Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector

Identifieur interne : 000020 ( PascalFrancis/Corpus ); précédent : 000019; suivant : 000021

Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector

Auteurs : Eric M. Kettleson ; Bala Ramaswami ; Christopher J. Jr Hogan ; Myong-Hwa Lee ; Gennadiy A. Statyukha ; Pratim Biswas ; Largus T. Angenent

Source :

RBID : Pascal:10-0083181

Descripteurs français

English descriptors

Abstract

Airborne virus capture and inactivation were studied in an electrostatic precipitator (ESP) at applied voltages from -10 to +10 kV using aerosolized bacteriophages T3 and MS2. For each charging scenario, samples were collected from the effluent air stream and assayed for viable phages using plaque assays and for nucleic acids using quantitative polymerase chain reaction (qPCR) assays. At higher applied voltages, more virus particles were captured from air with maximum log reductions of 6.8 and 6.3 for the plaque assay and 4.2 and 3.5 for the qPCR assay at -10 kV for T3 and MS2, respectively. Beyond corona inception (i.e., at applied voltages of -10, -8, +8, and +10 kV), log reduction values obtained with the plaque assay were much higher compared to those of the qPCR assay because nonviable particles, while present in the effluent, were unaccounted for in the plaque assay. Comparisons ofthese assays showed that in-flight inactivation (i.e., inactivation without capture) was greater for the highest applied voltages with a log inactivation of 2.6 for both phages at -10 kV. We have demonstrated great potential for virus capture and inactivation via continual ion and reactive species bombardment when conditions in the ESP are enforced to generate a corona discharge.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0013-936X
A02 01      @0 ESTHAG
A03   1    @0 Environ. sci. technol.
A05       @2 43
A06       @2 15
A08 01  1  ENG  @1 Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector
A11 01  1    @1 KETTLESON (Eric M.)
A11 02  1    @1 RAMASWAMI (Bala)
A11 03  1    @1 HOGAN (Christopher J. JR)
A11 04  1    @1 LEE (Myong-Hwa)
A11 05  1    @1 STATYUKHA (Gennadiy A.)
A11 06  1    @1 BISWAS (Pratim)
A11 07  1    @1 ANGENENT (Largus T.)
A14 01      @1 Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis @2 St. Louis, Missouri 63130 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 6 aut.
A14 02      @1 Environmental and Energy Division, Korea Institute of Industrial Technology @2 CheonAn City @3 KOR @Z 4 aut.
A14 03      @1 Cybernetics of Chemical Technology Processes, National Technical University of Ukraine @2 Kiev @3 UKR @Z 5 aut.
A14 04      @1 Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall @2 Ithaca, New York 14853 @3 USA @Z 7 aut.
A20       @1 5940-5946
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 13615 @5 354000170953250580
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 48 ref.
A47 01  1    @0 10-0083181
A60       @1 P
A61       @0 A
A64 01  1    @0 Environmental science & technology
A66 01      @0 USA
C01 01    ENG  @0 Airborne virus capture and inactivation were studied in an electrostatic precipitator (ESP) at applied voltages from -10 to +10 kV using aerosolized bacteriophages T3 and MS2. For each charging scenario, samples were collected from the effluent air stream and assayed for viable phages using plaque assays and for nucleic acids using quantitative polymerase chain reaction (qPCR) assays. At higher applied voltages, more virus particles were captured from air with maximum log reductions of 6.8 and 6.3 for the plaque assay and 4.2 and 3.5 for the qPCR assay at -10 kV for T3 and MS2, respectively. Beyond corona inception (i.e., at applied voltages of -10, -8, +8, and +10 kV), log reduction values obtained with the plaque assay were much higher compared to those of the qPCR assay because nonviable particles, while present in the effluent, were unaccounted for in the plaque assay. Comparisons ofthese assays showed that in-flight inactivation (i.e., inactivation without capture) was greater for the highest applied voltages with a log inactivation of 2.6 for both phages at -10 kV. We have demonstrated great potential for virus capture and inactivation via continual ion and reactive species bombardment when conditions in the ESP are enforced to generate a corona discharge.
