Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Emerging coronaviruses: Genome structure, replication, and pathogenesis.

Identifieur interne : 000913 ( Ncbi/Merge ); précédent : 000912; suivant : 000914

Emerging coronaviruses: Genome structure, replication, and pathogenesis.

Auteurs : Yu Chen [République populaire de Chine] ; Qianyun Liu [République populaire de Chine] ; Deyin Guo [République populaire de Chine]

Source :

RBID : pubmed:31967327

Descripteurs français

English descriptors

Abstract

The recent emergence of a novel coronavirus (2019-nCoV), which is causing an outbreak of unusual viral pneumonia in patients in Wuhan, a central city in China, is another warning of the risk of CoVs posed to public health. In this minireview, we provide a brief introduction of the general features of CoVs and describe diseases caused by different CoVs in humans and animals. This review will help understand the biology and potential risk of CoVs that exist in richness in wildlife such as bats.

DOI: 10.1002/jmv.25681
PubMed: 31967327

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31967327

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Emerging coronaviruses: Genome structure, replication, and pathogenesis.</title>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
<orgName type="university">Université de Wuhan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Qianyun" sort="Liu, Qianyun" uniqKey="Liu Q" first="Qianyun" last="Liu">Qianyun Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
<orgName type="university">Université de Wuhan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Deyin" sort="Guo, Deyin" uniqKey="Guo D" first="Deyin" last="Guo">Deyin Guo</name>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Jiangmen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31967327</idno>
<idno type="pmid">31967327</idno>
<idno type="doi">10.1002/jmv.25681</idno>
<idno type="wicri:Area/PubMed/Corpus">000C43</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C43</idno>
<idno type="wicri:Area/PubMed/Curation">000C43</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000C43</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000739</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000739</idno>
<idno type="wicri:Area/Ncbi/Merge">000913</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Emerging coronaviruses: Genome structure, replication, and pathogenesis.</title>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
<orgName type="university">Université de Wuhan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Qianyun" sort="Liu, Qianyun" uniqKey="Liu Q" first="Qianyun" last="Liu">Qianyun Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
<orgName type="university">Université de Wuhan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Deyin" sort="Guo, Deyin" uniqKey="Guo D" first="Deyin" last="Guo">Deyin Guo</name>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Jiangmen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of medical virology</title>
<idno type="eISSN">1096-9071</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Betacoronavirus (pathogenicity)</term>
<term>Betacoronavirus (physiology)</term>
<term>Communicable Diseases, Emerging (virology)</term>
<term>Coronavirus (genetics)</term>
<term>Coronavirus (pathogenicity)</term>
<term>Coronavirus (physiology)</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus Infections (virology)</term>
<term>Genome, Viral</term>
<term>Host Specificity</term>
<term>Humans</term>
<term>Pneumonia, Viral (virology)</term>
<term>Viral Nonstructural Proteins (physiology)</term>
<term>Viral Structural Proteins (physiology)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Coronavirus (génétique)</term>
<term>Coronavirus (pathogénicité)</term>
<term>Coronavirus (physiologie)</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Infections à coronavirus (médecine vétérinaire)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Maladies transmissibles émergentes (virologie)</term>
<term>Pneumopathie virale (virologie)</term>
<term>Protéines virales non structurales (physiologie)</term>
<term>Protéines virales structurales (physiologie)</term>
<term>Réplication virale</term>
<term>Spécificité d'hôte</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Viral Nonstructural Proteins</term>
<term>Viral Structural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Betacoronavirus</term>
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus</term>
<term>Protéines virales non structurales</term>
<term>Protéines virales structurales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Betacoronavirus</term>
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Maladies transmissibles émergentes</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Communicable Diseases, Emerging</term>
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genome, Viral</term>
<term>Host Specificity</term>
<term>Humans</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Réplication virale</term>
