Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CD200 receptor controls sex-specific TLR7 responses to viral infection.

Identifieur interne : 000658 ( PubMed/Checkpoint ); précédent : 000657; suivant : 000659

CD200 receptor controls sex-specific TLR7 responses to viral infection.

Auteurs : Guruswamy Karnam [Pays-Bas] ; Tomasz P. Rygiel ; Matthijs Raaben ; Guy C M. Grinwis ; Frank E. Coenjaerts ; Maaike E. Ressing ; Peter J M. Rottier ; Cornelis A M. De Haan ; Linde Meyaard

Source :

RBID : pubmed:22615569

Descripteurs français

English descriptors

Abstract

Immunological checkpoints, such as the inhibitory CD200 receptor (CD200R), play a dual role in balancing the immune system during microbial infection. On the one hand these inhibitory signals prevent excessive immune mediated pathology but on the other hand they may impair clearance of the pathogen. We studied the influence of the inhibitory CD200-CD200R axis on clearance and pathology in two different virus infection models. We find that lack of CD200R signaling strongly enhances type I interferon (IFN) production and viral clearance and improves the outcome of mouse hepatitis corona virus (MHV) infection, particularly in female mice. MHV clearance is known to be dependent on Toll like receptor 7 (TLR7)-mediated type I IFN production and sex differences in TLR7 responses previously have been reported for humans. We therefore hypothesize that CD200R ligation suppresses TLR7 responses and that release of this inhibition enlarges sex differences in TLR7 signaling. This hypothesis is supported by our findings that in vivo administration of synthetic TLR7 ligand leads to enhanced type I IFN production, particularly in female Cd200(-/-) mice and that CD200R ligation inhibits TLR7 signaling in vitro. In influenza A virus infection we show that viral clearance is determined by sex but not by CD200R signaling. However, absence of CD200R in influenza A virus infection results in enhanced lung neutrophil influx and pathology in females. Thus, CD200-CD200R and sex are host factors that together determine the outcome of viral infection. Our data predict a sex bias in both beneficial and pathological immune responses to virus infection upon therapeutic targeting of CD200-CD200R.

