Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes (Bubalus bubalis)

Identifieur interne : 000687 ( Pmc/Corpus ); précédent : 000686; suivant : 000688

Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes (Bubalus bubalis)

Auteurs : Ramneek Kaur ; Monika Sodhi ; Ankita Sharma ; Vijay Lakshmi Sharma ; Preeti Verma ; Shelesh Kumar Swami ; Parvesh Kumari ; Manishi Mukesh

Source :

RBID : PMC:5839537

Abstract

Selection of reference genes has become an integral step in any real time quantitative PCR (RT-qPCR) based expression studies. The importance of this study stems from the fact that riverine buffaloes are major dairy species of Indian sub-continent and the information generated here will be of great interest to the investigators engaged in functional genomic studies of this important livestock species. In this study, an effort was made to evaluate a panel of 10 candidate reference genes (glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta- actin (ACTB), ubiquitously expressed transcript (UXT), ribosomal protein S15 (RPS15), ribosomal protein L-4 (RPL4), ribosomal protein S9 (RPS9), ribosomal protein S23 (RPS23), hydroxymethylbilane synthase (HMBS), β2 Microglobulin (β2M) and eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) across 12 tissues (mammary gland, kidney, spleen, liver, heart, intestine, ovary, lung, muscle, brain, subcutaneous fat and testis) of riverine buffaloes. In addition to overall analysis, tissue wise evaluation of expression stability of individual RG was also performed. Three different algorithms provided in geNorm, NormFinder and BestKeeper softwares were used to evaluate the stability of 10 potential reference genes from different functional classes. The M-value given by geNorm ranged from 0.9797 (RPS9 and UXT) to 1.7362 (RPS15). From the most stable to the least stable, genes were ranked as: UXT/RPS9> RPL4> RPS23> EEF1A1> ACTB> HMBS> GAPDH> B2M> RPS15. While NormFinder analysis ranked the genes as: UXT> RPS23> RPL4> RPS9> EEF1A1> HMBS> ACTB> β2M> GAPDH> RPS15. Based on the crossing point SD value and range of fold change expression, BestKeeper analysis ranked the genes as: RPS9> RPS23/UXT> RPL4> GAPDH> EEF1A1> ACTB> HMBS> β2M> RPS15. Overall the study has identified RPS23, RPS9, RPL4 and UXT genes to be the most stable and appropriate RGs that could be utilized for normalization of transcriptional data in various tissues of buffaloes. This manuscript thus provide useful information on panel of reference genes that could be helpful for researchers conducting functional genomic studies in riverine buffaloes.


Url:
DOI: 10.1371/journal.pone.0191558
PubMed: 29509770
PubMed Central: 5839537

Links to Exploration step

PMC:5839537

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes (
<italic>Bubalus bubalis</italic>
)</title>
<author>
<name sortKey="Kaur, Ramneek" sort="Kaur, Ramneek" uniqKey="Kaur R" first="Ramneek" last="Kaur">Ramneek Kaur</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Zoology, Panjab University, Chandigarh, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sodhi, Monika" sort="Sodhi, Monika" uniqKey="Sodhi M" first="Monika" last="Sodhi">Monika Sodhi</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Ankita" sort="Sharma, Ankita" uniqKey="Sharma A" first="Ankita" last="Sharma">Ankita Sharma</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Vijay Lakshmi" sort="Sharma, Vijay Lakshmi" uniqKey="Sharma V" first="Vijay Lakshmi" last="Sharma">Vijay Lakshmi Sharma</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Zoology, Panjab University, Chandigarh, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Verma, Preeti" sort="Verma, Preeti" uniqKey="Verma P" first="Preeti" last="Verma">Preeti Verma</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Swami, Shelesh Kumar" sort="Swami, Shelesh Kumar" uniqKey="Swami S" first="Shelesh Kumar" last="Swami">Shelesh Kumar Swami</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kumari, Parvesh" sort="Kumari, Parvesh" uniqKey="Kumari P" first="Parvesh" last="Kumari">Parvesh Kumari</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mukesh, Manishi" sort="Mukesh, Manishi" uniqKey="Mukesh M" first="Manishi" last="Mukesh">Manishi Mukesh</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29509770</idno>
<idno type="pmc">5839537</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5839537</idno>
<idno type="RBID">PMC:5839537</idno>
<idno type="doi">10.1371/journal.pone.0191558</idno>
<date when="2018">2018</date>
<idno type="wicri:Area/Pmc/Corpus">000687</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000687</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes (
<italic>Bubalus bubalis</italic>
)</title>
<author>
<name sortKey="Kaur, Ramneek" sort="Kaur, Ramneek" uniqKey="Kaur R" first="Ramneek" last="Kaur">Ramneek Kaur</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Zoology, Panjab University, Chandigarh, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sodhi, Monika" sort="Sodhi, Monika" uniqKey="Sodhi M" first="Monika" last="Sodhi">Monika Sodhi</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Ankita" sort="Sharma, Ankita" uniqKey="Sharma A" first="Ankita" last="Sharma">Ankita Sharma</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Vijay Lakshmi" sort="Sharma, Vijay Lakshmi" uniqKey="Sharma V" first="Vijay Lakshmi" last="Sharma">Vijay Lakshmi Sharma</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Department of Zoology, Panjab University, Chandigarh, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Verma, Preeti" sort="Verma, Preeti" uniqKey="Verma P" first="Preeti" last="Verma">Preeti Verma</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Swami, Shelesh Kumar" sort="Swami, Shelesh Kumar" uniqKey="Swami S" first="Shelesh Kumar" last="Swami">Shelesh Kumar Swami</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kumari, Parvesh" sort="Kumari, Parvesh" uniqKey="Kumari P" first="Parvesh" last="Kumari">Parvesh Kumari</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mukesh, Manishi" sort="Mukesh, Manishi" uniqKey="Mukesh M" first="Manishi" last="Mukesh">Manishi Mukesh</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Selection of reference genes has become an integral step in any real time quantitative PCR (RT-qPCR) based expression studies. The importance of this study stems from the fact that riverine buffaloes are major dairy species of Indian sub-continent and the information generated here will be of great interest to the investigators engaged in functional genomic studies of this important livestock species. In this study, an effort was made to evaluate a panel of 10 candidate reference genes (glyceraldehyde 3-phosphate dehydrogenase (
<italic>GAPDH)</italic>
, beta- actin (
<italic>ACTB</italic>
), ubiquitously expressed transcript (
<italic>UXT</italic>
), ribosomal protein S15 (
<italic>RPS15</italic>
), ribosomal protein L-4 (
<italic>RPL4</italic>
), ribosomal protein S9 (
<italic>RPS9</italic>
), ribosomal protein S23 (
<italic>RPS23</italic>
), hydroxymethylbilane synthase (
<italic>HMBS</italic>
), β2 Microglobulin (
<italic>β2M</italic>
) and eukaryotic translation elongation factor 1 alpha 1 (
<italic>EEF1A1</italic>
) across 12 tissues (mammary gland, kidney, spleen, liver, heart, intestine, ovary, lung, muscle, brain, subcutaneous fat and testis) of riverine buffaloes. In addition to overall analysis, tissue wise evaluation of expression stability of individual RG was also performed. Three different algorithms provided in geNorm, NormFinder and BestKeeper softwares were used to evaluate the stability of 10 potential reference genes from different functional classes. The M-value given by geNorm ranged from 0.9797 (
<italic>RPS9</italic>
and
<italic>UXT</italic>
) to 1.7362 (
<italic>RPS15</italic>
). From the most stable to the least stable, genes were ranked as:
<italic>UXT/RPS9> RPL4> RPS23> EEF1A1> ACTB> HMBS> GAPDH> B2M> RPS15</italic>
. While NormFinder analysis ranked the genes as:
<italic>UXT> RPS23> RPL4> RPS9> EEF1A1> HMBS> ACTB> β2M> GAPDH> RPS15</italic>
. Based on the crossing point SD value and range of fold change expression, BestKeeper analysis ranked the genes as:
<italic>RPS9> RPS23/UXT> RPL4> GAPDH> EEF1A1> ACTB> HMBS> β2M> RPS15</italic>
. Overall the study has identified
<italic>RPS23</italic>
,
<italic>RPS9</italic>
,
<italic>RPL4</italic>
and
<italic>UXT</italic>
genes to be the most stable and appropriate RGs that could be utilized for normalization of transcriptional data in various tissues of buffaloes. This manuscript thus provide useful information on panel of reference genes that could be helpful for researchers conducting functional genomic studies in riverine buffaloes.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Livak, Kj" uniqKey="Livak K">KJ Livak</name>
</author>
<author>
<name sortKey="Schmittgen, Td" uniqKey="Schmittgen T">TD Schmittgen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bustin, S A" uniqKey="Bustin S">S.A Bustin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fleige, S" uniqKey="Fleige S">S Fleige</name>
</author>
<author>
<name sortKey="Pfaffl, Mw" uniqKey="Pfaffl M">MW Pfaffl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lisowski, P" uniqKey="Lisowski P">P Lisowski</name>
</author>
<author>
<name sortKey="Pierzchala, M" uniqKey="Pierzchala M">M Pierzchała</name>
</author>
<author>
<name sortKey="Goscik, J" uniqKey="Goscik J">J Goscik</name>
</author>
<author>
<name sortKey="Pareek, Cs" uniqKey="Pareek C">CS Pareek</name>
</author>
<author>
<name sortKey="Zwierzchowski, L" uniqKey="Zwierzchowski L">L Zwierzchowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sodhi, M" uniqKey="Sodhi M">M Sodhi</name>
</author>
<author>
<name sortKey="Kishore, A" uniqKey="Kishore A">A Kishore</name>
</author>
<author>
<name sortKey="Khate, K" uniqKey="Khate K">K Khate</name>
</author>
<author>
<name sortKey="Kapila, N" uniqKey="Kapila N">N Kapila</name>
</author>
<author>
<name sortKey="Mishra, Bp" uniqKey="Mishra B">BP Mishra</name>
</author>
<author>
<name sortKey="Kataria, Rs" uniqKey="Kataria R">RS Kataria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapila, N" uniqKey="Kapila N">N Kapila</name>
</author>
<author>
<name sortKey="Kishore, A" uniqKey="Kishore A">A Kishore</name>
</author>
<author>
<name sortKey="Sodhi, M" uniqKey="Sodhi M">M Sodhi</name>
</author>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A Sharma</name>
</author>
<author>
<name sortKey="Kumar, P" uniqKey="Kumar P">P Kumar</name>
</author>
<author>
<name sortKey="Mohanty, Ak" uniqKey="Mohanty A">AK Mohanty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deindl, E" uniqKey="Deindl E">E Deindl</name>
</author>
<author>
<name sortKey="Boengler, K" uniqKey="Boengler K">K Boengler</name>
</author>
<author>
<name sortKey="Van Royen, N" uniqKey="Van Royen N">N van Royen</name>
</author>
<author>
<name sortKey="Schaper, W" uniqKey="Schaper W">W Schaper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dheda, K" uniqKey="Dheda K">K Dheda</name>
</author>
<author>
<name sortKey="Huggett, Jf" uniqKey="Huggett J">JF Huggett</name>
</author>
<author>
<name sortKey="Bustin, Sa" uniqKey="Bustin S">SA Bustin</name>
</author>
<author>
<name sortKey="Johnson, Ma" uniqKey="Johnson M">MA Johnson</name>
</author>
<author>
<name sortKey="Rook, G" uniqKey="Rook G">G Rook</name>
</author>
<author>
<name sortKey="Zumla, A" uniqKey="Zumla A">A Zumla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huggett, J" uniqKey="Huggett J">J Huggett</name>
</author>
<author>
<name sortKey="Dheda, K" uniqKey="Dheda K">K Dheda</name>
</author>
<author>
<name sortKey="Bustin, S" uniqKey="Bustin S">S Bustin</name>
</author>
<author>
<name sortKey="Zumla, A" uniqKey="Zumla A">A Zumla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Radonic, A" uniqKey="Radonic A">A Radonic</name>
</author>
<author>
<name sortKey="Thulke, S" uniqKey="Thulke S">S Thulke</name>
</author>
<author>
<name sortKey="Mackay, Im" uniqKey="Mackay I">IM Mackay</name>
</author>
<author>
<name sortKey="Landt, O" uniqKey="Landt O">O Landt</name>
</author>
<author>
<name sortKey="Siegert, W" uniqKey="Siegert W">W Siegert</name>
</author>
<author>
<name sortKey="Nitsche, A" uniqKey="Nitsche A">A Nitsche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamalainen, Hk" uniqKey="Hamalainen H">HK Hamalainen</name>
</author>
<author>
<name sortKey="Tubman, Jc" uniqKey="Tubman J">JC Tubman</name>
</author>
<author>
<name sortKey="Vikman, S" uniqKey="Vikman S">S Vikman</name>
</author>
<author>
<name sortKey="Kyrola, T" uniqKey="Kyrola T">T Kyrola</name>
</author>
<author>
<name sortKey="Ylikoski, E" uniqKey="Ylikoski E">E Ylikoski</name>
</author>
<author>
<name sortKey="Warrington, Ja" uniqKey="Warrington J">JA Warrington</name>
</author>
<author>
<name sortKey="Lahesmaa, R" uniqKey="Lahesmaa R">R Lahesmaa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bionaz, M" uniqKey="Bionaz M">M Bionaz</name>
</author>
<author>
<name sortKey="Loor, Jj" uniqKey="Loor J">JJ Loor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Domig, Kj" uniqKey="Domig K">KJ Domig</name>
</author>
<author>
