Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nitric oxide and virus infection

Identifieur interne : 001908 ( Main/Exploration ); précédent : 001907; suivant : 001909

Nitric oxide and virus infection

Auteurs : T. Akaike ; H. Maeda

Source :

RBID : PMC:2327086

Abstract

Nitric oxide (NO) has complex and diverse functions in physiological and pathophysiological phenomena. The mechanisms of many events induced by NO are now well defined, so that a fundamental understanding of NO biology is almost established. Accumulated evidence suggests that NO and oxygen radicals such as superoxide are key molecules in the pathogenesis of various infectious diseases. NO biosynthesis, particularly through expression of an inducible NO synthase (iNOS), occurs in a variety of microbial infections. Although antimicrobial activity of NO is appreciated for bacteria and protozoa, NO has opposing effects in virus infections such as influenza virus pneumonia and certain other neurotropic virus infections. iNOS produces an excessive amount of NO for long periods, which allows generation of a highly reactive nitrogen oxide species, peroxynitrite, via a radical coupling reaction of NO with superoxide. Thus, peroxynitrite causes oxidative tissue injury through potent oxidation and nitration reactions of various biomolecules. NO also appears to affect a host's immune response, with immunopathological consequences. For example, overproduction of NO in virus infections in mice is reported to suppress type 1 helper T-cell-dependent immune responses, leading to type 2 helper T-cell-biased immunological host responses. Thus, NO may be a host response modulator rather than a simple antiviral agent. The unique biological properties of NO are further illustrated by our recent data suggesting that viral mutation and evolution may be accelerated by NO-induced oxidative stress. Here, we discuss these multiple roles of NO in pathogenesis of virus infections as related to both non-specific inflammatory responses and immunological host reactions modulated by NO during infections in vivo.


Url:
DOI: 10.1046/j.1365-2567.2000.00142.x
PubMed: 11106932
PubMed Central: 2327086


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nitric oxide and virus infection</title>
<author>
<name sortKey="Akaike, T" sort="Akaike, T" uniqKey="Akaike T" first="T" last="Akaike">T. Akaike</name>
</author>
<author>
<name sortKey="Maeda, H" sort="Maeda, H" uniqKey="Maeda H" first="H" last="Maeda">H. Maeda</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">11106932</idno>
<idno type="pmc">2327086</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2327086</idno>
<idno type="RBID">PMC:2327086</idno>
<idno type="doi">10.1046/j.1365-2567.2000.00142.x</idno>
<date when="2000">2000</date>
<idno type="wicri:Area/Pmc/Corpus">000A62</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A62</idno>
<idno type="wicri:Area/Pmc/Curation">000A62</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000A62</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000A26</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000A26</idno>
<idno type="wicri:Area/Ncbi/Merge">000007</idno>
<idno type="wicri:Area/Ncbi/Curation">000007</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000007</idno>
<idno type="wicri:doubleKey">0019-2805:2000:Akaike T:nitric:oxide:and</idno>
<idno type="wicri:Area/Main/Merge">001920</idno>
<idno type="wicri:Area/Main/Curation">001908</idno>
<idno type="wicri:Area/Main/Exploration">001908</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Nitric oxide and virus infection</title>
<author>
<name sortKey="Akaike, T" sort="Akaike, T" uniqKey="Akaike T" first="T" last="Akaike">T. Akaike</name>
</author>
<author>
<name sortKey="Maeda, H" sort="Maeda, H" uniqKey="Maeda H" first="H" last="Maeda">H. Maeda</name>
</author>
</analytic>
<series>
<title level="j">Immunology</title>
<idno type="ISSN">0019-2805</idno>
<idno type="eISSN">1365-2567</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Nitric oxide (NO) has complex and diverse functions in physiological and pathophysiological phenomena. The mechanisms of many events induced by NO are now well defined, so that a fundamental understanding of NO biology is almost established. Accumulated evidence suggests that NO and oxygen radicals such as superoxide are key molecules in the pathogenesis of various infectious diseases. NO biosynthesis, particularly through expression of an inducible NO synthase (iNOS), occurs in a variety of microbial infections. Although antimicrobial activity of NO is appreciated for bacteria and protozoa, NO has opposing effects in virus infections such as influenza virus pneumonia and certain other neurotropic virus infections. iNOS produces an excessive amount of NO for long periods, which allows generation of a highly reactive nitrogen oxide species, peroxynitrite, via a radical coupling reaction of NO with superoxide. Thus, peroxynitrite causes oxidative tissue injury through potent oxidation and nitration reactions of various biomolecules. NO also appears to affect a host's immune response, with immunopathological consequences. For example, overproduction of NO in virus infections in mice is reported to suppress type 1 helper T-cell-dependent immune responses, leading to type 2 helper T-cell-biased immunological host responses. Thus, NO may be a host response modulator rather than a simple antiviral agent. The unique biological properties of NO are further illustrated by our recent data suggesting that viral mutation and evolution may be accelerated by NO-induced oxidative stress. Here, we discuss these multiple roles of NO in pathogenesis of virus infections as related to both non-specific inflammatory responses and immunological host reactions modulated by NO during infections
<italic>in vivo</italic>
.</p>
</div>
</front>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Akaike, T" sort="Akaike, T" uniqKey="Akaike T" first="T" last="Akaike">T. Akaike</name>
<name sortKey="Maeda, H" sort="Maeda, H" uniqKey="Maeda H" first="H" last="Maeda">H. Maeda</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001908 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001908 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     PMC:2327086
   |texte=   Nitric oxide and virus infection
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11106932" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021