C02 01  X    @0 001D16
C02 02  X    @0 002A14D05
C03 01  X  FRE  @0 Virus @2 NW @5 01
C03 01  X  ENG  @0 Virus @2 NW @5 01
C03 01  X  SPA  @0 Virus @2 NW @5 01
C03 02  X  FRE  @0 Capture @5 02
C03 02  X  ENG  @0 Capture @5 02
C03 02  X  SPA  @0 Captura @5 02
C03 03  X  FRE  @0 Inactivation métabolique @5 03
C03 03  X  ENG  @0 Metabolic inactivation @5 03
C03 03  X  SPA  @0 Inactivación metabólica @5 03
C03 04  X  FRE  @0 Particule @2 FX @5 04
C03 04  X  ENG  @0 Particle @2 FX @5 04
C03 04  X  SPA  @0 Partícula @2 FX @5 04
C03 05  X  FRE  @0 Collecteur @5 05
C03 05  X  ENG  @0 Collector @5 05
C03 05  X  SPA  @0 Colector @5 05
C03 06  X  FRE  @0 Traitement eau potable @5 35
C03 06  X  ENG  @0 Drinking water treatment @5 35
C03 06  X  SPA  @0 Tratamiento agua potable @5 35
N21       @1 053
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0083181 INIST
ET : Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector
AU : KETTLESON (Eric M.); RAMASWAMI (Bala); HOGAN (Christopher J. JR); LEE (Myong-Hwa); STATYUKHA (Gennadiy A.); BISWAS (Pratim); ANGENENT (Largus T.)
AF : Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis/St. Louis, Missouri 63130/Etats-Unis (1 aut., 2 aut., 3 aut., 6 aut.); Environmental and Energy Division, Korea Institute of Industrial Technology/CheonAn City/Corée, République de (4 aut.); Cybernetics of Chemical Technology Processes, National Technical University of Ukraine/Kiev/Ukraine (5 aut.); Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall/Ithaca, New York 14853/Etats-Unis (7 aut.)
DT : Publication en série; Niveau analytique
SO : Environmental science & technology; ISSN 0013-936X; Coden ESTHAG; Etats-Unis; Da. 2009; Vol. 43; No. 15; Pp. 5940-5946; Bibl. 48 ref.
LA : Anglais
EA : Airborne virus capture and inactivation were studied in an electrostatic precipitator (ESP) at applied voltages from -10 to +10 kV using aerosolized bacteriophages T3 and MS2. For each charging scenario, samples were collected from the effluent air stream and assayed for viable phages using plaque assays and for nucleic acids using quantitative polymerase chain reaction (qPCR) assays. At higher applied voltages, more virus particles were captured from air with maximum log reductions of 6.8 and 6.3 for the plaque assay and 4.2 and 3.5 for the qPCR assay at -10 kV for T3 and MS2, respectively. Beyond corona inception (i.e., at applied voltages of -10, -8, +8, and +10 kV), log reduction values obtained with the plaque assay were much higher compared to those of the qPCR assay because nonviable particles, while present in the effluent, were unaccounted for in the plaque assay. Comparisons ofthese assays showed that in-flight inactivation (i.e., inactivation without capture) was greater for the highest applied voltages with a log inactivation of 2.6 for both phages at -10 kV. We have demonstrated great potential for virus capture and inactivation via continual ion and reactive species bombardment when conditions in the ESP are enforced to generate a corona discharge.
CC : 001D16; 002A14D05
FD : Virus; Capture; Inactivation métabolique; Particule; Collecteur; Traitement eau potable
ED : Virus; Capture; Metabolic inactivation; Particle; Collector; Drinking water treatment
SD : Virus; Captura; Inactivación metabólica; Partícula; Colector; Tratamiento agua potable
LO : INIST-13615.354000170953250580
ID : 10-0083181