<name sortKey="Ettle, T" uniqKey="Ettle T">T Ettle</name>
</author>
<author>
<name sortKey="Windisch, W" uniqKey="Windisch W">W Windisch</name>
</author>
<author>
<name sortKey="Mair, C" uniqKey="Mair C">C Mair</name>
</author>
<author>
<name sortKey="Schedle, K" uniqKey="Schedle K">K Schedle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spalenza, V" uniqKey="Spalenza V">V Spalenza</name>
</author>
<author>
<name sortKey="Girolami, F" uniqKey="Girolami F">F Girolami</name>
</author>
<author>
<name sortKey="Bevilacqua, C" uniqKey="Bevilacqua C">C Bevilacqua</name>
</author>
<author>
<name sortKey="Riondato, F" uniqKey="Riondato F">F Riondato</name>
</author>
<author>
<name sortKey="Rasero, R" uniqKey="Rasero R">R Rasero</name>
</author>
<author>
<name sortKey="Nebbia, C" uniqKey="Nebbia C">C Nebbia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bae, Is" uniqKey="Bae I">IS Bae</name>
</author>
<author>
<name sortKey="Chung, Ky" uniqKey="Chung K">KY Chung</name>
</author>
<author>
<name sortKey="Yi, J" uniqKey="Yi J">J Yi</name>
</author>
<author>
<name sortKey="Kim, Ti" uniqKey="Kim T">TI Kim</name>
</author>
<author>
<name sortKey="Choi, Hs" uniqKey="Choi H">HS Choi</name>
</author>
<author>
<name sortKey="Cho, Ym" uniqKey="Cho Y">YM Cho</name>
</author>
<author>
<name sortKey="Kim, Sh" uniqKey="Kim S">SH Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Radonic, A" uniqKey="Radonic A">A Radonic</name>
</author>
<author>
<name sortKey="Thulke, S" uniqKey="Thulke S">S Thulke</name>
</author>
<author>
<name sortKey="Bae, Hg" uniqKey="Bae H">HG Bae</name>
</author>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
<author>
<name sortKey="Siegert, W" uniqKey="Siegert W">W Siegert</name>
</author>
<author>
<name sortKey="Nitsche, A" uniqKey="Nitsche A">A Nitsche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vorachek, W R" uniqKey="Vorachek W">W.R. Vorachek</name>
</author>
<author>
<name sortKey="Bobe, G" uniqKey="Bobe G">G. Bobe</name>
</author>
<author>
<name sortKey="Hall, J A" uniqKey="Hall J">J.A. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kishore, A" uniqKey="Kishore A">A Kishore</name>
</author>
<author>
<name sortKey="Sodhi, M" uniqKey="Sodhi M">M Sodhi</name>
</author>
<author>
<name sortKey="Khate, K" uniqKey="Khate K">K Khate</name>
</author>
<author>
<name sortKey="Kapila, N" uniqKey="Kapila N">N Kapila</name>
</author>
<author>
<name sortKey="Kumari, P" uniqKey="Kumari P">P Kumari</name>
</author>
<author>
<name sortKey="Mukesh, M" uniqKey="Mukesh M">M Mukesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macabelli, Ch" uniqKey="Macabelli C">CH Macabelli</name>
</author>
<author>
<name sortKey="Ferreira, Rm" uniqKey="Ferreira R">RM Ferreira</name>
</author>
<author>
<name sortKey="Gimenes, Lu" uniqKey="Gimenes L">LU Gimenes</name>
</author>
<author>
<name sortKey="De Carvalho, Na" uniqKey="De Carvalho N">NA de Carvalho</name>
</author>
<author>
<name sortKey="Soares, Jg" uniqKey="Soares J">JG Soares</name>
</author>
<author>
<name sortKey="Ayres, H" uniqKey="Ayres H">H Ayres</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yadav, P" uniqKey="Yadav P">P Yadav</name>
</author>
<author>
<name sortKey="Singh, Dd" uniqKey="Singh D">DD Singh</name>
</author>
<author>
<name sortKey="Mukesh, M" uniqKey="Mukesh M">M Mukesh</name>
</author>
<author>
<name sortKey="Kataria, Rs" uniqKey="Kataria R">RS Kataria</name>
</author>
<author>
<name sortKey="Yadav, A" uniqKey="Yadav A">A Yadav</name>
</author>
<author>
<name sortKey="Mohanty, Ak" uniqKey="Mohanty A">AK Mohanty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersen, Cl" uniqKey="Andersen C">CL Andersen</name>
</author>
<author>
<name sortKey="Jensen, Jl" uniqKey="Jensen J">JL Jensen</name>
</author>
<author>
<name sortKey="Orntoft, Tf" uniqKey="Orntoft T">TF Orntoft</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfaffl, Mw" uniqKey="Pfaffl M">MW Pfaffl</name>
</author>
<author>
<name sortKey="Tichopad, A" uniqKey="Tichopad A">A Tichopad</name>
</author>
<author>
<name sortKey="Prgomet, C" uniqKey="Prgomet C">C Prgomet</name>
</author>
<author>
<name sortKey="Neuvians, Tp" uniqKey="Neuvians T">TP Neuvians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vandesompele, J" uniqKey="Vandesompele J">J Vandesompele</name>
</author>
<author>
<name sortKey="Preter, K De" uniqKey="Preter K">K De Preter</name>
</author>
<author>
<name sortKey="Pattyn, F" uniqKey="Pattyn F">F Pattyn</name>
</author>
<author>
<name sortKey="Poppe, B" uniqKey="Poppe B">B Poppe</name>
</author>
<author>
<name sortKey="Van Roy, N" uniqKey="Van Roy N">N Van Roy</name>
</author>
<author>
<name sortKey="Paepe, A De" uniqKey="Paepe A">A De Paepe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Jingchao" uniqKey="Chen J">Jingchao Chen</name>
</author>
<author>
<name sortKey="Huang, Zhaofeng" uniqKey="Huang Z">Zhaofeng Huang</name>
</author>
<author>
<name sortKey="Huang, Hongjuan" uniqKey="Huang H">Hongjuan Huang</name>
</author>
<author>
<name sortKey="Wei, Shouhui" uniqKey="Wei S">Shouhui Wei</name>
</author>
<author>
<name sortKey="Liu, Yan" uniqKey="Liu Y">Yan Liu</name>
</author>
<author>
<name sortKey="Jiang, Cuilan" uniqKey="Jiang C">Cuilan Jiang</name>
</author>
<author>
<name sortKey="Zhang, Jie" uniqKey="Zhang J">Jie Zhang</name>
</author>
<author>
<name sortKey="Zhang, Chaoxian" uniqKey="Zhang C">Chaoxian Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koramutla, Murali Krishna" uniqKey="Koramutla M">Murali Krishna Koramutla</name>
</author>
<author>
<name sortKey="Aminedi, Raghavendra" uniqKey="Aminedi R">Raghavendra Aminedi</name>
</author>
<author>
<name sortKey="Bhattacharya, Ramcharan" uniqKey="Bhattacharya R">Ramcharan Bhattacharya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Yu" uniqKey="Zhang Y">Yu Zhang</name>
</author>
<author>
<name sortKey="Zhang, Xiao Dong" uniqKey="Zhang X">Xiao-Dong Zhang</name>
</author>
<author>
<name sortKey="Liu, Xing" uniqKey="Liu X">Xing Liu</name>
</author>
<author>
<name sortKey="Li, Yun Sheng" uniqKey="Li Y">Yun-Sheng Li</name>
</author>
<author>
<name sortKey="Ding, Jian Ping" uniqKey="Ding J">Jian-Ping Ding</name>
</author>
<author>
<name sortKey="Zhang, Xiao Rong" uniqKey="Zhang X">Xiao-Rong Zhang</name>
</author>
<author>
<name sortKey="Zhang, Yun Hai" uniqKey="Zhang Y">Yun-Hai Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tricarico, C" uniqKey="Tricarico C">C Tricarico</name>
</author>
<author>
<name sortKey="Pinzani, P" uniqKey="Pinzani P">P Pinzani</name>
</author>
<author>
<name sortKey="Bianchi, S" uniqKey="Bianchi S">S Bianchi</name>
</author>
<author>
<name sortKey="Paglierani, M" uniqKey="Paglierani M">M Paglierani</name>
</author>
<author>
<name sortKey="Distante, V" uniqKey="Distante V">V Distante</name>
</author>
<author>
<name sortKey="Pazzagli, M" uniqKey="Pazzagli M">M Pazzagli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bas, A" uniqKey="Bas A">A Bas</name>
</author>
<author>
<name sortKey="Forsberg, G" uniqKey="Forsberg G">G Forsberg</name>
</author>
<author>
<name sortKey="Hammarstrom, S" uniqKey="Hammarstrom S">S Hammarstrom</name>
</author>
<author>
<name sortKey="Hammarstrom, Ml" uniqKey="Hammarstrom M">ML Hammarstrom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jatav, P" uniqKey="Jatav P">P Jatav</name>
</author>
<author>
<name sortKey="Sodhi, M" uniqKey="Sodhi M">M Sodhi</name>
</author>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A Sharma</name>
</author>
<author>
<name sortKey="Mann, S" uniqKey="Mann S">S Mann</name>
</author>
<author>
<name sortKey="Kishore, A" uniqKey="Kishore A">A Kishore</name>
</author>
<author>
<name sortKey="Shandilya, Uk" uniqKey="Shandilya U">UK Shandilya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kackar, V" uniqKey="Kackar V">V Kackar</name>
</author>
<author>
<name sortKey="Ali, As" uniqKey="Ali A">AS Ali</name>
</author>
<author>
<name sortKey="Prasad, S" uniqKey="Prasad S">S Prasad</name>
</author>
<author>
<name sortKey="Mukesh, M" uniqKey="Mukesh M">M Mukesh</name>
</author>
<author>
<name sortKey="Tantia, Ms" uniqKey="Tantia M">MS Tantia</name>
</author>
<author>
<name sortKey="Dahiya, Ss" uniqKey="Dahiya S">SS Dahiya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terzi, V" uniqKey="Terzi V">V Terzi</name>
</author>
<author>
<name sortKey="Morcia, C" uniqKey="Morcia C">C Morcia</name>
</author>
<author>
<name sortKey="Spini, M" uniqKey="Spini M">M Spini</name>
</author>
<author>
<name sortKey="Tudisco, R" uniqKey="Tudisco R">R Tudisco</name>
</author>
<author>
<name sortKey="Cutrignelli, Mi" uniqKey="Cutrignelli M">MI Cutrignelli</name>
</author>
<author>
<name sortKey="Infascelli, F" uniqKey="Infascelli F">F Infascelli</name>
</author>
<author>
<name sortKey="Stanca, Am" uniqKey="Stanca A">AM Stanca</name>
</author>
<author>
<name sortKey="Faccioli, P" uniqKey="Faccioli P">P Faccioli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, T" uniqKey="Suzuki T">T Suzuki</name>
</author>
<author>
<name sortKey="Higgins, Pj" uniqKey="Higgins P">PJ Higgins</name>
</author>
<author>
<name sortKey="Crawford, Dr" uniqKey="Crawford D">DR Crawford</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29509770</article-id>
<article-id pub-id-type="pmc">5839537</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0191558</article-id>
<article-id pub-id-type="publisher-id">PONE-D-16-42801</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Organisms</subject>
<subj-group>
<subject>Eukaryota</subject>
<subj-group>
<subject>Animals</subject>
<subj-group>
<subject>Vertebrates</subject>
<subj-group>
<subject>Amniotes</subject>
<subj-group>
<subject>Mammals</subject>
<subj-group>
<subject>Bovines</subject>
<subj-group>
<subject>Buffaloes</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Genetics</subject>
<subj-group>
<subject>Gene Expression</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and analysis methods</subject>
<subj-group>
<subject>Extraction techniques</subject>
<subj-group>
<subject>RNA extraction</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Molecular Biology</subject>
<subj-group>
<subject>Molecular Biology Techniques</subject>
<subj-group>
<subject>Artificial Gene Amplification and Extension</subject>
<subj-group>
<subject>Polymerase Chain Reaction</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and Analysis Methods</subject>
<subj-group>
<subject>Molecular Biology Techniques</subject>
<subj-group>
<subject>Artificial Gene Amplification and Extension</subject>
<subj-group>
<subject>Polymerase Chain Reaction</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Genetics</subject>
<subj-group>
<subject>Gene Expression</subject>
<subj-group>
<subject>Gene Regulation</subject>
<subj-group>
<subject>Elongation Factors</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteins</subject>
<subj-group>
<subject>Regulatory Proteins</subject>
<subj-group>
<subject>Elongation Factors</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Anatomy</subject>
<subj-group>
<subject>Digestive System</subject>
<subj-group>
<subject>Gastrointestinal Tract</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Anatomy</subject>
<subj-group>
<subject>Digestive System</subject>
<subj-group>
<subject>Gastrointestinal Tract</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Lipids</subject>
<subj-group>
<subject>Fats</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and analysis methods</subject>
<subj-group>
<subject>Chemical synthesis</subject>
<subj-group>
<subject>Biosynthetic techniques</subject>
<subj-group>
<subject>Nucleic acid synthesis</subject>
<subj-group>
<subject>RNA synthesis</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and life sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Nucleic acids</subject>
<subj-group>
<subject>RNA</subject>
<subj-group>
<subject>RNA synthesis</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes (
<italic>Bubalus bubalis</italic>
)</article-title>
<alt-title alt-title-type="running-head">Reference genes for qPCR studies across tissues of riverine buffaloes</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Kaur</surname>
<given-names>Ramneek</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Writing – original draft</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sodhi</surname>
<given-names>Monika</given-names>
</name>
<role content-type="http://credit.casrai.org/">Conceptualization</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<role content-type="http://credit.casrai.org/">Writing – original draft</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sharma</surname>
<given-names>Ankita</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Writing – original draft</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sharma</surname>
<given-names>Vijay Lakshmi</given-names>
</name>
<role content-type="http://credit.casrai.org/">Conceptualization</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Verma</surname>
<given-names>Preeti</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Swami</surname>
<given-names>Shelesh Kumar</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kumari</surname>
<given-names>Parvesh</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0001-8101-3863</contrib-id>
