Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV.

Identifieur interne : 000582 ( PubMed/Corpus ); précédent : 000581; suivant : 000583

Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV.

Auteurs : Vargab Baruah ; Sujoy Bose

Source :

RBID : pubmed:32022276

Abstract

The 2019 novel coronavirus (2019-nCoV) outbreak has caused a large number of deaths with thousands of confirmed cases worldwide, especially in East Asia. This study took an immunoinformatics approach to identify significant cytotoxic T lymphocyte (CTL) and B cell epitopes in the 2019-nCoV surface glycoprotein. Also, interactions between identified CTL epitopes and their corresponding major histocompatibility complex (MHC) class I supertype representatives prevalent in China were studied by molecular dynamics simulations. We identified five CTL epitopes, three sequential B cell epitopes and five discontinuous B cell epitopes in the viral surface glycoprotein. Also, during simulations, the CTL epitopes were observed to be binding MHC class I peptide-binding grooves via multiple contacts, with continuous hydrogen bonds and salt bridge anchors, indicating their potential in generating immune responses. Some of these identified epitopes can be potential candidates for the development of 2019-nCoV vaccines.

DOI: 10.1002/jmv.25698
PubMed: 32022276

Links to Exploration step

pubmed:32022276

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV.</title>
<author>
<name sortKey="Baruah, Vargab" sort="Baruah, Vargab" uniqKey="Baruah V" first="Vargab" last="Baruah">Vargab Baruah</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Gauhati University, Guwahati, Assam, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bose, Sujoy" sort="Bose, Sujoy" uniqKey="Bose S" first="Sujoy" last="Bose">Sujoy Bose</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Gauhati University, Guwahati, Assam, India.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32022276</idno>
<idno type="pmid">32022276</idno>
<idno type="doi">10.1002/jmv.25698</idno>
<idno type="wicri:Area/PubMed/Corpus">000582</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000582</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV.</title>
<author>
<name sortKey="Baruah, Vargab" sort="Baruah, Vargab" uniqKey="Baruah V" first="Vargab" last="Baruah">Vargab Baruah</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Gauhati University, Guwahati, Assam, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bose, Sujoy" sort="Bose, Sujoy" uniqKey="Bose S" first="Sujoy" last="Bose">Sujoy Bose</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Gauhati University, Guwahati, Assam, India.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of medical virology</title>
<idno type="eISSN">1096-9071</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The 2019 novel coronavirus (2019-nCoV) outbreak has caused a large number of deaths with thousands of confirmed cases worldwide, especially in East Asia. This study took an immunoinformatics approach to identify significant cytotoxic T lymphocyte (CTL) and B cell epitopes in the 2019-nCoV surface glycoprotein. Also, interactions between identified CTL epitopes and their corresponding major histocompatibility complex (MHC) class I supertype representatives prevalent in China were studied by molecular dynamics simulations. We identified five CTL epitopes, three sequential B cell epitopes and five discontinuous B cell epitopes in the viral surface glycoprotein. Also, during simulations, the CTL epitopes were observed to be binding MHC class I peptide-binding grooves via multiple contacts, with continuous hydrogen bonds and salt bridge anchors, indicating their potential in generating immune responses. Some of these identified epitopes can be potential candidates for the development of 2019-nCoV vaccines.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32022276</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-9071</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of medical virology</Title>
<ISOAbbreviation>J. Med. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV.</ArticleTitle>
<Pagination>
<MedlinePgn>495-500</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jmv.25698</ELocationID>
<Abstract>
<AbstractText>The 2019 novel coronavirus (2019-nCoV) outbreak has caused a large number of deaths with thousands of confirmed cases worldwide, especially in East Asia. This study took an immunoinformatics approach to identify significant cytotoxic T lymphocyte (CTL) and B cell epitopes in the 2019-nCoV surface glycoprotein. Also, interactions between identified CTL epitopes and their corresponding major histocompatibility complex (MHC) class I supertype representatives prevalent in China were studied by molecular dynamics simulations. We identified five CTL epitopes, three sequential B cell epitopes and five discontinuous B cell epitopes in the viral surface glycoprotein. Also, during simulations, the CTL epitopes were observed to be binding MHC class I peptide-binding grooves via multiple contacts, with continuous hydrogen bonds and salt bridge anchors, indicating their potential in generating immune responses. Some of these identified epitopes can be potential candidates for the development of 2019-nCoV vaccines.</AbstractText>
<CopyrightInformation>© 2020 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Baruah</LastName>
<ForeName>Vargab</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2882-7785</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Gauhati University, Guwahati, Assam, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bose</LastName>
<ForeName>Sujoy</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3606-958X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Gauhati University, Guwahati, Assam, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Med Virol</MedlineTA>
<NlmUniqueID>7705876</NlmUniqueID>
<ISSNLinking>0146-6615</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">2019-nCoV</Keyword>
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">coronavirus</Keyword>