Links to Exploration step

Pascal:10-0083181

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector</title>
<author>
<name sortKey="Kettleson, Eric M" sort="Kettleson, Eric M" uniqKey="Kettleson E" first="Eric M." last="Kettleson">Eric M. Kettleson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri 63130</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramaswami, Bala" sort="Ramaswami, Bala" uniqKey="Ramaswami B" first="Bala" last="Ramaswami">Bala Ramaswami</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri 63130</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hogan, Christopher J Jr" sort="Hogan, Christopher J Jr" uniqKey="Hogan C" first="Christopher J. Jr" last="Hogan">Christopher J. Jr Hogan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri 63130</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lee, Myong Hwa" sort="Lee, Myong Hwa" uniqKey="Lee M" first="Myong-Hwa" last="Lee">Myong-Hwa Lee</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Environmental and Energy Division, Korea Institute of Industrial Technology</s1>
<s2>CheonAn City</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Statyukha, Gennadiy A" sort="Statyukha, Gennadiy A" uniqKey="Statyukha G" first="Gennadiy A." last="Statyukha">Gennadiy A. Statyukha</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Cybernetics of Chemical Technology Processes, National Technical University of Ukraine</s1>
<s2>Kiev</s2>
<s3>UKR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Biswas, Pratim" sort="Biswas, Pratim" uniqKey="Biswas P" first="Pratim" last="Biswas">Pratim Biswas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri 63130</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Angenent, Largus T" sort="Angenent, Largus T" uniqKey="Angenent L" first="Largus T." last="Angenent">Largus T. Angenent</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall</s1>
<s2>Ithaca, New York 14853</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0083181</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0083181 INIST</idno>
<idno type="RBID">Pascal:10-0083181</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000020</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector</title>
<author>
<name sortKey="Kettleson, Eric M" sort="Kettleson, Eric M" uniqKey="Kettleson E" first="Eric M." last="Kettleson">Eric M. Kettleson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri 63130</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramaswami, Bala" sort="Ramaswami, Bala" uniqKey="Ramaswami B" first="Bala" last="Ramaswami">Bala Ramaswami</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri 63130</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hogan, Christopher J Jr" sort="Hogan, Christopher J Jr" uniqKey="Hogan C" first="Christopher J. Jr" last="Hogan">Christopher J. Jr Hogan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri 63130</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lee, Myong Hwa" sort="Lee, Myong Hwa" uniqKey="Lee M" first="Myong-Hwa" last="Lee">Myong-Hwa Lee</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Environmental and Energy Division, Korea Institute of Industrial Technology</s1>
<s2>CheonAn City</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Statyukha, Gennadiy A" sort="Statyukha, Gennadiy A" uniqKey="Statyukha G" first="Gennadiy A." last="Statyukha">Gennadiy A. Statyukha</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Cybernetics of Chemical Technology Processes, National Technical University of Ukraine</s1>
<s2>Kiev</s2>
<s3>UKR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Biswas, Pratim" sort="Biswas, Pratim" uniqKey="Biswas P" first="Pratim" last="Biswas">Pratim Biswas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri 63130</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Angenent, Largus T" sort="Angenent, Largus T" uniqKey="Angenent L" first="Largus T." last="Angenent">Largus T. Angenent</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall</s1>
<s2>Ithaca, New York 14853</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Environmental science & technology</title>
<title level="j" type="abbreviated">Environ. sci. technol.</title>
<idno type="ISSN">0013-936X</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Environmental science & technology</title>
<title level="j" type="abbreviated">Environ. sci. technol.</title>
<idno type="ISSN">0013-936X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Capture</term>
<term>Collector</term>
<term>Drinking water treatment</term>
<term>Metabolic inactivation</term>
<term>Particle</term>
<term>Virus</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Virus</term>
<term>Capture</term>
<term>Inactivation métabolique</term>
<term>Particule</term>
<term>Collecteur</term>
<term>Traitement eau potable</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Airborne virus capture and inactivation were studied in an electrostatic precipitator (ESP) at applied voltages from -10 to +10 kV using aerosolized bacteriophages T3 and MS2. For each charging scenario, samples were collected from the effluent air stream and assayed for viable phages using plaque assays and for nucleic acids using quantitative polymerase chain reaction (qPCR) assays. At higher applied voltages, more virus particles were captured from air with maximum log reductions of 6.8 and 6.3 for the plaque assay and 4.2 and 3.5 for the qPCR assay at -10 kV for T3 and MS2, respectively. Beyond corona inception (i.e., at applied voltages of -10, -8, +8, and +10 kV), log reduction values obtained with the plaque assay were much higher compared to those of the qPCR assay because nonviable particles, while present in the effluent, were unaccounted for in the plaque assay. Comparisons ofthese assays showed that in-flight inactivation (i.e., inactivation without capture) was greater for the highest applied voltages with a log inactivation of 2.6 for both phages at -10 kV. We have demonstrated great potential for virus capture and inactivation via continual ion and reactive species bombardment when conditions in the ESP are enforced to generate a corona discharge.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-936X</s0>
</fA01>
<fA02 i1="01">
<s0>ESTHAG</s0>
</fA02>
<fA03 i2="1">