<name>
<surname>Mukesh</surname>
<given-names>Manishi</given-names>
</name>
<role content-type="http://credit.casrai.org/">Conceptualization</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Writing – original draft</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor001">*</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Department of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Department of Zoology, Panjab University, Chandigarh, India</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Schönbach</surname>
<given-names>Christian</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Nazarbayev University, KAZAKHSTAN</addr-line>
</aff>
<author-notes>
<fn fn-type="COI-statement" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>mmukesh_26@hotmail.com</email>
,
<email>mmukesh26@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>6</day>
<month>3</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="collection">
<year>2018</year>
</pub-date>
<volume>13</volume>
<issue>3</issue>
<elocation-id>e0191558</elocation-id>
<history>
<date date-type="received">
<day>27</day>
<month>10</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>8</day>
<month>1</month>
<year>2018</year>
</date>
</history>
<permissions>
<copyright-statement>© 2018 Kaur et al</copyright-statement>
<copyright-year>2018</copyright-year>
<copyright-holder>Kaur et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="pone.0191558.pdf"></self-uri>
<abstract>
<p>Selection of reference genes has become an integral step in any real time quantitative PCR (RT-qPCR) based expression studies. The importance of this study stems from the fact that riverine buffaloes are major dairy species of Indian sub-continent and the information generated here will be of great interest to the investigators engaged in functional genomic studies of this important livestock species. In this study, an effort was made to evaluate a panel of 10 candidate reference genes (glyceraldehyde 3-phosphate dehydrogenase (
<italic>GAPDH)</italic>
, beta- actin (
<italic>ACTB</italic>
), ubiquitously expressed transcript (
<italic>UXT</italic>
), ribosomal protein S15 (
<italic>RPS15</italic>
), ribosomal protein L-4 (
<italic>RPL4</italic>
), ribosomal protein S9 (
<italic>RPS9</italic>
), ribosomal protein S23 (
<italic>RPS23</italic>
), hydroxymethylbilane synthase (
<italic>HMBS</italic>
), β2 Microglobulin (
<italic>β2M</italic>
) and eukaryotic translation elongation factor 1 alpha 1 (
<italic>EEF1A1</italic>
) across 12 tissues (mammary gland, kidney, spleen, liver, heart, intestine, ovary, lung, muscle, brain, subcutaneous fat and testis) of riverine buffaloes. In addition to overall analysis, tissue wise evaluation of expression stability of individual RG was also performed. Three different algorithms provided in geNorm, NormFinder and BestKeeper softwares were used to evaluate the stability of 10 potential reference genes from different functional classes. The M-value given by geNorm ranged from 0.9797 (
<italic>RPS9</italic>
and
<italic>UXT</italic>
) to 1.7362 (
<italic>RPS15</italic>
). From the most stable to the least stable, genes were ranked as:
<italic>UXT/RPS9> RPL4> RPS23> EEF1A1> ACTB> HMBS> GAPDH> B2M> RPS15</italic>
. While NormFinder analysis ranked the genes as:
<italic>UXT> RPS23> RPL4> RPS9> EEF1A1> HMBS> ACTB> β2M> GAPDH> RPS15</italic>
. Based on the crossing point SD value and range of fold change expression, BestKeeper analysis ranked the genes as:
<italic>RPS9> RPS23/UXT> RPL4> GAPDH> EEF1A1> ACTB> HMBS> β2M> RPS15</italic>
. Overall the study has identified
<italic>RPS23</italic>
,
<italic>RPS9</italic>
,
<italic>RPL4</italic>
and
<italic>UXT</italic>
genes to be the most stable and appropriate RGs that could be utilized for normalization of transcriptional data in various tissues of buffaloes. This manuscript thus provide useful information on panel of reference genes that could be helpful for researchers conducting functional genomic studies in riverine buffaloes.</p>
</abstract>
<funding-group>
<award-group id="award001">
<funding-source>
<institution>National Fellow Scheme of Indian Council of Agricultural Research, New Delhi</institution>
</funding-source>
<award-id>27(3)/2010-HRD</award-id>
<principal-award-recipient>
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0001-8101-3863</contrib-id>
<name>
<surname>Mukesh</surname>
<given-names>Manishi</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award002">
<funding-source>
<institution>Inspire Fellowship from DEpartment of Science and Technology, India</institution>
</funding-source>
<principal-award-recipient>
<name>
<surname>Kaur</surname>
<given-names>Ramneek</given-names>
</name>
</principal-award-recipient>
</award-group>
<funding-statement>This work was supported under National Fellow Scheme of Indian Council of Agricultural Research, New Delhi grant number 27(3)/2010-HRD,
<ext-link ext-link-type="uri" xlink:href="http://www.icar.org.in/files/edu/Award-of-National-Fellow.pdf">http://www.icar.org.in/files/edu/Award-of-National-Fellow.pdf</ext-link>
. MM, Principal Scientist and National Fellow, received the funding from ICAR. RK has received the inspire fellowship from Department of Science and Technology, Govt. of India.</funding-statement>
</funding-group>
<counts>
<fig-count count="9"></fig-count>
<table-count count="4"></table-count>
<page-count count="15"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All relevant data are within the paper and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All relevant data are within the paper and its Supporting Information files.</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>The riverine buffalo (
<italic>Bubalus bubalis</italic>
) is major livestock species of India that plays an important role in agricultural economy due to its dairy, meat and draught potential. It contributes more than half of the total milk production of India [
<xref rid="pone.0191558.ref001" ref-type="bibr">1</xref>
]. As buffalo is the major livestock species and milk contributor for Indian subcontinent, therefore concerted efforts on genomic and transcriptomic studies to determine gene functions, gene networks and biological pathways for various phenomic traits needs to be strengthened. Understanding expressed genes pattern is critical to provide insights into complex regulatory networks and for identification of genes relevant to new biological processes. Among the array of techniques available, quantitative real time polymerase chain reaction (qPCR) is a well-established and widely used technique to quantify precise mRNA levels of target gene of interest in different biological samples. Due to its several benefits over the conventional methods of measuring RNA, like higher sensitivity, large dynamic range and potential for high throughput, the technique has revolutionized the approach to analyze the gene expression patterns in various fields of biological research [
<xref rid="pone.0191558.ref002" ref-type="bibr">2</xref>
<xref rid="pone.0191558.ref004" ref-type="bibr">4</xref>
]. However the expression data from qPCR studies needs normalization as this technique is prone to analytical variations. To achieve accurate quantification, it is quite essential to take into account the variations that might occur due to differing amount of starting material, pipetting errors, efficiencies of RNA extraction and reverse transcription. Use of internal control genes (ICGs) or reference genes (RGs) with constant expression level between samples in response to experimental treatment or physiological state, are now considered as effective method for normalization of transcriptional data to account for the experimental variations. This approach has been widely used in different cell types and tissues in various species [
<xref rid="pone.0191558.ref005" ref-type="bibr">5</xref>
<xref rid="pone.0191558.ref007" ref-type="bibr">7</xref>
]. In past though, trend was to use only single reference gene; mostly
<italic>GAPDH</italic>
,
<italic>ACTB</italic>
or
<italic>18S rRNA</italic>
to normalize the real time PCR data. However, now it is an established notion that for each experimental set-up, proper evaluation of multiple RGs is crucial to avoid variations and use of single reference gene for normalization of qPCR data is inappropriate [
<xref rid="pone.0191558.ref008" ref-type="bibr">8</xref>
]. Therefore, number of studies have successfully been conducted to identify least regulated and stably expressed RGs [
<xref rid="pone.0191558.ref009" ref-type="bibr">9</xref>
<xref rid="pone.0191558.ref011" ref-type="bibr">11</xref>
] across tissues of various species such as human, pig, sheep, bovines
<italic>etc</italic>
[
<xref rid="pone.0191558.ref012" ref-type="bibr">12</xref>
<xref rid="pone.0191558.ref018" ref-type="bibr">18</xref>
]. To our knowledge, not much information is available on set of suitable reference genes that can be used in lactation or physiological studies in riverine buffaloes (
<italic>Bubalus bubalis</italic>
) although few studies have been performed in specific cell types/tissues [
<xref rid="pone.0191558.ref019" ref-type="bibr">19</xref>
<xref rid="pone.0191558.ref021" ref-type="bibr">21</xref>
]. Considering the fact that choice of suitable reference/RGs genes is crucial for accurate expression profiling of target genes, this study presents the information on panel of appropriate RGs across 12 buffalo tissues. Such information will be a useful resource to normalize the qPCR based expression data generated across tissues during various physiological or metabolic studies in riverine buffaloes.</p>
</sec>
<sec sec-type="materials|methods" id="sec002">
<title>Materials and methods</title>
<sec id="sec003">
<title>Collection of tissue samples</title>
<p>Twelve tissue samples
<italic>viz</italic>
; Mammary gland, kidney, spleen, liver, heart, intestine, ovary, lung, muscle, brain, subcutaneous fat and testis from 5 adult riverine buffaloes were collected from Ghazipur abattoir, New Delhi. Immediately after collection, the tissue samples were snap frozen in liquid N
<sub>2</sub>
and immediately transferred to laboratory. In total, 60 samples of 12 different tissues were collected for RNA extraction and cDNA synthesis.</p>
</sec>
<sec id="sec004">
<title>Total RNA extraction and cDNA synthesis</title>
<p>Total RNA was extracted from 60 samples representing 12 tissues (mammary gland, kidney, spleen, liver, heart, intestine, ovary, lung, muscle, brain, subcutaneous fat and testis) from 5 adult riverine buffaloes using ice-cold Trizol reagent (Invitrogen, USA) according to the manufacturer’s protocol. After extraction, RNA was purified using RNeasy Mini kit (Qiagen, Germany) and then subsequently followed by on-column digestion with the RNase-free DNase (Qiagen). The RNA was quantified using Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies). RNA integrity was confirmed by denaturing agarose gel electrophoresis as well as checking the RIN value of representative RNA samples using experion Bioanalyser (BioRad, USA). The RNA samples were stored at -80°C till further use. First strand cDNA was synthesized using 100ng RNA as described in our previous studies [
<xref rid="pone.0191558.ref007" ref-type="bibr">7</xref>
,
<xref rid="pone.0191558.ref019" ref-type="bibr">19</xref>
] using the program: 25°C for 5 min, 50°C for 60 min, and 70°C for 15 min. cDNA was then diluted 1:4 (v:v) with DNase/RNase free water. Sufficient cDNA was prepared in a single run to perform the qPCR experiments for all selected genes. The primer details for reference genes are given in
<xref ref-type="table" rid="pone.0191558.t001">Table 1</xref>
. Primers specificity was confirmed in 20 μL PCR reaction using the similar protocol as described for qPCR except for the final dissociation protocol. 5 μL of the PCR product was run in a 2% agarose gel stained with ethidium bromide. The accuracy of primer pairs was also ensured by the presence of a unique peak during the dissociation step at the end of qPCR. PCR efficiency (E) for each primer pair was calculated on the basis of slope of standard curve using equation: E = 10
<sup>(1/-slope)</sup>
.</p>
<table-wrap id="pone.0191558.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.t001</object-id>
<label>Table 1</label>
<caption>
<title>Gene name, gene symbol, GenBank accession numbers, primer sequences, primer location, annealing temperature (T
<sub>a</sub>
) and amplicon length for each evaluated RGs.</title>
</caption>
<alternatives>
<graphic id="pone.0191558.t001g" xlink:href="pone.0191558.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="center" rowspan="1" colspan="1">Gene Name</th>
<th align="center" rowspan="1" colspan="1">Gene Symbol</th>
<th align="center" rowspan="1" colspan="1">Accession Number</th>
<th align="center" rowspan="1" colspan="1">Primers 5'-3' (Forward, Reverse)</th>
<th align="center" rowspan="1" colspan="1">Primer Location</th>
<th align="center" rowspan="1" colspan="1">T
<sub>a</sub>
</th>
<th align="center" rowspan="1" colspan="1">Amplicon Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" rowspan="1" colspan="1">β- actin</td>