<Keyword MajorTopicYN="N">epitope prediction</Keyword>
<Keyword MajorTopicYN="N">immunoinformatics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32022276</ArticleId>
<ArticleId IdType="doi">10.1002/jmv.25698</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>World Health Organization. Novel coronavirus (2019-nCoV) situation report-7. Report 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200127-sitrep-7-2019--ncov.pdf</Citation>
</Reference>
<Reference>
<Citation>Li F. Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology. 2016;3:237-261. https://doi.org/10.1146/annurev-virology-110615-042301</Citation>
</Reference>
<Reference>
<Citation>Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7:226-236. https://doi.org/10.1038/nrmicro2090</Citation>
</Reference>
<Reference>
<Citation>Zhou Y, Jiang S, Du L. Prospects for a MERS-CoV spike vaccine. Expert Rev Vaccines. 2018;17:677-686. https://doi.org/10.1080/14760584.2018.1506702</Citation>
</Reference>
<Reference>
<Citation>Smith T, Waterman M. Identification of common molecular subsequences. J Mol Biol. 1981;147:195-197. https://doi.org/10.1016/0022-2836(81)90087-5</Citation>
</Reference>
<Reference>
<Citation>Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics. 2007;8:424. https://doi.org/10.1186/1471-2105-8-424</Citation>
</Reference>
<Reference>
<Citation>dos Santos Francisco R, Buhler S, Nunes JM, et al. HLA supertype variation across populations: new insights into the role of natural selection in the evolution of HLA-A and HLA-B polymorphisms. Immunogenetics. 2015;67:651-663. https://doi.org/10.1007/s00251-015-0875-9</Citation>
</Reference>
<Reference>
<Citation>Bhasin M, Raghava G. Prediction of CTL epitopes using QM, SVM, and ANN techniques. Vaccine. 2004;22:3195-3204. https://doi.org/10.1016/j.vaccine.2004.02.005</Citation>
</Reference>
<Reference>
<Citation>Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. The Journal of Immunology. 2017;199:3360-3368. https://doi.org/10.4049/jimmunol.1700893</Citation>
</Reference>
<Reference>
<Citation>Shen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput. 2014;10:4745-4758. https://doi.org/10.1021/ct500592m</Citation>
</Reference>
<Reference>
<Citation>Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics. 2014;30:1771-1773. https://doi.org/10.1093/bioinformatics/btu097</Citation>
</Reference>
<Reference>
<Citation>Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45:45-W29. https://doi.org/10.1093/nar/gkx346</Citation>
</Reference>
<Reference>
<Citation>Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins: Struct, Funct, Bioinf. 2006;65:40-48. https://doi.org/10.1002/prot.21078</Citation>
</Reference>
<Reference>
<Citation>Ponomarenko J, Bui H-H, Li W, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9:514. https://doi.org/10.1186/1471-2105-9-514</Citation>
</Reference>
<Reference>
<Citation>Källberg M, Wang H, Wang S, et al. Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7:1511-1522. https://doi.org/10.1038/nprot.2012.085</Citation>
</Reference>
<Reference>
<Citation>Lovell SC, Davis IW, Arendall WB, et al. Structure validation by Cα geometry: ϕ, ψ, and Cβ deviation. Proteins: Struct, Funct, Bioinf. 2003;50:437-450. https://doi.org/10.1002/prot.10286</Citation>
</Reference>
<Reference>
<Citation>Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens, and subunit vaccines. BMC Bioinformatics. 2007;8:8. https://doi.org/10.1186/1471-2105-8-4</Citation>
</Reference>
<Reference>
<Citation>Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. https://doi.org/10.1038/msb.2011.75</Citation>
</Reference>
<Reference>
<Citation>Ji W, Niu L, Peng W, et al. Salt bridge-forming residues positioned over viral peptides presented by MHC class I impacts T-cell recognition in a binding-dependent manner. Mol Immunol. 2019;112:274-282. https://doi.org/10.1016/j.molimm.2019.06.005</Citation>
</Reference>
<Reference>
<Citation>Wieczorek M, Abualrous ET, Sticht J, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol. 2017;8:8. https://doi.org/10.3389/fimmu.2017.00292</Citation>
</Reference>
<Reference>
<Citation>Rognan D, Zimmermann N, Jung G, Folkers G. Molecular dynamics study of a complex between the human histocompatibility antigen HLA-A2 and the IMP58-66 nonapeptide from influenza virus matrix protein. Eur J Biochem. 1992;208:101-113. https://doi.org/10.1111/j.1432-1033.1992.tb17163.x</Citation>
</Reference>
<Reference>
<Citation>Qamar MTU, Saleem S, Ashfaq UA, Bari A, Anwar F, Alqahtani S. Epitope-based peptide vaccine design and target site depiction against Middle East respiratory syndrome coronavirus: an immune-informatics study. J Transl Med. 2019;17:362. https://doi.org/10.1186/s12967-019-2116-8</Citation>
</Reference>
<Reference>
<Citation>Huang J, Cao Y, Bu X, Wu C. Residue analysis of a CTL epitope of SARS-CoV spike protein by IFN-gamma production and bioinformatics prediction. BMC Immunol. 2012;13:50. https://doi.org/10.1186/1471-2172-13-50</Citation>
</Reference>
<Reference>
<Citation>Guest JD, Pierce BG. Computational modeling of hepatitis C virus envelope glycoprotein structure and recognition. Front Immunol. 2018;9, https://doi.org/10.3389/fimmu.2018.01117</Citation>
</Reference>
<Reference>
<Citation>Fernando B-G, Yersin C-T, José C-B, Paola Z-S. Predicted 3D model of the rabies virus glycoprotein trimer. BioMed Res Int. 2016;2016:1-11. https://doi.org/10.1155/2016/1674580</Citation>
</Reference>
<Reference>
<Citation>Salemi M, Fitch WM, Ciccozzi M, Ruiz-Alvarez MJ, Rezza G, Lewis MJ. Severe acute respiratory syndrome coronavirus sequence characteristics and evolutionary rate estimate from maximum likelihood analysis. J Virol. 2004;78:1602-1603. https://doi.org/10.1128/jvi.78.3.1602-1603.2004</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000582 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000582 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32022276
   |texte=   Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:32022276" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021