<term>Spécificité d'hôte</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The recent emergence of a novel coronavirus (2019-nCoV), which is causing an outbreak of unusual viral pneumonia in patients in Wuhan, a central city in China, is another warning of the risk of CoVs posed to public health. In this minireview, we provide a brief introduction of the general features of CoVs and describe diseases caused by different CoVs in humans and animals. This review will help understand the biology and potential risk of CoVs that exist in richness in wildlife such as bats.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31967327</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-9071</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Journal of medical virology</Title>
<ISOAbbreviation>J. Med. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Emerging coronaviruses: Genome structure, replication, and pathogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>418-423</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jmv.25681</ELocationID>
<Abstract>
<AbstractText>The recent emergence of a novel coronavirus (2019-nCoV), which is causing an outbreak of unusual viral pneumonia in patients in Wuhan, a central city in China, is another warning of the risk of CoVs posed to public health. In this minireview, we provide a brief introduction of the general features of CoVs and describe diseases caused by different CoVs in humans and animals. This review will help understand the biology and potential risk of CoVs that exist in richness in wildlife such as bats.</AbstractText>
<CopyrightInformation>© 2020 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Qianyun</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Deyin</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-8297-0814</Identifier>
<AffiliationInfo>
<Affiliation>Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>#2018ZX10733403</GrantID>
<Agency>China National Science and Technology Major Project</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>#81620108020 & #81672008</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>KQTD20180411143323605</GrantID>
<Agency>Shenzhen Science and Technology Program</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>2017</GrantID>
<Agency>Guangdong Zhujiang Talents Program</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Med Virol</MedlineTA>
<NlmUniqueID>7705876</NlmUniqueID>
<ISSNLinking>0146-6615</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015678">Viral Structural Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021821" MajorTopicYN="N">Communicable Diseases, Emerging</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="N">Host Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015678" MajorTopicYN="N">Viral Structural Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">epidemiology</Keyword>
<Keyword MajorTopicYN="Y">pathogenesis</Keyword>
<Keyword MajorTopicYN="Y">respiratory tract</Keyword>
<Keyword MajorTopicYN="Y">virus classification</Keyword>
<Keyword MajorTopicYN="Y">zoonoses</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31967327</ArticleId>
<ArticleId IdType="doi">10.1002/jmv.25681</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton B. Review of bats and SARS. Emerg Infect Dis. 2006;12(12):1834-1840.</Citation>
</Reference>
<Reference>
<Citation>Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477):535-538.</Citation>
</Reference>
<Reference>
<Citation>Chen Y, Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin. 2016;31(1):3-11.</Citation>
</Reference>
<Reference>
<Citation>Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-192.</Citation>
</Reference>
<Reference>
<Citation>Cauchemez S, Van Kerkhove MD, Riley S, Donnelly CA, Fraser C, Ferguson NM. Transmission scenarios for Middle East respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill. 2013;18(24):pii: 20503.</Citation>
</Reference>
<Reference>
<Citation>Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006;80(12):5927-5940.</Citation>
</Reference>
<Reference>
<Citation>Hussain S, Pan J, Chen Y, et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol. 2005;79(9):5288-5295.</Citation>
</Reference>
<Reference>
<Citation>Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol. 2007;81(1):20-29.</Citation>
</Reference>
<Reference>
<Citation>Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439-450.</Citation>
</Reference>
<Reference>
<Citation>Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193-292.</Citation>
</Reference>
<Reference>
<Citation>Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol. 2000;81(Pt 4):853-879.</Citation>
</Reference>
<Reference>
<Citation>Eckerle LD, Becker MM, Halpin RA, et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLOS Pathog. 2010;6(5):e1000896.</Citation>
</Reference>
<Reference>
<Citation>Ogando NS, Ferron F, Decroly E, Canard B, Posthuma CC, Snijder EJ. The curious case of the nidovirus exoribonuclease: its role in RNA synthesis and replication fidelity. Front Microbiol. 2019;10:1813.</Citation>
</Reference>