<td align="center" rowspan="1" colspan="1">
<italic>ACTB</italic>
</td>
<td align="center" rowspan="1" colspan="1">AY141970</td>
<td align="center" rowspan="1" colspan="1">
<monospace>GCGTGGCTACAGCTTCACC</monospace>
<break></break>
<monospace>TTGATGTCACGGACGATTTC</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 4</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">56</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Glyceraldehyde 3-phosphate dehydrogenase</td>
<td align="center" rowspan="1" colspan="1">
<italic>GAPDH</italic>
</td>
<td align="center" rowspan="1" colspan="1">BC102589</td>
<td align="center" rowspan="1" colspan="1">
<monospace>TGGAAAGGCCATCACCATCT</monospace>
<break></break>
<monospace>CCCACTTGATGTTGGCAG</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 4–5</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">60</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Eukaryotic translation elongation factor 1 alpha 1</td>
<td align="center" rowspan="1" colspan="1">
<italic>EEF1A1</italic>
</td>
<td align="center" rowspan="1" colspan="1">BC105315</td>
<td align="center" rowspan="1" colspan="1">
<monospace>CATCCCAGGCTGACTGTGC</monospace>
<break></break>
<monospace>TGTAAGCCAAAAGGGCATGC</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 3–4</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">101</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">β2 Microglobulin</td>
<td align="center" rowspan="1" colspan="1">
<italic>B2M</italic>
</td>
<td align="center" rowspan="1" colspan="1">NM_173893</td>
<td align="center" rowspan="1" colspan="1">
<monospace>CTGCTATGTGTATGGGTTCC</monospace>
<break></break>
<monospace>GGAGTGAACTCAGCGTG</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 2</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">101</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Hydroxymethylbilane synthase</td>
<td align="center" rowspan="1" colspan="1">
<italic>HMBS</italic>
</td>
<td align="center" rowspan="1" colspan="1">BC112573.1</td>
<td align="center" rowspan="1" colspan="1">
<monospace>CTTTGGAGAGGAATGAAGTGG AATGGTGAAGCCAGGAGGAA</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 5–6</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">80</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Ribosomal protein L4</td>
<td align="center" rowspan="1" colspan="1">
<italic>RPL4</italic>
</td>
<td align="center" rowspan="1" colspan="1">NM_001014894</td>
<td align="center" rowspan="1" colspan="1">
<monospace>TTGGAAACATGTGTCGTGGG GCAGATGGCGTATCGCTTCT</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 3–4</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">101</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Ribosomal protein S15</td>
<td align="center" rowspan="1" colspan="1">
<italic>RPS15</italic>
</td>
<td align="center" rowspan="1" colspan="1">BC108231</td>
<td align="center" rowspan="1" colspan="1">
<monospace>GAATGGTGCGCATGAATGTC</monospace>
<break></break>
<monospace>GACTTTGGAGCACGGCCTAA</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 2</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">101</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Ribosomal protein S23</td>
<td align="center" rowspan="1" colspan="1">
<italic>RPS23</italic>
</td>
<td align="center" rowspan="1" colspan="1">BC102049</td>
<td align="center" rowspan="1" colspan="1">
<monospace>CCCAATGATGGTTGCTTGAA</monospace>
<break></break>
<monospace>CGGACTCCAGGAATGTCACC</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 3–4</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">101</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Ribosomal protein S9</td>
<td align="center" rowspan="1" colspan="1">
<italic>RPS9</italic>
</td>
<td align="center" rowspan="1" colspan="1">DT860044</td>
<td align="center" rowspan="1" colspan="1">
<monospace>CCTCGACCAAGAGCTGAAG</monospace>
<break></break>
<monospace>CCTCCAGACCTCACGTTTGTTC</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 2–3</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">54</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Ubiquitously
<break></break>
expressed transcript</td>
<td align="center" rowspan="1" colspan="1">
<italic>UXT</italic>
</td>
<td align="center" rowspan="1" colspan="1">CR452243</td>
<td align="center" rowspan="1" colspan="1">
<monospace>TGTGGCCCTTGGATATGGTT</monospace>
<break></break>
<monospace>GGTTGTCGCTGAGCTCTGTG</monospace>
</td>
<td align="center" rowspan="1" colspan="1">EXON 5–6</td>
<td align="center" rowspan="1" colspan="1">60°C</td>
<td align="center" rowspan="1" colspan="1">101</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</sec>
<sec id="sec005">
<title>Real-time quantitative PCR (qPCR)</title>
<p>The qPCR reactions were performed in a final volume of 10 μL containing 4 μL diluted cDNA combined with 6 μL of master mix composed of 5 μL Maxima SYBR Green/ROX qPCR master mix (2X) (Fermentas Thermo, USA), 0.4 μL each of 10 μM forward and reverse primers, and 0.2 μL DNase/RNase free water. The reactions set up in Step one plus real time PCR instrument (ABI, California) were performed at 2 min at 50°C, 10 min at 95°C, 40 cycles of 15 s at 95°C (denaturation) and 1 min at 60°C (annealing+extension). The standard curves were made with 5 point relative standard curve of five-fold serial dilutions of the pooled cDNA. All the samples were run in duplicates along with the non-template control (NTC). To confirm single gene-specific peaks dissociation protocol with incremental temperatures of 95°C for 15 s plus 65°C for 15 s was used. The qPCR expression data for each gene was extracted in the form of quantification cycle (Cq) and data was subjected for subsequent analysis.</p>
</sec>
<sec id="sec006">
<title>Evaluation of reference genes (RGs)</title>
<p>For the evaluation RGs expression stability, three different statistical algorithms; geNorm NormFinder [
<xref rid="pone.0191558.ref022" ref-type="bibr">22</xref>
] and BestKeeper [
<xref rid="pone.0191558.ref023" ref-type="bibr">23</xref>
] were utilized. Relative Cq values based on comparative Cq-method were the input data for geNorm and Normfinder [
<xref rid="pone.0191558.ref002" ref-type="bibr">2</xref>
,
<xref rid="pone.0191558.ref024" ref-type="bibr">24</xref>
]. The geNorm software defines the gene stability value (M value) by comparing the pairwise variations among the reference genes. In addition, pair wise variation analysis (V values) was carried out using geNorm to select optimal number of RGs to be used for normalization of expression data across buffalo tissues. The contribution of each gene to the variance of normalization factor ratio was calculated to illustrate the effect of adding or removing a particular gene from the final set of RGs. NormFinder algorithm ranks the reference genes by calculating the intra and inter- group variations of expression of each of the reference genes. The BestKeeper analysis included calculation of crossing point standard deviations [{SD, ±CP} <1] and results were displayed as standard deviation (S.D) and coefficient of variance (C.V). The programme has its assumption that the genes which are stably expressed should be highly correlated to each other.</p>
</sec>
</sec>
<sec sec-type="results" id="sec007">
<title>Results</title>
<p>In the present study, a total of 60 samples of 12 tissue types from 5 adult buffaloes were included to identify panel of RGs for normalization of qPCR data across buffalo tissues. Good quality RNA as reflected by A
<sub>260</sub>
/A
<sub>280</sub>
ratio was extracted from each tissue sample (2.09±0.031). Presence of single melting peak ensured specific amplification of each RG. The co-efficient of determination (R
<sup>2</sup>
) and efficiency also accounted for qPCR performance (
<xref ref-type="supplementary-material" rid="pone.0191558.s006">S1 Table</xref>
and
<xref ref-type="supplementary-material" rid="pone.0191558.s001">S1</xref>
<xref ref-type="supplementary-material" rid="pone.0191558.s005">S5</xref>
Figs). The qPCR performance in terms of slope of five points standard curves was in the range of -3.138 to -3.646 and showed sufficiently good amplification efficiencies ranging from 88.063% for
<italic>UXT</italic>
to 109.26% for
<italic>RPL4</italic>
.</p>
<p>The average quantification cycle (Cq) values for 10 RGs were quite variable and ranged from 19.3 for
<italic>RPS23</italic>
to 25.6 for
<italic>HMBS</italic>
(
<xref ref-type="fig" rid="pone.0191558.g001">Fig 1</xref>
).</p>
<fig id="pone.0191558.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Expression levels of individual candidate RGs.</title>
<p>The data is presented as quantification cycle (Cq) values of each gene in the box-whisker diagram. The median is shown as a line across the box while whiskers indicate maximum and minimum values.</p>
</caption>
<graphic xlink:href="pone.0191558.g001"></graphic>
</fig>
<sec id="sec008">
<title>Expression stability of candidate RGs</title>
<p>Three softwares namely geNorm, NormFinder and BestKeeper were utilized to determine the expression stability of 10 candidate RGs across 12 tissues of riverine buffaloes.</p>
<sec id="sec009">
<title>Identification of RGs by geNorm analysis</title>
<p>The geNorm software evaluated the expression stability (M value) of each candidate genes and ranked them from the most stable (lowest M value) to least stable (highest M value). On combining the expression data of all 12 tissues, all except
<italic>GAPDH</italic>
,
<italic>β2M</italic>
and
<italic>RPS15</italic>
genes showed their expression stability (M value) within the acceptable range (<1.5). The
<italic>M-</italic>
value ranged from 0.9707 (
<italic>RPS9</italic>
and
<italic>UXT</italic>
) to 1.7362 (
<italic>RPS15</italic>
) (
<xref ref-type="table" rid="pone.0191558.t002">Table 2</xref>
). The overall expression stability criteria ranked
<italic>RPS9</italic>
and
<italic>UXT</italic>
as most stable genes. The analysis thus classified
<italic>GAPDH</italic>
,
<italic>β2M</italic>
and
<italic>RPS15</italic>
as less suitable RGs for calculation of normalization factor across buffalo tissues (
<xref ref-type="table" rid="pone.0191558.t002">Table 2</xref>
). Across 12 buffalo tissues, genes were ranked in terms of expression stability index as:
<italic>UXT/RPS9</italic>
>
<italic>RPL4</italic>
>
<italic>RPS23</italic>
>
<italic>EEF1A1</italic>
>
<italic>ACTB</italic>
>
<italic>HMBS</italic>
>
<italic>GAPDH</italic>
>
<italic>β2M</italic>
>
<italic>RPS15</italic>
(
<xref ref-type="fig" rid="pone.0191558.g002">Fig 2</xref>
).</p>
<fig id="pone.0191558.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Ranking of RGs based on average expression stability values (M values).</title>
</caption>
<graphic xlink:href="pone.0191558.g002"></graphic>
</fig>
<table-wrap id="pone.0191558.t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.t002</object-id>
<label>Table 2</label>
<caption>
<title>Ranking of RGs across 12 tissues according to their expression stability by geNorm and NormFinder softwares.</title>
</caption>
<alternatives>
<graphic id="pone.0191558.t002g" xlink:href="pone.0191558.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="center" rowspan="2" colspan="1">Gene</th>
<th align="center" colspan="2" rowspan="1">GeNorm</th>
<th align="center" colspan="2" rowspan="1">Normfinder</th>
</tr>
<tr>
<th align="center" rowspan="1" colspan="1">M-value</th>
<th align="center" rowspan="1" colspan="1">Rank</th>
<th align="center" rowspan="1" colspan="1">Stability value</th>
<th align="center" rowspan="1" colspan="1">Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>UXT</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.9707</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">0.475</td>
<td align="center" rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>RPS9</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.9707</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">0.674</td>
<td align="center" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>RPL4</italic>
</td>
<td align="center" rowspan="1" colspan="1">1.0337</td>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">0.692</td>
<td align="center" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>RPS23</italic>
</td>
<td align="center" rowspan="1" colspan="1">1.0646</td>
<td align="center" rowspan="1" colspan="1">3</td>
<td align="center" rowspan="1" colspan="1">0.621</td>
<td align="center" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>EEF1A1</italic>
</td>
<td align="center" rowspan="1" colspan="1">1.1660</td>
<td align="center" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1">0.706</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>ACTB</italic>
</td>
<td align="center" rowspan="1" colspan="1">1.3098</td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">0.838</td>
<td align="center" rowspan="1" colspan="1">7</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>HMBS</italic>
</td>
<td align="center" rowspan="1" colspan="1">1.4169</td>
<td align="center" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1">0.774</td>