DOI: 10.1371/journal.ppat.1002710
PubMed: 22615569


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22615569

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">CD200 receptor controls sex-specific TLR7 responses to viral infection.</title>
<author>
<name sortKey="Karnam, Guruswamy" sort="Karnam, Guruswamy" uniqKey="Karnam G" first="Guruswamy" last="Karnam">Guruswamy Karnam</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Immunology, University Medical Center Utrecht, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rygiel, Tomasz P" sort="Rygiel, Tomasz P" uniqKey="Rygiel T" first="Tomasz P" last="Rygiel">Tomasz P. Rygiel</name>
</author>
<author>
<name sortKey="Raaben, Matthijs" sort="Raaben, Matthijs" uniqKey="Raaben M" first="Matthijs" last="Raaben">Matthijs Raaben</name>
</author>
<author>
<name sortKey="Grinwis, Guy C M" sort="Grinwis, Guy C M" uniqKey="Grinwis G" first="Guy C M" last="Grinwis">Guy C M. Grinwis</name>
</author>
<author>
<name sortKey="Coenjaerts, Frank E" sort="Coenjaerts, Frank E" uniqKey="Coenjaerts F" first="Frank E" last="Coenjaerts">Frank E. Coenjaerts</name>
</author>
<author>
<name sortKey="Ressing, Maaike E" sort="Ressing, Maaike E" uniqKey="Ressing M" first="Maaike E" last="Ressing">Maaike E. Ressing</name>
</author>
<author>
<name sortKey="Rottier, Peter J M" sort="Rottier, Peter J M" uniqKey="Rottier P" first="Peter J M" last="Rottier">Peter J M. Rottier</name>
</author>
<author>
<name sortKey="De Haan, Cornelis A M" sort="De Haan, Cornelis A M" uniqKey="De Haan C" first="Cornelis A M" last="De Haan">Cornelis A M. De Haan</name>
</author>
<author>
<name sortKey="Meyaard, Linde" sort="Meyaard, Linde" uniqKey="Meyaard L" first="Linde" last="Meyaard">Linde Meyaard</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22615569</idno>
<idno type="pmid">22615569</idno>
<idno type="doi">10.1371/journal.ppat.1002710</idno>
<idno type="wicri:Area/PubMed/Corpus">000661</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000661</idno>
<idno type="wicri:Area/PubMed/Curation">000661</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000661</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000658</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000658</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">CD200 receptor controls sex-specific TLR7 responses to viral infection.</title>
<author>
<name sortKey="Karnam, Guruswamy" sort="Karnam, Guruswamy" uniqKey="Karnam G" first="Guruswamy" last="Karnam">Guruswamy Karnam</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Immunology, University Medical Center Utrecht, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rygiel, Tomasz P" sort="Rygiel, Tomasz P" uniqKey="Rygiel T" first="Tomasz P" last="Rygiel">Tomasz P. Rygiel</name>
</author>
<author>
<name sortKey="Raaben, Matthijs" sort="Raaben, Matthijs" uniqKey="Raaben M" first="Matthijs" last="Raaben">Matthijs Raaben</name>
</author>
<author>
<name sortKey="Grinwis, Guy C M" sort="Grinwis, Guy C M" uniqKey="Grinwis G" first="Guy C M" last="Grinwis">Guy C M. Grinwis</name>
</author>
<author>
<name sortKey="Coenjaerts, Frank E" sort="Coenjaerts, Frank E" uniqKey="Coenjaerts F" first="Frank E" last="Coenjaerts">Frank E. Coenjaerts</name>
</author>
<author>
<name sortKey="Ressing, Maaike E" sort="Ressing, Maaike E" uniqKey="Ressing M" first="Maaike E" last="Ressing">Maaike E. Ressing</name>
</author>
<author>
<name sortKey="Rottier, Peter J M" sort="Rottier, Peter J M" uniqKey="Rottier P" first="Peter J M" last="Rottier">Peter J M. Rottier</name>
</author>
<author>
<name sortKey="De Haan, Cornelis A M" sort="De Haan, Cornelis A M" uniqKey="De Haan C" first="Cornelis A M" last="De Haan">Cornelis A M. De Haan</name>
</author>
<author>
<name sortKey="Meyaard, Linde" sort="Meyaard, Linde" uniqKey="Meyaard L" first="Linde" last="Meyaard">Linde Meyaard</name>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antigens, CD (genetics)</term>
<term>Antigens, CD (metabolism)</term>
<term>Coronavirus Infections (immunology)</term>
<term>Female</term>
<term>Influenza A virus (immunology)</term>
<term>Influenza A virus (pathogenicity)</term>
<term>Interferon Type I (biosynthesis)</term>
<term>Membrane Glycoproteins (immunology)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Murine hepatitis virus</term>
<term>Neutrophil Infiltration</term>
<term>Neutrophils (immunology)</term>
<term>Neutrophils (metabolism)</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Sex Characteristics</term>
<term>Signal Transduction</term>
<term>Toll-Like Receptor 7 (immunology)</term>
<term>Toll-Like Receptor 7 (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Antigènes CD (génétique)</term>
<term>Antigènes CD (métabolisme)</term>
<term>Caractères sexuels</term>
<term>Femelle</term>
<term>Glycoprotéines membranaires (immunologie)</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Granulocytes neutrophiles (immunologie)</term>
<term>Granulocytes neutrophiles (métabolisme)</term>
<term>Infections à Orthomyxoviridae (immunologie)</term>
<term>Infections à coronavirus (immunologie)</term>
<term>Infiltration par les neutrophiles</term>
<term>Interféron de type I (biosynthèse)</term>
<term>Récepteur de type Toll-7 (immunologie)</term>
<term>Récepteur de type Toll-7 (métabolisme)</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
<term>Transduction du signal</term>
<term>Virus de l'hépatite murine</term>
<term>Virus de la grippe A (immunologie)</term>
<term>Virus de la grippe A (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Interferon Type I</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Antigens, CD</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Toll-Like Receptor 7</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antigens, CD</term>
<term>Membrane Glycoproteins</term>
<term>Toll-Like Receptor 7</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Interféron de type I</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Antigènes CD</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Granulocytes neutrophiles</term>
<term>Infections à Orthomyxoviridae</term>
<term>Infections à coronavirus</term>
<term>Récepteur de type Toll-7</term>
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Influenza A virus</term>