<Reference>
<Citation>Smith EC, Blanc H, Vignuzzi M, Denison MR. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLOS Pathog. 2013;9(8):e1003565.</Citation>
</Reference>
<Reference>
<Citation>Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLOS Pathog. 2011;7(12):e1002433.</Citation>
</Reference>
<Reference>
<Citation>Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Matsuura Y. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J Virol. 2012;86(20):11128-11137.</Citation>
</Reference>
<Reference>
<Citation>Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol. 2005;79(21):13399-13411.</Citation>
</Reference>
<Reference>
<Citation>Gadlage MJ, Graham RL, Denison MR. Murine coronaviruses encoding nsp2 at different genomic loci have altered replication, protein expression, and localization. J Virol. 2008;82(23):11964-11969.</Citation>
</Reference>
<Reference>
<Citation>Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58-74.</Citation>
</Reference>
<Reference>
<Citation>Serrano P, Johnson MA, Chatterjee A, et al. Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3. J Virol. 2009;83(24):12998-13008.</Citation>
</Reference>
<Reference>
<Citation>Beachboard DC, Anderson-Daniels JM, Denison MR. Mutations across murine hepatitis virus nsp4 alter virus fitness and membrane modifications. J Virol. 2015;89(4):2080-2089.</Citation>
</Reference>
<Reference>
<Citation>Gadlage MJ, Sparks JS, Beachboard DC, et al. Murine hepatitis virus nonstructural protein 4 regulates virus-induced membrane modifications and replication complex function. J Virol. 2010;84(1):280-290.</Citation>
</Reference>
<Reference>
<Citation>Stobart CC, Sexton NR, Munjal H, et al. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J Virol. 2013;87(23):12611-12618.</Citation>
</Reference>
<Reference>
<Citation>Zhu X, Fang L, Wang D, et al. Porcine deltacoronavirus nsp5 inhibits interferon-beta production through the cleavage of NEMO. Virology. 2017;502:33-38.</Citation>
</Reference>
<Reference>
<Citation>Zhu X, Wang D, Zhou J, et al. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2. J Virol. 2017;91(10):pii: e00003-17.</Citation>
</Reference>
<Reference>
<Citation>Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio. 2013;4(4):pii: e00524-13.</Citation>
</Reference>
<Reference>
<Citation>Cottam EM, Whelband MC, Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy. 2014;10(8):1426-1441.</Citation>
</Reference>
<Reference>
<Citation>Kirchdoerfer RN, Ward AB. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun. 2019;10(1):2342.</Citation>
</Reference>
<Reference>
<Citation>Zhai Y, Sun F, Li X, et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol. 2005;12(11):980-986.</Citation>
</Reference>
<Reference>
<Citation>te Velthuis AJ, van den Worm SH, Snijder EJ. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res. 2012;40(4):1737-1747.</Citation>
</Reference>
<Reference>
<Citation>Egloff MP, Ferron F, Campanacci V, et al. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci USA. 2004;101(11):3792-3796.</Citation>
</Reference>
<Reference>
<Citation>Zeng Z, Deng F, Shi K, et al. Dimerization of coronavirus nsp9 with diverse modes enhances its nucleic acid binding affinity. J Virol. 2018;92(17):e00692-18.</Citation>
</Reference>
<Reference>
<Citation>Bouvet M, Lugari A, Posthuma CC, et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J Biol Chem. 2014;289(37):25783-25796.</Citation>
</Reference>
<Reference>
<Citation>Chen Y, Su C, Ke M, et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLOS Pathog. 2011;7(10):e1002294.</Citation>
</Reference>
<Reference>
<Citation>Decroly E, Debarnot C, Ferron F, et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLOS Pathog. 2011;7(5):e1002059.</Citation>
</Reference>
<Reference>
<Citation>Ma Y, Wu L, Shaw N, et al. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci USA. 2015;112(30):9436-9441.</Citation>
</Reference>
<Reference>
<Citation>Fang SG, Shen H, Wang J, Tay FPL, Liu DX. Proteolytic processing of polyproteins 1a and 1ab between non-structural proteins 10 and 11/12 of coronavirus infectious bronchitis virus is dispensable for viral replication in cultured cells. Virology. 2008;379(2):175-180.</Citation>
</Reference>
<Reference>
<Citation>Ahn DG, Choi JK, Taylor DR, Oh JW. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch Virol. 2012;157(11):2095-2104.</Citation>
</Reference>
<Reference>
<Citation>te Velthuis AJW, Arnold JJ, Cameron CE, van den Worm SHE, Snijder EJ. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res. 2010;38(1):203-214.</Citation>
</Reference>
<Reference>
<Citation>Adedeji AO, Lazarus H. Biochemical characterization of Middle East respiratory syndrome coronavirus helicase. mSphere. 2016;1:5.</Citation>
</Reference>
<Reference>
<Citation>Hao W, Wojdyla JA, Zhao R, et al. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLOS Pathog. 2017;13(6):e1006474.</Citation>
</Reference>
<Reference>
<Citation>Jia Z, Yan L, Ren Z, et al. Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res. 2019;47(12):6538-6550.</Citation>
</Reference>