<td align="center" rowspan="1" colspan="1">6</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>GAPDH</italic>
</td>
<td align="center" rowspan="1" colspan="1">1.5148</td>
<td align="center" rowspan="1" colspan="1">7</td>
<td align="center" rowspan="1" colspan="1">0.866</td>
<td align="center" rowspan="1" colspan="1">8</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>β2M</italic>
</td>
<td align="center" rowspan="1" colspan="1">1.6099</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">0.934</td>
<td align="center" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>RPS15</italic>
</td>
<td align="center" rowspan="1" colspan="1">1.7362</td>
<td align="center" rowspan="1" colspan="1">9</td>
<td align="center" rowspan="1" colspan="1">1.264</td>
<td align="center" rowspan="1" colspan="1">10</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>Apart from calculating the expression stability (M) value, the V value was also calculated in different combinations: V2/V3, V3/V4, V4/V5
<italic>etc</italic>
by adding the third, fourth and fifth less stable genes. The analysis showed that V2/V3 combination gave slightly higher V value (0.304) than the acceptable limit (recommended cut off value of 0.15) (
<xref ref-type="fig" rid="pone.0191558.g003">Fig 3</xref>
). However, with the addition of
<italic>RPS23</italic>
in V3/V4 gene combination, some drop in V value was observed (0.228). Though this value was also little higher than the standard acceptable V value, however considering the 12 diverse type of tissues evaluated in the study, the value of 0.228 was considered to be in acceptable range. Few studies [
<xref rid="pone.0191558.ref025" ref-type="bibr">25</xref>
<xref rid="pone.0191558.ref027" ref-type="bibr">27</xref>
] have also indicated slightly higher V value. In our opinion, for studies handling diverse sample types, V value ≤ 0.15 should be considered as a suggestive threshold criteria and not necessarily a universal cut-off criteria in deciding the number of genes to be used to calculate normalization factor. The V value threshold vary according to the biological system and type of samples being evaluated. Therefore, we used the lowest Vn/n+1 value (0.228) to determine the number of RGs adequate for normalization. Based on the gene stability and pair wise analysis,
<italic>UXT</italic>
,
<italic>RPS9</italic>
,
<italic>RPL4</italic>
and
<italic>RPS23</italic>
were found to be the appropriate RGs for normalization of expression data across 12 buffalo tissues.</p>
<fig id="pone.0191558.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.g003</object-id>
<label>Fig 3</label>
<caption>
<title>The pairwise variation (V) analysis of candidate RGs for determining the optimal number of genes for normalization across 12 buffalo tissues.</title>
</caption>
<graphic xlink:href="pone.0191558.g003"></graphic>
</fig>
<p>In addition to overall analysis, an attempt was made to evaluate the expression stability of candidate RGs in each of the 12 tissue types. The tissue wise geNorm analysis is shown in
<xref ref-type="fig" rid="pone.0191558.g004">Fig 4</xref>
. In majority of the tissues (9 out of 12),
<italic>UXT</italic>
was found to be most stable and ranked number one (
<xref ref-type="fig" rid="pone.0191558.g004">Fig 4</xref>
and
<xref ref-type="supplementary-material" rid="pone.0191558.s007">S2 Table</xref>
). Similarly
<italic>RPL4</italic>
and
<italic>RPS9</italic>
, the two most stable genes identified across 12 tissues; were also ranked higher in several tissue types, indicating their suitability as RGs both within majority tissue types as well as across all tissue types.</p>
<fig id="pone.0191558.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.g004</object-id>
<label>Fig 4</label>
<caption>
<title>Tissue wise expression stability value (M value) of candidate RGs by geNorm analysis.</title>
</caption>
<graphic xlink:href="pone.0191558.g004"></graphic>
</fig>
<p>The pair wise analysis was carried out for each tissue to calculate V values. The graphs showing pair wise analysis for individual tissue type is presented in
<xref ref-type="fig" rid="pone.0191558.g005">Fig 5</xref>
. The V2/V3 combination provided V value close to threshold value of 0.15 for each individual tissue. The V values were: mammary gland (0.18), kidney (0.051), spleen (0.089), liver (0.108), heart (0.071), intestine (0.079), ovary (0.123), lung (0.116), muscle (0.114), brain (0.159), subcutaneous fat (0.173) and testis (0.169). Thus, for individual tissue, V2/3 combination gave V value close to the acceptable limit.</p>
<fig id="pone.0191558.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.g005</object-id>
<label>Fig 5</label>
<caption>
<title>Pairwise variation (V) analysis of 10 RGs to determine optimal number of reference genes for normalization of qPCR data in individual buffalo tissue.</title>
</caption>
<graphic xlink:href="pone.0191558.g005"></graphic>
</fig>
</sec>
<sec id="sec010">
<title>Selection of RGs by NormFinder analysis</title>
<p>For NormFinder analysis, C
<sub>q</sub>
values of 10 genes were converted into relative quantities. The NormFinder based gene stability values are shown in
<xref ref-type="table" rid="pone.0191558.t002">Table 2</xref>
. The Normfinder output was considerably similar to that of geNorm, as same set of genes (
<italic>UXT</italic>
,
<italic>RPS23</italic>
,
<italic>RPL4</italic>
,
<italic>RPS9</italic>
,
<italic>EEF1A1</italic>
) was most stable in Normfinder analysis across 12 tissues. Genes like
<italic>β2M</italic>
,
<italic>GAPDH</italic>
and
<italic>RPS15</italic>
showed higher expression variability and were least stable.
<italic>UXT</italic>
as in geNorm analysis was most stable gene followed by
<italic>RPS23</italic>
,
<italic>RPS9</italic>
and
<italic>RPL4</italic>
. Ranking of genes across 12 tissues from most stable to least stable was as follows:
<italic>UXT</italic>
>
<italic>RPS23</italic>
>
<italic>RPS9</italic>
>
<italic>RPL4</italic>
>
<italic>EEF1A1</italic>
>
<italic>HMBS</italic>
>
<italic>ACTB</italic>
>
<italic>β2M</italic>
>
<italic>GAPDH</italic>
>
<italic>RPS15</italic>
(
<xref ref-type="fig" rid="pone.0191558.g006">Fig 6</xref>
and
<xref ref-type="table" rid="pone.0191558.t002">Table 2</xref>
). Similar to geNorm, gene expression stability was also evaluated using NormFinder tool for individual tissue type. The analysis showed almost similar ranking of RGs in individual tissue as determined in the geNorm analysis (data not shown).</p>
<fig id="pone.0191558.g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.g006</object-id>
<label>Fig 6</label>
<caption>
<title>Bar plot showing gene variability across 10 RGs by NormFinder.</title>
</caption>
<graphic xlink:href="pone.0191558.g006"></graphic>
</fig>
<p>NormFinder also accounted for inter and intra-group variation, as well as the estimation of variances. The inter- and intra- group variation analysis revealed
<italic>RPL4</italic>
,
<italic>RPS23</italic>
,
<italic>RPS9</italic>
and
<italic>UXT</italic>
genes to be least variable across tissues (Figs
<xref ref-type="fig" rid="pone.0191558.g007">7</xref>
and
<xref ref-type="fig" rid="pone.0191558.g008">8</xref>
). The inter-group variation analysis covering all 12 tissues (mammary gland, kidney, spleen, liver, heart, intestine, ovary, lung, muscle, brain, subcutaneous fat and testis) showed these 4 genes to be more stably expressed genes (
<xref ref-type="fig" rid="pone.0191558.g007">Fig 7</xref>
). On the other hand, in intra-group variation analysis, three most variable genes;
<italic>RPS15</italic>
,
<italic>ACTB</italic>
and
<italic>B2M</italic>
were identified (
<xref ref-type="fig" rid="pone.0191558.g008">Fig 8</xref>
). The
<italic>RPS15</italic>
expression was variable in lung, brain and muscle;
<italic>ACTB</italic>
expression was variable in liver, intestine, heart and mammary gland; and
<italic>β2M</italic>
expression was variable in spleen, liver, intestine, subcutaneous fat and testis. Therefore, these three genes were not classified as suitable RGs in any of the analysis.</p>
<fig id="pone.0191558.g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.g007</object-id>
<label>Fig 7</label>
<caption>
<title>Inter-group variation analysis of RGs across different tissues.</title>
</caption>
<graphic xlink:href="pone.0191558.g007"></graphic>
</fig>
<fig id="pone.0191558.g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.g008</object-id>
<label>Fig 8</label>
<caption>
<title>Intra-group variation analysis of candidate RGs in each tissue.</title>
</caption>
<graphic xlink:href="pone.0191558.g008"></graphic>
</fig>
</sec>
<sec id="sec011">
<title>Evaluation of expression variation by BestKeeper analysis</title>
<p>The gene expression variation based on Cq values for 10 candidate RGs was calculated using BestKeeper algorithm. The
<italic>RPS9</italic>
gene with lowest crossing point SD value of 0.75 revealed minimum variation (
<xref ref-type="table" rid="pone.0191558.t003">Table 3</xref>
). This was followed by
<italic>UXT</italic>
,
<italic>RPS23/RPL4</italic>
,
<italic>GAPDH</italic>
,
<italic>ACTB</italic>
,
<italic>EEF1A1</italic>
and
<italic>HMBS</italic>
genes with SD value of 0.95, 0.97, 1.11, 1.13, 1.22 and 1.34 respectively. On the other hand,
<italic>β2M</italic>
and
<italic>RPS15</italic>
genes were found to be least stable as variation was greater with SD value of 1.63 and 1.89 respectively. Based on the crossing point SD value and range of fold change expression, BestKeeper analysis has classified genes from most to least stable genes as follows:
<italic>RPS9</italic>
>
<italic>UXT</italic>
>
<italic>RPS23/RPL4</italic>
>
<italic>GAPDH</italic>
>
<italic>ACTB</italic>
>
<italic>EEF1A1</italic>
>
<italic>HMBS</italic>
>
<italic>β2M</italic>
>
<italic>RPS15</italic>
.</p>
<table-wrap id="pone.0191558.t003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.t003</object-id>
<label>Table 3</label>
<caption>
<title>Parameters based quantitative cycle (Cq) values for 10 candidate RGs.</title>
</caption>
<alternatives>
<graphic id="pone.0191558.t003g" xlink:href="pone.0191558.t003"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="center" rowspan="1" colspan="1"> </th>
<th align="center" rowspan="1" colspan="1">
<italic>ACTB</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>GAPDH</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>RPL4</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>EEF1A1</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>RPS15</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>RPS23</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>RPS9</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>HMBS</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>B2M</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>UXT</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">N</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">54</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">geo Mean [Cq]</td>
<td align="center" rowspan="1" colspan="1">20.68</td>
<td align="center" rowspan="1" colspan="1">20.30</td>
<td align="center" rowspan="1" colspan="1">20.81</td>
<td align="center" rowspan="1" colspan="1">19.94</td>
<td align="center" rowspan="1" colspan="1">22.69</td>
<td align="center" rowspan="1" colspan="1">19.11</td>
<td align="center" rowspan="1" colspan="1">19.74</td>
<td align="center" rowspan="1" colspan="1">25.44</td>
<td align="center" rowspan="1" colspan="1">19.69</td>
<td align="center" rowspan="1" colspan="1">23.93</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ar Mean [Cq]</td>
<td align="center" rowspan="1" colspan="1">20.72</td>
<td align="center" rowspan="1" colspan="1">20.35</td>
<td align="center" rowspan="1" colspan="1">20.85</td>
<td align="center" rowspan="1" colspan="1">19.99</td>
<td align="center" rowspan="1" colspan="1">22.80</td>
<td align="center" rowspan="1" colspan="1">19.15</td>
<td align="center" rowspan="1" colspan="1">19.76</td>
<td align="center" rowspan="1" colspan="1">25.50</td>
<td align="center" rowspan="1" colspan="1">19.81</td>
<td align="center" rowspan="1" colspan="1">23.96</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">min [Cq]</td>
<td align="center" rowspan="1" colspan="1">17.82</td>
<td align="center" rowspan="1" colspan="1">16.32</td>
<td align="center" rowspan="1" colspan="1">18.28</td>
<td align="center" rowspan="1" colspan="1">17.21</td>
<td align="center" rowspan="1" colspan="1">19.15</td>
<td align="center" rowspan="1" colspan="1">16.41</td>
<td align="center" rowspan="1" colspan="1">18.07</td>
<td align="center" rowspan="1" colspan="1">20.47</td>
<td align="center" rowspan="1" colspan="1">15.29</td>
<td align="center" rowspan="1" colspan="1">21.99</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">max [Cq]</td>
<td align="center" rowspan="1" colspan="1">24.82</td>
<td align="center" rowspan="1" colspan="1">22.83</td>
<td align="center" rowspan="1" colspan="1">23.67</td>
<td align="center" rowspan="1" colspan="1">23.46</td>
<td align="center" rowspan="1" colspan="1">27.99</td>
<td align="center" rowspan="1" colspan="1">21.72</td>
<td align="center" rowspan="1" colspan="1">23.80</td>