<s0>Environ. sci. technol.</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KETTLESON (Eric M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAMASWAMI (Bala)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOGAN (Christopher J. JR)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LEE (Myong-Hwa)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>STATYUKHA (Gennadiy A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BISWAS (Pratim)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ANGENENT (Largus T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri 63130</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Environmental and Energy Division, Korea Institute of Industrial Technology</s1>
<s2>CheonAn City</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Cybernetics of Chemical Technology Processes, National Technical University of Ukraine</s1>
<s2>Kiev</s2>
<s3>UKR</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall</s1>
<s2>Ithaca, New York 14853</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>5940-5946</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13615</s2>
<s5>354000170953250580</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>48 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0083181</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Environmental science & technology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Airborne virus capture and inactivation were studied in an electrostatic precipitator (ESP) at applied voltages from -10 to +10 kV using aerosolized bacteriophages T3 and MS2. For each charging scenario, samples were collected from the effluent air stream and assayed for viable phages using plaque assays and for nucleic acids using quantitative polymerase chain reaction (qPCR) assays. At higher applied voltages, more virus particles were captured from air with maximum log reductions of 6.8 and 6.3 for the plaque assay and 4.2 and 3.5 for the qPCR assay at -10 kV for T3 and MS2, respectively. Beyond corona inception (i.e., at applied voltages of -10, -8, +8, and +10 kV), log reduction values obtained with the plaque assay were much higher compared to those of the qPCR assay because nonviable particles, while present in the effluent, were unaccounted for in the plaque assay. Comparisons ofthese assays showed that in-flight inactivation (i.e., inactivation without capture) was greater for the highest applied voltages with a log inactivation of 2.6 for both phages at -10 kV. We have demonstrated great potential for virus capture and inactivation via continual ion and reactive species bombardment when conditions in the ESP are enforced to generate a corona discharge.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A14D05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Capture</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Capture</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Captura</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Inactivation métabolique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Metabolic inactivation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Inactivación metabólica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Particule</s0>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Particle</s0>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Partícula</s0>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Collecteur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Collector</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Colector</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Traitement eau potable</s0>
<s5>35</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Drinking water treatment</s0>
<s5>35</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tratamiento agua potable</s0>
<s5>35</s5>
</fC03>
<fN21>
<s1>053</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0083181 INIST</NO>
<ET>Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector</ET>
<AU>KETTLESON (Eric M.); RAMASWAMI (Bala); HOGAN (Christopher J. JR); LEE (Myong-Hwa); STATYUKHA (Gennadiy A.); BISWAS (Pratim); ANGENENT (Largus T.)</AU>
<AF>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis/St. Louis, Missouri 63130/Etats-Unis (1 aut., 2 aut., 3 aut., 6 aut.); Environmental and Energy Division, Korea Institute of Industrial Technology/CheonAn City/Corée, République de (4 aut.); Cybernetics of Chemical Technology Processes, National Technical University of Ukraine/Kiev/Ukraine (5 aut.); Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall/Ithaca, New York 14853/Etats-Unis (7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Environmental science & technology; ISSN 0013-936X; Coden ESTHAG; Etats-Unis; Da. 2009; Vol. 43; No. 15; Pp. 5940-5946; Bibl. 48 ref.</SO>
<LA>Anglais</LA>
<EA>Airborne virus capture and inactivation were studied in an electrostatic precipitator (ESP) at applied voltages from -10 to +10 kV using aerosolized bacteriophages T3 and MS2. For each charging scenario, samples were collected from the effluent air stream and assayed for viable phages using plaque assays and for nucleic acids using quantitative polymerase chain reaction (qPCR) assays. At higher applied voltages, more virus particles were captured from air with maximum log reductions of 6.8 and 6.3 for the plaque assay and 4.2 and 3.5 for the qPCR assay at -10 kV for T3 and MS2, respectively. Beyond corona inception (i.e., at applied voltages of -10, -8, +8, and +10 kV), log reduction values obtained with the plaque assay were much higher compared to those of the qPCR assay because nonviable particles, while present in the effluent, were unaccounted for in the plaque assay. Comparisons ofthese assays showed that in-flight inactivation (i.e., inactivation without capture) was greater for the highest applied voltages with a log inactivation of 2.6 for both phages at -10 kV. We have demonstrated great potential for virus capture and inactivation via continual ion and reactive species bombardment when conditions in the ESP are enforced to generate a corona discharge.</EA>
<CC>001D16; 002A14D05</CC>
<FD>Virus; Capture; Inactivation métabolique; Particule; Collecteur; Traitement eau potable</FD>
<ED>Virus; Capture; Metabolic inactivation; Particle; Collector; Drinking water treatment</ED>
<SD>Virus; Captura; Inactivación metabólica; Partícula; Colector; Tratamiento agua potable</SD>
<LO>INIST-13615.354000170953250580</LO>
<ID>10-0083181</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0083181
   |texte=   Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021