<Reference>
<Citation>Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci USA. 2012;109(24):9372-9377.</Citation>
</Reference>
<Reference>
<Citation>Chen Y, Cai H, Pan J, et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci USA. 2009;106(9):3484-3489.</Citation>
</Reference>
<Reference>
<Citation>Minskaia E, Hertzig T, Gorbalenya AE, et al. Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA. 2006;103(13):5108-5113.</Citation>
</Reference>
<Reference>
<Citation>Bhardwaj K, Sun J, Holzenburg A, Guarino LA, Kao CC. RNA recognition and cleavage by the SARS coronavirus endoribonuclease. J Mol Biol. 2006;361(2):243-256.</Citation>
</Reference>
<Reference>
<Citation>Deng X, Hackbart M, Mettelman RC, et al. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc Natl Acad Sci USA. 2017;114(21):E4251-E4260.</Citation>
</Reference>
<Reference>
<Citation>Zhang L, Li L, Yan L, et al. Structural and biochemical characterization of endoribonuclease Nsp15 encoded by middle east respiratory syndrome coronavirus. J Virol. 2018;92(22):pii: e00893-18.</Citation>
</Reference>
<Reference>
<Citation>Shi P, Su Y, Li R, Liang Z, Dong S, Huang J. PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res. 2019;265:57-66.</Citation>
</Reference>
<Reference>
<Citation>Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol. 2006;13(8):751-752.</Citation>
</Reference>
<Reference>
<Citation>Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol. 1990;64(11):5367-5375.</Citation>
</Reference>
<Reference>
<Citation>Nal B. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol. 2005;86(Pt 5):1423-1434.</Citation>
</Reference>
<Reference>
<Citation>Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11-22.</Citation>
</Reference>
<Reference>
<Citation>DeDiego ML, Alvarez E, Almazan F, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81(4):1701-1713.</Citation>
</Reference>
<Reference>
<Citation>Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLOS Pathog. 2014;10(5):e1004077.</Citation>
</Reference>
<Reference>
<Citation>Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23.</Citation>
</Reference>
<Reference>
<Citation>Chang C, Sue SC, Yu T, et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci. 2006;13(1):59-72.</Citation>
</Reference>
<Reference>
<Citation>Hurst KR, Koetzner CA, Masters PS. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol. 2009;83(14):7221-7234.</Citation>
</Reference>
<Reference>
<Citation>Cui L, Wang H, Ji Y, et al. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J Virol. 2015;89(17):9029-9043.</Citation>
</Reference>
<Reference>
<Citation>Woo PCY, Lau SKP, Lam CSF, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995-4008.</Citation>
</Reference>
<Reference>
<Citation>Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490-502.</Citation>
</Reference>
<Reference>
<Citation>Zhou P, Fan H, Lan T, et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature. 2018;556(7700):255-258.</Citation>
</Reference>
<Reference>
<Citation>Simas PVM, Barnabé ACS, Durães-Carvalho R, et al. Bat coronavirus in Brazil related to appalachian ridge and porcine epidemic diarrhea viruses. Emerg Infect Dis. 2015;21(4):729-731.</Citation>
</Reference>
<Reference>
<Citation>Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Treatment of SARS with human interferons. Lancet. 2003;362(9380):293-294.</Citation>
</Reference>
<Reference>
<Citation>Chan JFW, Chan KH, Kao RYT, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect. 2013;67(6):606-616.</Citation>
</Reference>
<Reference>
<Citation>Cheng KW, Cheng SC, Chen WY, et al. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Res. 2015;115:9-16.</Citation>
</Reference>
<Reference>
<Citation>Wang Y, Sun Y, Wu A, et al. Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis. J Virol. 2015;89(16):8416-8427.</Citation>
</Reference>
<Reference>
<Citation>Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015;211(1):80-90.</Citation>
</Reference>
<Reference>
<Citation>Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol. 2013;11(12):836-848.</Citation>
</Reference>
<Reference>
<Citation>de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523-534.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Guangdong</li>
<li>Hubei</li>
</region>
<settlement>
<li>Jiangmen</li>
<li>Wuhan</li>
</settlement>
<orgName>
<li>Université de Wuhan</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Hubei">
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
</region>
<name sortKey="Guo, Deyin" sort="Guo, Deyin" uniqKey="Guo D" first="Deyin" last="Guo">Deyin Guo</name>
<name sortKey="Liu, Qianyun" sort="Liu, Qianyun" uniqKey="Liu Q" first="Qianyun" last="Liu">Qianyun Liu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000913 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000913 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:31967327
   |texte=   Emerging coronaviruses: Genome structure, replication, and pathogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:31967327" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021