<td align="center" rowspan="1" colspan="1">28.20</td>
<td align="center" rowspan="1" colspan="1">26.11</td>
<td align="center" rowspan="1" colspan="1">27.97</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Std dev [±Cq]</td>
<td align="center" rowspan="1" colspan="1">1.13</td>
<td align="center" rowspan="1" colspan="1">1.11</td>
<td align="center" rowspan="1" colspan="1">0.97</td>
<td align="center" rowspan="1" colspan="1">1.22</td>
<td align="center" rowspan="1" colspan="1">1.89</td>
<td align="center" rowspan="1" colspan="1">0.97</td>
<td align="center" rowspan="1" colspan="1">0.75</td>
<td align="center" rowspan="1" colspan="1">1.34</td>
<td align="center" rowspan="1" colspan="1">1.63</td>
<td align="center" rowspan="1" colspan="1">0.95</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CV [%Cq]</td>
<td align="center" rowspan="1" colspan="1">5.44</td>
<td align="center" rowspan="1" colspan="1">5.46</td>
<td align="center" rowspan="1" colspan="1">4.64</td>
<td align="center" rowspan="1" colspan="1">6.08</td>
<td align="center" rowspan="1" colspan="1">8.30</td>
<td align="center" rowspan="1" colspan="1">5.08</td>
<td align="center" rowspan="1" colspan="1">3.78</td>
<td align="center" rowspan="1" colspan="1">5.25</td>
<td align="center" rowspan="1" colspan="1">8.25</td>
<td align="center" rowspan="1" colspan="1">3.95</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">min [x-fold]</td>
<td align="center" rowspan="1" colspan="1">-7.25</td>
<td align="center" rowspan="1" colspan="1">-15.71</td>
<td align="center" rowspan="1" colspan="1">-5.78</td>
<td align="center" rowspan="1" colspan="1">-6.63</td>
<td align="center" rowspan="1" colspan="1">-11.64</td>
<td align="center" rowspan="1" colspan="1">-6.48</td>
<td align="center" rowspan="1" colspan="1">-3.18</td>
<td align="center" rowspan="1" colspan="1">-31.34</td>
<td align="center" rowspan="1" colspan="1">-21.09</td>
<td align="center" rowspan="1" colspan="1">-3.83</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">max [x-fold]</td>
<td align="center" rowspan="1" colspan="1">17.68</td>
<td align="center" rowspan="1" colspan="1">5.79</td>
<td align="center" rowspan="1" colspan="1">7.23</td>
<td align="center" rowspan="1" colspan="1">11.49</td>
<td align="center" rowspan="1" colspan="1">39.42</td>
<td align="center" rowspan="1" colspan="1">6.12</td>
<td align="center" rowspan="1" colspan="1">16.62</td>
<td align="center" rowspan="1" colspan="1">6.79</td>
<td align="center" rowspan="1" colspan="1">86.01</td>
<td align="center" rowspan="1" colspan="1">16.49</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Std dev
<break></break>
[± x-fold]</td>
<td align="center" rowspan="1" colspan="1">2.19</td>
<td align="center" rowspan="1" colspan="1">2.16</td>
<td align="center" rowspan="1" colspan="1">1.96</td>
<td align="center" rowspan="1" colspan="1">2.32</td>
<td align="center" rowspan="1" colspan="1">3.71</td>
<td align="center" rowspan="1" colspan="1">1.96</td>
<td align="center" rowspan="1" colspan="1">1.68</td>
<td align="center" rowspan="1" colspan="1">2.53</td>
<td align="center" rowspan="1" colspan="1">3.11</td>
<td align="center" rowspan="1" colspan="1">1.93</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t003fn001">
<p>N = number of samples, geo Mean[Cq] = geometric mean of Cq; ar Mean[Cq] = arithmetic mean of Cq; min [Cq] and max [Cq] = extreme values of Cq; Std dev [±Cq] = standard deviation of the Cq; CV [%Cq] = coefficient of variation expressed as a percentage on the Cq values; min [x-fold] and max [x-fold] = extreme values of expression levels expressed as absolute x-fold over or under coefficient; std dev[±x-fold] = standard deviation of the absolute regulation coefficients.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Additionally, the inter-gene relationship for 10 RGs pairs was also estimated. Strong correlation coefficients (r) were observed for
<italic>UXT/RPS23</italic>
(r = 0.654),
<italic>RPS23/RPL4</italic>
(r = 0.650), UXT/RPS9 (r = 0.642),
<italic>RPS9/RPL4</italic>
(r = 0.623),
<italic>UXT/β2M</italic>
(r = 0.575) and
<italic>UXT/HMBS</italic>
(r = 0.536) (
<xref ref-type="table" rid="pone.0191558.t004">Table 4</xref>
). This analysis indicated that these pairs of gene have similar expression pattern across various tissues in buffaloes.</p>
<table-wrap id="pone.0191558.t004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.t004</object-id>
<label>Table 4</label>
<caption>
<title>Repeated pair-wise correlation amongst genes with BestKeeper index.</title>
</caption>
<alternatives>
<graphic id="pone.0191558.t004g" xlink:href="pone.0191558.t004"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" colspan="11" rowspan="1">
<italic>Pearson correlation coefficient (r)</italic>
</th>
</tr>
<tr>
<th align="center" rowspan="1" colspan="1">vs.</th>
<th align="center" rowspan="1" colspan="1">
<italic>ACTB</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>GAPDH</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>RPL4</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>EEF1A1</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>RPS15</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>RPS23</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>RPS9</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>HMBS</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>B2M</italic>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>UXT</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>GAPDH</italic>
</td>
<td align="center" rowspan="1" colspan="1">-0.359</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.008</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>RPL4</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.127</td>
<td align="center" rowspan="1" colspan="1">0.266</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.362</td>
<td align="center" rowspan="1" colspan="1">0.052</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>EEF1A1</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>0</italic>
.
<italic>566</italic>
</td>
<td align="center" rowspan="1" colspan="1">-0.087</td>
<td align="center" rowspan="1" colspan="1">0.404</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.531</td>
<td align="center" rowspan="1" colspan="1">0.002</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>RPS15</italic>
</td>
<td align="center" rowspan="1" colspan="1">-0.100</td>
<td align="center" rowspan="1" colspan="1">0.525</td>
<td align="center" rowspan="1" colspan="1">-0.013</td>
<td align="center" rowspan="1" colspan="1">0.078</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.475</td>
<td align="center" rowspan="1" colspan="1">0.000</td>
<td align="center" rowspan="1" colspan="1">0.929</td>
<td align="center" rowspan="1" colspan="1">0.578</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>RPS23</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.230</td>
<td align="center" rowspan="1" colspan="1">0.184</td>
<td align="center" rowspan="1" colspan="1">0.650</td>
<td align="center" rowspan="1" colspan="1">0.419</td>
<td align="center" rowspan="1" colspan="1">0.115</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.095</td>
<td align="center" rowspan="1" colspan="1">0.183</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.002</td>
<td align="center" rowspan="1" colspan="1">0.410</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>RPS9</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.237</td>
<td align="center" rowspan="1" colspan="1">0.095</td>
<td align="center" rowspan="1" colspan="1">0.623</td>
<td align="center" rowspan="1" colspan="1">0.274</td>
<td align="center" rowspan="1" colspan="1">-0.284</td>
<td align="center" rowspan="1" colspan="1">0.415</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.084</td>
<td align="center" rowspan="1" colspan="1">0.493</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.045</td>
<td align="center" rowspan="1" colspan="1">0.037</td>
<td align="center" rowspan="1" colspan="1">0.002</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>HMBS</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.302</td>
<td align="center" rowspan="1" colspan="1">0.338</td>
<td align="center" rowspan="1" colspan="1">0.189</td>
<td align="center" rowspan="1" colspan="1">0.416</td>
<td align="center" rowspan="1" colspan="1">0.568</td>
<td align="center" rowspan="1" colspan="1">0.390</td>
<td align="center" rowspan="1" colspan="1">0.117</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.027</td>
<td align="center" rowspan="1" colspan="1">0.012</td>
<td align="center" rowspan="1" colspan="1">0.170</td>
<td align="center" rowspan="1" colspan="1">0.002</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.004</td>
<td align="center" rowspan="1" colspan="1">0.399</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>B2M</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.237</td>
<td align="center" rowspan="1" colspan="1">0.293</td>
<td align="center" rowspan="1" colspan="1">0.423</td>
<td align="center" rowspan="1" colspan="1">0.488</td>
<td align="center" rowspan="1" colspan="1">0.417</td>
<td align="center" rowspan="1" colspan="1">0.448</td>
<td align="center" rowspan="1" colspan="1">0.269</td>
<td align="center" rowspan="1" colspan="1">0.488</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.084</td>
<td align="center" rowspan="1" colspan="1">0.032</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.002</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.050</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">
<italic>UXT</italic>
</td>
<td align="center" rowspan="1" colspan="1">0.272</td>
<td align="center" rowspan="1" colspan="1">0.226</td>
<td align="center" rowspan="1" colspan="1">0.590</td>
<td align="center" rowspan="1" colspan="1">0.424</td>
<td align="center" rowspan="1" colspan="1">0.053</td>
<td align="center" rowspan="1" colspan="1">0.654</td>
<td align="center" rowspan="1" colspan="1">0.642</td>
<td align="center" rowspan="1" colspan="1">0.536</td>
<td align="center" rowspan="1" colspan="1">0.575</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.046</td>
<td align="center" rowspan="1" colspan="1">0.101</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.705</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Best
<break></break>
Keeper vs.</td>
<td align="center" rowspan="1" colspan="1">
<italic>ACTB</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>GAPDH</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>RPL4</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>EEF1A1</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>RPS15</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>RPS23</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>RPS9</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>HMBS</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>B2M</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>UXT</italic>
</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">coeff. of corr. [r]</td>
<td align="center" rowspan="1" colspan="1">0.383</td>
<td align="center" rowspan="1" colspan="1">0.444</td>
<td align="center" rowspan="1" colspan="1">0.639</td>
<td align="center" rowspan="1" colspan="1">0.639</td>
<td align="center" rowspan="1" colspan="1">0.492</td>
<td align="center" rowspan="1" colspan="1">0.703</td>
<td align="center" rowspan="1" colspan="1">0.455</td>
<td align="center" rowspan="1" colspan="1">0.736</td>
<td align="center" rowspan="1" colspan="1">0.808</td>
<td align="center" rowspan="1" colspan="1">0.759</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">p-value</td>
<td align="center" rowspan="1" colspan="1">0.004</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>However, certain pairs of genes showed poor correlation like
<italic>RPS9</italic>
with
<italic>RPS15; ACTB</italic>
with
<italic>GAPDH</italic>
,
<italic>RPS15</italic>
,
<italic>RPL4</italic>
;
<italic>RPS15</italic>
with
<italic>EEF1A1</italic>
,
<italic>RPL4</italic>
and
<italic>GAPDH</italic>
with
<italic>EEF1A1</italic>
. Further BestKeeper index was calculated for each gene and the correlation between each candidate RG and BestKeeper was estimated. The relationship between RG and BestKeeper was described in terms of Pearson correlation coefficient (r), coefficient of determination (r
<sup>2</sup>
) and the p value. p<0.05 was obtained for all genes indicating a significant contributions of all genes towards the index. The best correlation between BestKeeper and RG was observed for
<italic>β2M</italic>
(r = 0.808),
<italic>UXT</italic>
(r = 0.759) and
<italic>HMBS</italic>
(r = 0.736) followed by
<italic>RPS23</italic>
(r = 0.703),
<italic>RPL4/EEF1A1</italic>
(r = 0.639),
<italic>RPS15</italic>
(0.492) and
<italic>RPS9</italic>
(r = 0.481). The high correlation values for these genes indicated their reliability as reference genes except
<italic>β2M</italic>
,
<italic>HMBS</italic>
and
<italic>EEF1A1</italic>
which although showed high correlation value but they showed high x fold change values of 3.11, 2.53 and 2.32 (
<xref ref-type="table" rid="pone.0191558.t003">Table 3</xref>
) respectively making them unsuitable as RGs.
