Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication

Identifieur interne : 000638 ( Pmc/Corpus ); précédent : 000637; suivant : 000639

Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication

Auteurs : Chih-Chun Wen ; Lie-Fen Shyur ; Jia-Tsrong Jan ; Po-Huang Liang ; Chih-Jung Kuo ; Palanisamy Arulselvan ; Jin-Bin Wu ; Sheng-Chu Kuo ; Ning-Sun Yang

Source :

RBID : PMC:3942999

Abstract

Development of anti-severe acute respiratory syndrome associated coronavirus (SARS-CoV) agents is pivotal to prevent the reemergence of the life-threatening disease, SARS. In this study, more than 200 extracts from Chinese medicinal herbs were evaluated for anti-SARS-CoV activities using a cell-based assay that measured SARS-CoV-induced cytopathogenic effect (CPE) in vitro on Vero E6 cells. Six herbal extracts, one each from Gentianae Radix (龍膽 lóng dǎn; the dried rhizome of Gentiana scabra), Dioscoreae Rhizoma (山藥 shān yào; the tuber of Dioscorea batatas), Cassiae Semen (決明子 jué míng zǐ; the dried seed of Cassia tora) and Loranthi Ramus (桑寄生 sāng jì shēng; the dried stem, with leaf of Taxillus chinensis) (designated as GSH, DBM, CTH and TCH, respectively), and two from Rhizoma Cibotii (狗脊 gǒu jǐ; the dried rhizome of Cibotium barometz) (designated as CBE and CBM), were found to be potent inhibitors of SARS-CoV at concentrations between 25 and 200 μg/ml. The concentrations of the six extracts needed to inhibit 50% of Vero E6 cell proliferation (CC50) and 50% of viral replication (EC50) were determined. The resulting selective index values (SI = CC50/EC50) of the most effective extracts CBE, GSH, DBM, CTH and TCH were > 59.4, > 57.5, > 62.1, > 59.4, and > 92.9, respectively. Among these extracts, CBM and DBM also showed significant inhibition of SARS-CoV 3CL protease activity with IC50 values of 39 μg/ml and 44 μg/ml, respectively. Our findings suggest that these six herbal extracts may have potential as candidates for future development of anti-SARS therapeutics.