<term>Neutrophils</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neutrophils</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigènes CD</term>
<term>Glycoprotéines membranaires</term>
<term>Granulocytes neutrophiles</term>
<term>Récepteur de type Toll-7</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Murine hepatitis virus</term>
<term>Neutrophil Infiltration</term>
<term>Sex Characteristics</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Caractères sexuels</term>
<term>Femelle</term>
<term>Infiltration par les neutrophiles</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
<term>Transduction du signal</term>
<term>Virus de l'hépatite murine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Immunological checkpoints, such as the inhibitory CD200 receptor (CD200R), play a dual role in balancing the immune system during microbial infection. On the one hand these inhibitory signals prevent excessive immune mediated pathology but on the other hand they may impair clearance of the pathogen. We studied the influence of the inhibitory CD200-CD200R axis on clearance and pathology in two different virus infection models. We find that lack of CD200R signaling strongly enhances type I interferon (IFN) production and viral clearance and improves the outcome of mouse hepatitis corona virus (MHV) infection, particularly in female mice. MHV clearance is known to be dependent on Toll like receptor 7 (TLR7)-mediated type I IFN production and sex differences in TLR7 responses previously have been reported for humans. We therefore hypothesize that CD200R ligation suppresses TLR7 responses and that release of this inhibition enlarges sex differences in TLR7 signaling. This hypothesis is supported by our findings that in vivo administration of synthetic TLR7 ligand leads to enhanced type I IFN production, particularly in female Cd200(-/-) mice and that CD200R ligation inhibits TLR7 signaling in vitro. In influenza A virus infection we show that viral clearance is determined by sex but not by CD200R signaling. However, absence of CD200R in influenza A virus infection results in enhanced lung neutrophil influx and pathology in females. Thus, CD200-CD200R and sex are host factors that together determine the outcome of viral infection. Our data predict a sex bias in both beneficial and pathological immune responses to virus infection upon therapeutic targeting of CD200-CD200R.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22615569</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>CD200 receptor controls sex-specific TLR7 responses to viral infection.</ArticleTitle>
<Pagination>
<MedlinePgn>e1002710</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1002710</ELocationID>
<Abstract>
<AbstractText>Immunological checkpoints, such as the inhibitory CD200 receptor (CD200R), play a dual role in balancing the immune system during microbial infection. On the one hand these inhibitory signals prevent excessive immune mediated pathology but on the other hand they may impair clearance of the pathogen. We studied the influence of the inhibitory CD200-CD200R axis on clearance and pathology in two different virus infection models. We find that lack of CD200R signaling strongly enhances type I interferon (IFN) production and viral clearance and improves the outcome of mouse hepatitis corona virus (MHV) infection, particularly in female mice. MHV clearance is known to be dependent on Toll like receptor 7 (TLR7)-mediated type I IFN production and sex differences in TLR7 responses previously have been reported for humans. We therefore hypothesize that CD200R ligation suppresses TLR7 responses and that release of this inhibition enlarges sex differences in TLR7 signaling. This hypothesis is supported by our findings that in vivo administration of synthetic TLR7 ligand leads to enhanced type I IFN production, particularly in female Cd200(-/-) mice and that CD200R ligation inhibits TLR7 signaling in vitro. In influenza A virus infection we show that viral clearance is determined by sex but not by CD200R signaling. However, absence of CD200R in influenza A virus infection results in enhanced lung neutrophil influx and pathology in females. Thus, CD200-CD200R and sex are host factors that together determine the outcome of viral infection. Our data predict a sex bias in both beneficial and pathological immune responses to virus infection upon therapeutic targeting of CD200-CD200R.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Karnam</LastName>
<ForeName>Guruswamy</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rygiel</LastName>
<ForeName>Tomasz P</ForeName>
<Initials>TP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Raaben</LastName>
<ForeName>Matthijs</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grinwis</LastName>
<ForeName>Guy C M</ForeName>
<Initials>GC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Coenjaerts</LastName>
<ForeName>Frank E</ForeName>
<Initials>FE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ressing</LastName>
<ForeName>Maaike E</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rottier</LastName>
<ForeName>Peter J M</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de Haan</LastName>
<ForeName>Cornelis A M</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meyaard</LastName>
<ForeName>Linde</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015703">Antigens, CD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C492346">CD200 receptor, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007370">Interferon Type I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C477038">Tlr7 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051199">Toll-Like Receptor 7</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>UQ4V77A8VA</RegistryNumber>
<NameOfSubstance UI="C042739">antigens, CD200</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015703" MajorTopicYN="N">Antigens, CD</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007370" MajorTopicYN="N">Interferon Type I</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020556" MajorTopicYN="N">Neutrophil Infiltration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009504" MajorTopicYN="N">Neutrophils</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012727" MajorTopicYN="N">Sex Characteristics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051199" MajorTopicYN="N">Toll-Like Receptor 7</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22615569</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1002710</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-11-02637</ArticleId>