<italic>UXT</italic>
was termed as best reference gene based on the highest correlation value and
<italic>RPS9</italic>
was best RG on the lowest SD and fold change values. The statistically significant correlation shown by these RGs with the BestKeeper index appeared to be consistent with their evaluation as assessed by geNorm and NormFinder.</p>
<p>Hence,
<italic>UXT</italic>
,
<italic>RPS23</italic>
,
<italic>RPL4</italic>
and
<italic>RPS9</italic>
were found to be the most stable RGs with all three algorithms, geNorm, NormFinder and BestKeeper. The expression stability of 4 selected RGs across different tissues was also supported by their near constant Cq values as shown in
<xref ref-type="fig" rid="pone.0191558.g009">Fig 9</xref>
. Thus, in the present study, expression stability of 10 candidate genes from different functional classes were evaluated to select appropriate RGs for qPCR based expression studies in tissues samples of riverine buffaloes.</p>
<fig id="pone.0191558.g009" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0191558.g009</object-id>
<label>Fig 9</label>
<caption>
<title>Expression stability of 4 selected RGs (
<italic>RPL4</italic>
,
<italic>RPS23</italic>
,
<italic>RPS9</italic>
,
<italic>UXT</italic>
) across buffalo tissues.</title>
<p>MG-Mammary Gland, KID-Kidney, SPL-Spleen, LIV-Liver, HRT-Heart, INT-Intestine, OVA-Ovary, LUNG-Lung, MUS-Muscle, BRN-Brain, S. FAT-Subcutaneous fat, TES-Testis.</p>
</caption>
<graphic xlink:href="pone.0191558.g009"></graphic>
</fig>
</sec>
</sec>
</sec>
<sec sec-type="conclusions" id="sec012">
<title>Discussion</title>
<p>Numerous studies have shown the importance of RGs to normalize expression data of target genes under specific conditions. Even the choice of one wrong reference gene could affect the overall results [
<xref rid="pone.0191558.ref028" ref-type="bibr">28</xref>
<xref rid="pone.0191558.ref029" ref-type="bibr">29</xref>
] especially when the used RG is regulated by the experimental conditions. Hence use of multiple RGs has now been considered as appropriate method for accurate normalization [
<xref rid="pone.0191558.ref024" ref-type="bibr">24</xref>
]. To choose the appropriate genes, number of programs are available like geNorm, BestKeeper and NormFinder that allow the accurate identification of multiple reference genes.</p>
<p>All the three aforesaid strategies were also utilized successfully in the present study to identify the panel of genes with stable expression across different buffalo tissues. Our data showed that
<italic>UXT</italic>
,
<italic>RPS23</italic>
,
<italic>RPL4</italic>
and
<italic>RPS9</italic>
were the most reliable and stable RGs as identified using all the three algorithms. Further, it was found that
<italic>β2M</italic>
and
<italic>RPS15</italic>
were the least stable genes as they showed highest expression variability making them non-suitable RGs for normalization of data. In our study, the ranking of most stable RGs utilizing these different algorithms were comparable to a large extent. In recent past, our groups has conducted number of similar studies to identify appropriate reference gene panels for application in transcriptional studies in Indian native cattle and riverine buffaloes. In one such study,
<italic>β2M</italic>
,
<italic>RPS9</italic>
and
<italic>RPS15a</italic>
genes were identified as best RGs for heat stressed mononuclear cells of Indian cattle and buffaloes [
<xref rid="pone.0191558.ref019" ref-type="bibr">19</xref>
];
<italic>β2M</italic>
,
<italic>RPS23</italic>
,
<italic>RPL4</italic>
and
<italic>EEF1A1</italic>
as most reliable RGs in heat stressed mammary explants and mammary epithelial cells of buffaloes [
<xref rid="pone.0191558.ref006" ref-type="bibr">6</xref>
,
<xref rid="pone.0191558.ref007" ref-type="bibr">7</xref>
];
<italic>RPL4</italic>
,
<italic>EEF1A1</italic>
,
<italic>ACTB</italic>
and
<italic>GAPDH</italic>
genes were found to be most stable genes in milk derived mammary epithelial cells in Sahiwal cows during different lactation stages [
<xref rid="pone.0191558.ref030" ref-type="bibr">30</xref>
]. Similarly identification of stable reference genes for transcriptional studies in bulls distinctive in meat quality [
<xref rid="pone.0191558.ref005" ref-type="bibr">5</xref>
] and in buffalo muscle tissue [
<xref rid="pone.0191558.ref031" ref-type="bibr">31</xref>
] were also reported. Terzi and coworkers [
<xref rid="pone.0191558.ref032" ref-type="bibr">32</xref>
] have followed a different approach wherein, EST transcripts from publicly available
<italic>Bos taurus</italic>
database were evaluated across different tissues of water buffaloes. In their study, they could identify ribosomal proteins L4, L5 and Gek protein encoding genes as stably expressed transcripts and suggested them to be used as normalizers to compare gene expression levels across buffalo tissues.</p>
<p>In our study, we observed unstable expression of two of the most commonly used RGs,
<italic>ACTB</italic>
and
<italic>GAPDH</italic>
across different tissue. In the past, large number of studies have used
<italic>GAPDH</italic>
and
<italic>ACTB</italic>
as single control gene [
<xref rid="pone.0191558.ref033" ref-type="bibr">33</xref>
] to normalize the qPCR data. However several studies have shown that the expression of these reference genes gets affected by the experimental conditions [
<xref rid="pone.0191558.ref017" ref-type="bibr">17</xref>
]. Hence one should properly evaluate the commonly used genes in any cell type or tissue of interest for correct interpretation of qPCR results.</p>
<p>In summary, the gene expression results might be more reliable if they are normalized by geometric means of multiple reference genes, as recommended in several other studies [
<xref rid="pone.0191558.ref013" ref-type="bibr">13</xref>
,
<xref rid="pone.0191558.ref024" ref-type="bibr">24</xref>
]. Our present data has demonstrated that 2 or more reference genes should be used to validate expression data across buffalo tissues. The results of the present study have provided panel of references that can be utilized during gene expression studies across as well as individual buffalo tissue. In conclusion,
<italic>UXT</italic>
,
<italic>RPS23</italic>
,
<italic>RPL4</italic>
, and
<italic>RPS9</italic>
were most stable and appropriate reference genes identified across buffalo tissues and their geometric means would provide accurate normalization factor for expression data in buffalo tissues.</p>
</sec>
<sec sec-type="supplementary-material" id="sec013">
<title>Supporting information</title>
<supplementary-material content-type="local-data" id="pone.0191558.s001">
<label>S1 Fig</label>
<caption>
<title>Standard curves, amplification plots and melting peaks for
<italic>EEF1A1</italic>
and
<italic>RPS15</italic>
.</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0191558.s001.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0191558.s002">
<label>S2 Fig</label>
<caption>
<title>Standard curves, amplification plots and melting peaks for
<italic>B2M</italic>
and
<italic>HMBS</italic>
.</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0191558.s002.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0191558.s003">
<label>S3 Fig</label>
<caption>
<title>Standard curves, amplification plots and melting peaks for
<italic>RPL4</italic>
and
<italic>RPS23</italic>
.</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0191558.s003.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0191558.s004">
<label>S4 Fig</label>
<caption>
<title>Standard curves, amplification plots and melting peaks for
<italic>RPS9</italic>
and
<italic>UXT</italic>
.</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0191558.s004.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0191558.s005">
<label>S5 Fig</label>
<caption>
<title>Standard curves, amplification plots and melting peaks for
<italic>ACTB</italic>
and
<italic>GAPDH</italic>
.</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0191558.s005.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0191558.s006">
<label>S1 Table</label>
<caption>
<title>Gene symbol, slope, PCR efficiency and regression coefficient for the studied RGs.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0191558.s006.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0191558.s007">
<label>S2 Table</label>
<caption>
<title>Tissue wise evaluation of expression stability and ranking of each RGs using geNorm.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0191558.s007.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The work was supported by Indian Council of Agriculture Research, New Delhi under National Fellow Scheme. The fellowship received by Ms Ramneek Kaur from DST-INSPIRE, Govt. of India is duly acknowledged.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0191558.ref001">
<label>1</label>
<mixed-citation publication-type="other">Livestock Census. All India Report. Department of animal husbandry, dairying and fisheries (2012).</mixed-citation>
</ref>
<ref id="pone.0191558.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Livak</surname>
<given-names>KJ</given-names>
</name>
, and
<name>
<surname>Schmittgen</surname>
<given-names>TD</given-names>
</name>
.
<article-title>Analysis of relative gene expression data using real-time quantitative PCR and the 2
<sup>− ΔΔCT</sup>
Method</article-title>
.
<source>Methods</source>
,
<year>2001</year>
;
<volume>25</volume>
:
<fpage>402</fpage>
<lpage>408</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1006/meth.2001.1262">10.1006/meth.2001.1262</ext-link>
</comment>
<pub-id pub-id-type="pmid">11846609</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bustin</surname>
<given-names>S.A</given-names>
</name>
.
<article-title>Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems</article-title>
.
<source>Journal of Molecular Endocrinology</source>
,
<year>2002</year>
;
<volume>29</volume>
:
<fpage>23</fpage>
<lpage>39</lpage>
.
<pub-id pub-id-type="pmid">12200227</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fleige</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Pfaffl</surname>
<given-names>MW</given-names>
</name>
.
<article-title>RNA integrity and the effect on the real-time qRT-PCR performance</article-title>
.
<source>Molecular Aspects of Medicine</source>
,
<year>2006</year>
;
<volume>27</volume>
:
<fpage>126</fpage>
<lpage>139</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.mam.2005.12.003">10.1016/j.mam.2005.12.003</ext-link>
</comment>
<pub-id pub-id-type="pmid">16469371</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lisowski</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Pierzchała</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Goscik</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Pareek</surname>
<given-names>CS</given-names>
</name>
,
<name>
<surname>Zwierzchowski</surname>
<given-names>L</given-names>
</name>
.
<article-title>Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid</article-title>
.
<source>J Appl Genet</source>
,
<year>2008</year>
;
<volume>49</volume>
(
<issue>4</issue>
):
<fpage>367</fpage>
<lpage>372</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1007/BF03195635">10.1007/BF03195635</ext-link>
</comment>
<pub-id pub-id-type="pmid">19029684</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sodhi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kishore</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Khate</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Kapila</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Mishra</surname>
<given-names>BP</given-names>
</name>
,
<name>
<surname>Kataria</surname>
<given-names>RS</given-names>
</name>
,
<etal>et al</etal>
<article-title>Evaluating suitable internal control genes for transcriptional studies in heat‐stressed mammary explants of buffaloes</article-title>
.
<source>Journal of Animal Breeding and Genetics</source>
,
<year>2012</year>
;
<volume>130</volume>
(
<issue>2</issue>
):
<fpage>106</fpage>
<lpage>117</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1111/j.1439-0388.2012.01004.x">10.1111/j.1439-0388.2012.01004.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">23496011</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kapila</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Kishore</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sodhi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Sharma</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Mohanty</surname>
<given-names>AK</given-names>
</name>
,
<etal>et al</etal>
<article-title>Identification of appropriate reference genes for qrt-pcr analysis of heat-stressed mammary epithelial cells in riverine buffaloes (Bubalus bubalis)</article-title>
.
<source>ISRN biotechnology</source>
,
<year>2013</year>
;
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.5402/2013/735053">http://dx.doi.org/10.5402/2013/735053</ext-link>
.</mixed-citation>
</ref>
<ref id="pone.0191558.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Deindl</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Boengler</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>van Royen</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Schaper</surname>
<given-names>W</given-names>
</name>
.
<article-title>Differential expression of GAPDH and β-actin in growing collateral arteries</article-title>
.
<source>Molecular and cellular biochemistry</source>
,
<year>2002</year>
;
<volume>236</volume>
(
<issue>1–2</issue>
):
<fpage>139</fpage>
<lpage>146</lpage>
.
<pub-id pub-id-type="pmid">12190113</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dheda</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Huggett</surname>
<given-names>JF</given-names>
</name>
,
<name>
<surname>Bustin</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Johnson</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Rook</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Zumla</surname>
<given-names>A</given-names>
</name>
.
<article-title>Validation of housekeeping genes for normalizing RNA expression in real-time PCR</article-title>
.
<source>Biotechniques</source>
<year>2004</year>
;
<volume>37</volume>
:
<fpage>112</fpage>
<lpage>119</lpage>
.
<pub-id pub-id-type="pmid">15283208</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Huggett</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Dheda</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Bustin</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Zumla</surname>
<given-names>A</given-names>
</name>
.
<article-title>Real-time RT-PCR normalisation; strategies and considerations</article-title>
.
<source>Genes and Immunity</source>
,
<year>2005</year>
;
<volume>6</volume>
:
<fpage>279</fpage>
<lpage>284</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/sj.gene.6364190">10.1038/sj.gene.6364190</ext-link>
</comment>
<pub-id pub-id-type="pmid">15815687</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Radonic</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Thulke</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Mackay</surname>
<given-names>IM</given-names>
</name>
,
<name>
<surname>Landt</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Siegert</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Nitsche</surname>
<given-names>A</given-names>
</name>
.
