.</source>
<year>2010</year>
<volume>285</volume>
<issue>48</issue>
<fpage>37333</fpage>
<lpage>37341</lpage>
<pub-id pub-id-type="pmid">20870715</pub-id>
</element-citation>
</ref>
<ref id="R79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laguette</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Brégnard</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hue</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Basbous</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yatim</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Larroque</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kirchhoff</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Constantinou</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sobhian</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Benkirane</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing.</article-title>
<source>Cell</source>
<year>2014</year>
<volume>156</volume>
<issue>1-2</issue>
<fpage>134</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="pmid">24412650</pub-id>
</element-citation>
</ref>
<ref id="R80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zahoor</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Murakami</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Takeshima</surname>
<given-names>S.N.</given-names>
</name>
<name>
<surname>Aida</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages.</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>8</issue>
<fpage>e106418</fpage>
<pub-id pub-id-type="pmid">25170834</pub-id>
</element-citation>
</ref>
<ref id="R81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Collins</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>K.L.</given-names>
</name>
</person-group>
<article-title>HIV-1 accessory proteins adapt cellular adaptors to facilitate immune evasion.</article-title>
<source>PLoS Pathog.</source>
<year>2014</year>
<volume>10</volume>
<issue>1</issue>
<fpage>e1003851</fpage>
<pub-id pub-id-type="pmid">24465204</pub-id>
</element-citation>
</ref>
<ref id="R82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foley</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Solow</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Yacobucci</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Peden</surname>
<given-names>K.W.</given-names>
</name>
<name>
<surname>Farber</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Roles for CXC chemokine ligands 10 and 11 in recruiting CD4+ T cells to HIV-1-infected monocyte-derived macrophages, dendritic cells, and lymph nodes.</article-title>
<source>J. Immunol.</source>
<year>2005</year>
<volume>174</volume>
<issue>8</issue>
<fpage>4892</fpage>
<lpage>4900</lpage>
<pub-id pub-id-type="pmid">15814716</pub-id>
</element-citation>
</ref>
<ref id="R83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desimmie</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Delviks-Frankenberrry</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Burdick</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Izumi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Pathak</surname>
<given-names>V.K.</given-names>
</name>
</person-group>
<article-title>Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all.</article-title>
<source>J. Mol. Biol.</source>
<year>2014</year>
<volume>426</volume>
<issue>6</issue>
<fpage>1220</fpage>
<lpage>1245</lpage>
<pub-id pub-id-type="pmid">24189052</pub-id>
</element-citation>
</ref>
<ref id="R84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.Y.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.B.</given-names>
</name>
</person-group>
<article-title>Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities.</article-title>
<source>Chin. Med. J. (Engl.)</source>
<year>2013</year>
<volume>126</volume>
<issue>12</issue>
<fpage>2374</fpage>
<lpage>2379</lpage>
<pub-id pub-id-type="pmid">23786957</pub-id>
</element-citation>
</ref>
<ref id="R85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Transmembrane interactions of HIV-1 Vpu and tetherin.</article-title>
<source>Curr. HIV Res.</source>
<year>2012</year>
<volume>10</volume>
<issue>4</issue>
<fpage>292</fpage>
<lpage>297</lpage>
<pub-id pub-id-type="pmid">22524177</pub-id>
</element-citation>
</ref>
<ref id="R86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schröfelbauer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zeitlin</surname>
<given-names>S.G.</given-names>
</name>
<name>
<surname>Landau</surname>
<given-names>N.R.</given-names>
</name>
</person-group>
<article-title>Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG uracil-DNA glycosylases.</article-title>
<source>J. Virol.</source>
<year>2005</year>
<volume>79</volume>
<issue>17</issue>
<fpage>10978</fpage>
<lpage>10987</lpage>
<pub-id pub-id-type="pmid">16103149</pub-id>
</element-citation>
</ref>
<ref id="R87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sze</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Olagnier</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>van Grevenynghe</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hiscott</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>SAMHD1 host restriction factor: a link with innate immune sensing of retrovirus infection.</article-title>
<source>J. Mol. Biol.</source>
<year>2013</year>
<volume>425</volume>
<issue>24</issue>
<fpage>4981</fpage>
<lpage>4994</lpage>
<pub-id pub-id-type="pmid">24161438</pub-id>
</element-citation>
</ref>
<ref id="R88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brass</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Dykxhoorn</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Benita</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Engelman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Xavier</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Lieberman</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Elledge</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>Identification of host proteins required for HIV infection through a functional genomic screen.</article-title>
<source>Science</source>
<year>2008</year>
<volume>319</volume>
<issue>5865</issue>
<fpage>921</fpage>
<lpage>926</lpage>
<pub-id pub-id-type="pmid">18187620</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4763971
   |texte=   RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27047253" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021