<ArticleId IdType="pmc">PMC3355091</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Eur J Immunol. 1997 Aug;27(8):1911-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9295026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Sex Differ. 2010 Nov 04;1(1):5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21208468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 7;286(40):34722-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21835925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2006 Feb;79(2):363-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16330532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2007;4:55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17555580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2007 Mar;21(3):566-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17252007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(18):9790-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17626092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2008 Jul 7;205(7):1621-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18591406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2003 Sep 15;171(6):3034-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12960329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Mar 17;434(7031):400-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 1;290(5497):1768-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11099416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2008 Feb;45(4):1126-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Aug 15;177(4):2088-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16887967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Acad Med Singapore. 2006 May;35(5):326-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2008 Sep 1;112(5):2028-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Sep 16;8(3):236-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2009 Aug;15(8):955-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19597505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2002 Feb;3(2):196-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11812998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Aug 15;175(4):2469-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2009 Jan 29;113(5):1045-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2008 Sep;8(9):737-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18728636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Oct 15;183(8):4879-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19786546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transplantation. 2007 Jul 27;84(2):251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17667818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Feb 1;109(3):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2010 May;10(5):338-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20417416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Investig Drugs. 2005 May;6(5):483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15912961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 5;303(5663):1529-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Aug;84(15):7880-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20484516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2004 Feb 1;159(3):229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1998 Nov 7;352(9139):1510-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9820299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2009 May;11(5):825-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19215224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(3):e17730</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21445292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Aug 1;183(3):1990-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2006 Dec 15;108(13):4194-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2002 Jun;23(6):285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Dec 1;173(11):6786-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15557172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2008 Sep;9(9):1074-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 10;465(7299):688-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20535184</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Utrecht (province)</li>
</region>
<settlement>
<li>Utrecht</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Coenjaerts, Frank E" sort="Coenjaerts, Frank E" uniqKey="Coenjaerts F" first="Frank E" last="Coenjaerts">Frank E. Coenjaerts</name>
<name sortKey="De Haan, Cornelis A M" sort="De Haan, Cornelis A M" uniqKey="De Haan C" first="Cornelis A M" last="De Haan">Cornelis A M. De Haan</name>
<name sortKey="Grinwis, Guy C M" sort="Grinwis, Guy C M" uniqKey="Grinwis G" first="Guy C M" last="Grinwis">Guy C M. Grinwis</name>
<name sortKey="Meyaard, Linde" sort="Meyaard, Linde" uniqKey="Meyaard L" first="Linde" last="Meyaard">Linde Meyaard</name>
<name sortKey="Raaben, Matthijs" sort="Raaben, Matthijs" uniqKey="Raaben M" first="Matthijs" last="Raaben">Matthijs Raaben</name>
<name sortKey="Ressing, Maaike E" sort="Ressing, Maaike E" uniqKey="Ressing M" first="Maaike E" last="Ressing">Maaike E. Ressing</name>
<name sortKey="Rottier, Peter J M" sort="Rottier, Peter J M" uniqKey="Rottier P" first="Peter J M" last="Rottier">Peter J M. Rottier</name>
<name sortKey="Rygiel, Tomasz P" sort="Rygiel, Tomasz P" uniqKey="Rygiel T" first="Tomasz P" last="Rygiel">Tomasz P. Rygiel</name>
</noCountry>
<country name="Pays-Bas">
<region name="Utrecht (province)">
<name sortKey="Karnam, Guruswamy" sort="Karnam, Guruswamy" uniqKey="Karnam G" first="Guruswamy" last="Karnam">Guruswamy Karnam</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000658 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000658 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22615569
   |texte=   CD200 receptor controls sex-specific TLR7 responses to viral infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22615569" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021