<article-title>Guideline to reference gene selection for quantitative real-time PCR</article-title>
.
<source>Biochemical and Biophysical Research Communications</source>
,
<year>2004</year>
;
<volume>313</volume>
;
<fpage>856</fpage>
<lpage>862</lpage>
.
<pub-id pub-id-type="pmid">14706621</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hamalainen</surname>
<given-names>HK</given-names>
</name>
,
<name>
<surname>Tubman</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Vikman</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Kyrola</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Ylikoski</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Warrington</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Lahesmaa</surname>
<given-names>R</given-names>
</name>
.
<article-title>Identification and validation of endogenous reference genes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR</article-title>
.
<source>Analytical biochemistry</source>
,
<year>2001</year>
;
<volume>299</volume>
(
<issue>1</issue>
):
<fpage>63</fpage>
<lpage>70</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1006/abio.2001.5369">10.1006/abio.2001.5369</ext-link>
</comment>
<pub-id pub-id-type="pmid">11726185</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bionaz</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Loor</surname>
<given-names>JJ</given-names>
</name>
.
<article-title>Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle</article-title>
.
<source>Physiological Genomics</source>
,
<year>2007</year>
;
<volume>29</volume>
(
<issue>3</issue>
):
<fpage>312</fpage>
<lpage>319</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1152/physiolgenomics.00223.2006">10.1152/physiolgenomics.00223.2006</ext-link>
</comment>
<pub-id pub-id-type="pmid">17284669</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Domig</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Ettle</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Windisch</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Mair</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Schedle</surname>
<given-names>K</given-names>
</name>
.
<article-title>Evaluation of potential reference genes for relative quantification by RT-qPCR in different porcine tissues derived from feeding studies</article-title>
.
<source>Int. J. Mol. Sci</source>
.
<year>2011</year>
;
<volume>12</volume>
(
<issue>3</issue>
),
<fpage>1727</fpage>
<lpage>1734</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.3390/ijms12031727">10.3390/ijms12031727</ext-link>
</comment>
<pub-id pub-id-type="pmid">21673918</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Spalenza</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Girolami</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Bevilacqua</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Riondato</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Rasero</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Nebbia</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
<article-title>Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes</article-title>
.
<source>The Veterinary Journal</source>
,
<year>2011</year>
;
<volume>189</volume>
(
<issue>3</issue>
):
<fpage>278</fpage>
<lpage>283</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.tvjl.2010.11.017">10.1016/j.tvjl.2010.11.017</ext-link>
</comment>
<pub-id pub-id-type="pmid">21169039</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bae</surname>
<given-names>IS</given-names>
</name>
,
<name>
<surname>Chung</surname>
<given-names>KY</given-names>
</name>
,
<name>
<surname>Yi</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>TI</given-names>
</name>
,
<name>
<surname>Choi</surname>
<given-names>HS</given-names>
</name>
,
<name>
<surname>Cho</surname>
<given-names>YM</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>SH</given-names>
</name>
.
<article-title>Identification of reference genes for relative quantification of circulating micrornas in bovine serum</article-title>
.
<source>PloS one</source>
,
<year>2015</year>
;
<volume>10</volume>
(
<issue>3</issue>
).
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.pone.0122554">10.1371/journal.pone.0122554</ext-link>
</comment>
March 31, 2015.
<pub-id pub-id-type="pmid">25826387</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Radonic</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Thulke</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bae</surname>
<given-names>HG</given-names>
</name>
,
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Siegert</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Nitsche</surname>
<given-names>A</given-names>
</name>
.
<article-title>Reference gene selection for quantitative realtime PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections</article-title>
.
<source>Virology Journal</source>
,
<year>2005</year>
;
<volume>2</volume>
:
<fpage>7</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/1743-422X-2-7">10.1186/1743-422X-2-7</ext-link>
</comment>
<pub-id pub-id-type="pmid">15705200</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vorachek</surname>
<given-names>W.R.</given-names>
</name>
,
<name>
<surname>Bobe</surname>
<given-names>G.</given-names>
</name>
and
<name>
<surname>Hall</surname>
<given-names>J.A.</given-names>
</name>
<article-title>Reference gene selection for quantitative PCR studies in sheep neutrophils</article-title>
.
<source>International journal of molecular sciences</source>
,
<year>2013</year>
;
<volume>14</volume>
(
<issue>6</issue>
):
<fpage>11484</fpage>
<lpage>11495</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.3390/ijms140611484">10.3390/ijms140611484</ext-link>
</comment>
<pub-id pub-id-type="pmid">23722658</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kishore</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sodhi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Khate</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Kapila</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Kumari</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Mukesh</surname>
<given-names>M</given-names>
</name>
.
<article-title>Selection of stable reference genes in heat stressed peripheral blood mononuclear cells of tropically adapted Indian cattle and buffaloes</article-title>
.
<source>Molecular and cellular probes</source>
,
<year>2013</year>
;
<volume>27</volume>
(
<issue>3</issue>
):
<fpage>140</fpage>
<lpage>144</lpage>
.
<pub-id pub-id-type="pmid">23499765</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Macabelli</surname>
<given-names>CH</given-names>
</name>
,
<name>
<surname>Ferreira</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>Gimenes</surname>
<given-names>LU</given-names>
</name>
,
<name>
<surname>de Carvalho</surname>
<given-names>NA</given-names>
</name>
,
<name>
<surname>Soares</surname>
<given-names>JG</given-names>
</name>
,
<name>
<surname>Ayres</surname>
<given-names>H</given-names>
</name>
<etal>et al</etal>
<article-title>Reference gene selection for gene expression analysis of oocytes collected from dairy cattle and buffaloes during winter and summer</article-title>
.
<source>PloS one</source>
,
<year>2014</year>
;
<volume>9</volume>
(
<issue>3</issue>
):
<fpage>e93287</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.pone.0093287">10.1371/journal.pone.0093287</ext-link>
</comment>
<pub-id pub-id-type="pmid">24676354</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yadav</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Singh</surname>
<given-names>DD</given-names>
</name>
,
<name>
<surname>Mukesh</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kataria</surname>
<given-names>RS</given-names>
</name>
,
<name>
<surname>Yadav</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mohanty</surname>
<given-names>AK</given-names>
</name>
<etal>et al</etal>
<article-title>Identification of suitable housekeeping genes for expression analysis in mammary epithelial cells of buffalo (
<italic>Bubalus bubalis</italic>
) during lactation cycle</article-title>
.
<source>Livestock Science</source>
,
<year>2012</year>
;
<volume>147</volume>
:
<fpage>72</fpage>
<lpage>76</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0191558.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Andersen</surname>
<given-names>CL</given-names>
</name>
,
<name>
<surname>Jensen</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Orntoft</surname>
<given-names>TF</given-names>
</name>
.
<article-title>Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets</article-title>
.
<source>Cancer Research</source>
,
<year>2004</year>
;
<volume>64</volume>
:
<fpage>5245</fpage>
<lpage>5250</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1158/0008-5472.CAN-04-0496">10.1158/0008-5472.CAN-04-0496</ext-link>
</comment>
<pub-id pub-id-type="pmid">15289330</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pfaffl</surname>
<given-names>MW</given-names>
</name>
,
<name>
<surname>Tichopad</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Prgomet</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Neuvians</surname>
<given-names>TP</given-names>
</name>
.
<article-title>Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations</article-title>
.
<source>Biotechnology letters</source>
,
<year>2004</year>
;
<volume>26</volume>
(
<issue>6</issue>
):
<fpage>509</fpage>
<lpage>515</lpage>
.
<pub-id pub-id-type="pmid">15127793</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vandesompele</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Preter</surname>
<given-names>K De</given-names>
</name>
,
<name>
<surname>Pattyn</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Poppe</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Van Roy</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Paepe</surname>
<given-names>A De</given-names>
</name>
<etal>et al</etal>
<article-title>Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes</article-title>
.
<source>Genome Biology</source>
,
<year>2002</year>
;
<volume>3</volume>
(
<issue>7</issue>
):
<fpage>1</fpage>
<lpage>12</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0191558.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>Jingchao</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>Zhaofeng</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>Hongjuan</given-names>
</name>
,
<name>
<surname>Wei</surname>
<given-names>Shouhui</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Yan</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>Cuilan</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Jie</given-names>
</name>
&
<name>
<surname>Zhang</surname>
<given-names>Chaoxian</given-names>
</name>
.
<article-title>Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress</article-title>
.
<source>Scientific Report</source>
,
<year>2017</year>
;
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/srep46494">10.1038/srep46494</ext-link>
</comment>
<pub-id pub-id-type="pmid">28429727</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Koramutla</surname>
<given-names>Murali Krishna</given-names>
</name>
,
<name>
<surname>Aminedi</surname>
<given-names>Raghavendra</given-names>
</name>
&
<name>
<surname>Bhattacharya</surname>
<given-names>Ramcharan</given-names>
</name>
.
<article-title>Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt)</article-title>
.
<source>Scientific Report</source>
,
<year>2016</year>
;
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/srep25883">10.1038/srep25883</ext-link>
</comment>
<pub-id pub-id-type="pmid">27165720</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>Yu</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Xiao-Dong</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Xing</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>Yun-Sheng</given-names>
</name>
,
<name>
<surname>Ding</surname>
<given-names>Jian-Ping</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Xiao-Rong</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Yun-Hai</given-names>
</name>
.
<article-title>Reference gene screening for analyzing gene expression across goat tissue</article-title>
.
<source>Asian-Australasian Journal of Animal Sciences</source>
,
<year>2013</year>
;
<volume>26</volume>
(
<issue>12</issue>
).</mixed-citation>
</ref>
<ref id="pone.0191558.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tricarico</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Pinzani</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Bianchi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Paglierani</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Distante</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Pazzagli</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies</article-title>
.
<source>Anal Biochem</source>
<year>2002</year>
;
<volume>309</volume>
:
<fpage>293</fpage>
<lpage>300</lpage>
.
<pub-id pub-id-type="pmid">12413463</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bas</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Forsberg</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Hammarstrom</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Hammarstrom</surname>
<given-names>ML</given-names>
</name>
.
<article-title>Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes</article-title>
.
<source>Scand J Immunol</source>
<year>2004</year>
;
<volume>59</volume>
:
<fpage>566</fpage>
<lpage>573</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1111/j.0300-9475.2004.01440.x">10.1111/j.0300-9475.2004.01440.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">15182252</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jatav</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Sodhi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Sharma</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mann</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Kishore</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Shandilya</surname>
<given-names>UK</given-names>
</name>
,
<etal>et al</etal>
<article-title>Identification of internal control genes in milk‐derived mammary epithelial cells during lactation cycle of Indian zebu cow</article-title>
.
<source>Animal Science Journal</source>
<year>2016</year>
;
<volume>87</volume>
(
<issue>3</issue>
):
<fpage>344</fpage>
<lpage>353</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1111/asj.12384">10.1111/asj.12384</ext-link>
</comment>
<pub-id pub-id-type="pmid">26762603</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kackar</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Ali</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Prasad</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Mukesh</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Tantia</surname>
<given-names>MS</given-names>
</name>
,
<name>
<surname>Dahiya</surname>
<given-names>SS</given-names>
</name>
.
<article-title>Evaluation of internal control genes for gene expression studies in skeletal muscle of riverine buffaloes</article-title>
.
<source>The Indian Journal of Animal Sciences</source>
,
<year>2013</year>
;
<volume>83</volume>
(
<issue>9</issue>
).</mixed-citation>
</ref>
<ref id="pone.0191558.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Terzi</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Morcia</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Spini</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Tudisco</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Cutrignelli</surname>
<given-names>MI</given-names>
</name>
,
<name>
<surname>Infascelli</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Stanca</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Faccioli</surname>
<given-names>P</given-names>
</name>
.
<article-title>Identification and validation of reference genes for gene expression studies in water buffalo</article-title>
.
<source>Animal</source>
.
<year>2010</year>
<month>6</month>
;
<volume>4</volume>
(
<issue>6</issue>
):
<fpage>853</fpage>
<lpage>60</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1017/S1751731110000042">10.1017/S1751731110000042</ext-link>
</comment>
<pub-id pub-id-type="pmid">22444257</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0191558.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Suzuki</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Higgins</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Crawford</surname>
<given-names>DR</given-names>
</name>
.
<article-title>Control selection for RNA quantitation</article-title>
.
<source>BioTechniques</source>
,
<year>2000</year>
;
<volume>29</volume>
:
<fpage>332</fpage>
<lpage>337</lpage>
.
<pub-id pub-id-type="pmid">10948434</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000687 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000687 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5839537
   |texte=   Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes (Bubalus bubalis)
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:29509770" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021