AbbreviationsSARS,

severe acute respiratory syndrome

CoV,

coronavirus

CPE,

cytopathogenic effect

TCM,

traditional Chinese medicine


Url:
PubMed: 24716104
PubMed Central: 3942999

Links to Exploration step

PMC:3942999

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Traditional Chinese medicine herbal extracts of
<italic>Cibotium barometz</italic>
,
<italic>Gentiana scabra</italic>
,
<italic>Dioscorea batatas</italic>
,
<italic>Cassia tora</italic>
, and
<italic>Taxillus chinensis</italic>
inhibit SARS-CoV replication</title>
<author>
<name sortKey="Wen, Chih Chun" sort="Wen, Chih Chun" uniqKey="Wen C" first="Chih-Chun" last="Wen">Chih-Chun Wen</name>
<affiliation>
<nlm:aff id="aff1">Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shyur, Lie Fen" sort="Shyur, Lie Fen" uniqKey="Shyur L" first="Lie-Fen" last="Shyur">Lie-Fen Shyur</name>
<affiliation>
<nlm:aff id="aff2">Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jan, Jia Tsrong" sort="Jan, Jia Tsrong" uniqKey="Jan J" first="Jia-Tsrong" last="Jan">Jia-Tsrong Jan</name>
<affiliation>
<nlm:aff id="aff3">Genomics Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Po Huang" sort="Liang, Po Huang" uniqKey="Liang P" first="Po-Huang" last="Liang">Po-Huang Liang</name>
<affiliation>
<nlm:aff id="aff4">Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Chih Jung" sort="Kuo, Chih Jung" uniqKey="Kuo C" first="Chih-Jung" last="Kuo">Chih-Jung Kuo</name>
<affiliation>
<nlm:aff id="aff4">Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">Department of Population Medicine and Diagnostic Science, Veterinary Medical Center, Cornell University, Ithaca, NY, 14853 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Arulselvan, Palanisamy" sort="Arulselvan, Palanisamy" uniqKey="Arulselvan P" first="Palanisamy" last="Arulselvan">Palanisamy Arulselvan</name>
<affiliation>
<nlm:aff id="aff2">Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jin Bin" sort="Wu, Jin Bin" uniqKey="Wu J" first="Jin-Bin" last="Wu">Jin-Bin Wu</name>
<affiliation>
<nlm:aff id="aff1">Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Sheng Chu" sort="Kuo, Sheng Chu" uniqKey="Kuo S" first="Sheng-Chu" last="Kuo">Sheng-Chu Kuo</name>
<affiliation>
<nlm:aff id="aff1">Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ning Sun" sort="Yang, Ning Sun" uniqKey="Yang N" first="Ning-Sun" last="Yang">Ning-Sun Yang</name>
<affiliation>
<nlm:aff id="aff2">Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24716104</idno>
<idno type="pmc">3942999</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942999</idno>
<idno type="RBID">PMC:3942999</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000638</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000638</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Traditional Chinese medicine herbal extracts of
<italic>Cibotium barometz</italic>
,
<italic>Gentiana scabra</italic>
,
<italic>Dioscorea batatas</italic>
,
<italic>Cassia tora</italic>
, and
<italic>Taxillus chinensis</italic>
inhibit SARS-CoV replication</title>
<author>
<name sortKey="Wen, Chih Chun" sort="Wen, Chih Chun" uniqKey="Wen C" first="Chih-Chun" last="Wen">Chih-Chun Wen</name>
<affiliation>
<nlm:aff id="aff1">Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shyur, Lie Fen" sort="Shyur, Lie Fen" uniqKey="Shyur L" first="Lie-Fen" last="Shyur">Lie-Fen Shyur</name>
<affiliation>
<nlm:aff id="aff2">Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jan, Jia Tsrong" sort="Jan, Jia Tsrong" uniqKey="Jan J" first="Jia-Tsrong" last="Jan">Jia-Tsrong Jan</name>
<affiliation>
<nlm:aff id="aff3">Genomics Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Po Huang" sort="Liang, Po Huang" uniqKey="Liang P" first="Po-Huang" last="Liang">Po-Huang Liang</name>
<affiliation>
<nlm:aff id="aff4">Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Chih Jung" sort="Kuo, Chih Jung" uniqKey="Kuo C" first="Chih-Jung" last="Kuo">Chih-Jung Kuo</name>
<affiliation>
<nlm:aff id="aff4">Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">Department of Population Medicine and Diagnostic Science, Veterinary Medical Center, Cornell University, Ithaca, NY, 14853 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Arulselvan, Palanisamy" sort="Arulselvan, Palanisamy" uniqKey="Arulselvan P" first="Palanisamy" last="Arulselvan">Palanisamy Arulselvan</name>
<affiliation>
<nlm:aff id="aff2">Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jin Bin" sort="Wu, Jin Bin" uniqKey="Wu J" first="Jin-Bin" last="Wu">Jin-Bin Wu</name>
<affiliation>
<nlm:aff id="aff1">Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Sheng Chu" sort="Kuo, Sheng Chu" uniqKey="Kuo S" first="Sheng-Chu" last="Kuo">Sheng-Chu Kuo</name>
<affiliation>
<nlm:aff id="aff1">Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ning Sun" sort="Yang, Ning Sun" uniqKey="Yang N" first="Ning-Sun" last="Yang">Ning-Sun Yang</name>
<affiliation>
<nlm:aff id="aff2">Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Traditional and Complementary Medicine</title>
<idno type="eISSN">2225-4110</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Development of anti-severe acute respiratory syndrome associated coronavirus (SARS-CoV) agents is pivotal to prevent the reemergence of the life-threatening disease, SARS. In this study, more than 200 extracts from Chinese medicinal herbs were evaluated for anti-SARS-CoV activities using a cell-based assay that measured SARS-CoV-induced cytopathogenic effect (CPE)
<italic>in vitro</italic>
on Vero E6 cells. Six herbal extracts, one each from Gentianae Radix (龍膽 lóng dǎn; the dried rhizome of
<italic>Gentiana scabra</italic>
), Dioscoreae Rhizoma (山藥 shān yào; the tuber of
<italic>Dioscorea batatas</italic>
), Cassiae Semen (決明子 jué míng zǐ; the dried seed of
<italic>Cassia tora</italic>
) and Loranthi Ramus (桑寄生 sāng jì shēng; the dried stem, with leaf of
<italic>Taxillus chinensis</italic>
) (designated as GSH, DBM, CTH and TCH, respectively), and two from Rhizoma Cibotii (狗脊 gǒu jǐ; the dried rhizome of
<italic>Cibotium barometz</italic>
) (designated as CBE and CBM), were found to be potent inhibitors of SARS-CoV at concentrations between 25 and 200 μg/ml. The concentrations of the six extracts needed to inhibit 50% of Vero E6 cell proliferation (CC
<sub>50</sub>
) and 50% of viral replication (EC
<sub>50</sub>
) were determined. The resulting selective index values (SI = CC
<sub>50</sub>
/EC
<sub>50</sub>
) of the most effective extracts CBE, GSH, DBM, CTH and TCH were > 59.4, > 57.5, > 62.1, > 59.4, and > 92.9, respectively. Among these extracts, CBM and DBM also showed significant inhibition of SARS-CoV 3CL protease activity with IC
<sub>50</sub>
values of 39 μg/ml and 44 μg/ml, respectively. Our findings suggest that these six herbal extracts may have potential as candidates for future development of anti-SARS therapeutics.</p>
<sec id="st1">
<title></title>
<def-list>
<title>Abbreviations</title>
<def-item>
<term>SARS,</term>
<def>
<p>severe acute respiratory syndrome</p>
</def>
</def-item>
<def-item>
<term>CoV,</term>
<def>
<p>coronavirus</p>
</def>
</def-item>
<def-item>
<term>CPE,</term>
<def>
<p>cytopathogenic effect</p>
</def>
</def-item>
<def-item>
<term>TCM,</term>
<def>
<p>traditional Chinese medicine</p>
</def>
</def-item>
</def-list>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Amici, C" uniqKey="Amici C">C Amici</name>
</author>
<author>
<name sortKey="Di Coro, A" uniqKey="Di Coro A">A Di Coro</name>
</author>
<author>
<name sortKey="Ciucci, A" uniqKey="Ciucci A">A Ciucci</name>
</author>
<author>
<name sortKey="Chiappa, L" uniqKey="Chiappa L">L Chiappa</name>
</author>
<author>
<name sortKey="Castilletti, C" uniqKey="Castilletti C">C Castilletti</name>
</author>
<author>
<name sortKey="Martella, V" uniqKey="Martella V">V Martella</name>
</author>
<author>
<name sortKey="Decaro, N" uniqKey="Decaro N">N Decaro</name>
</author>
<author>
<name sortKey="Buonavoglia, C" uniqKey="Buonavoglia C">C Buonavoglia</name>
</author>
<author>
<name sortKey="Capobianchi, M R" uniqKey="Capobianchi M">M.R Capobianchi</name>
</author>
<author>
<name sortKey="Santoro, M G" uniqKey="Santoro M">M.G Santoro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C J" uniqKey="Chen C">C.J Chen</name>
</author>
<author>
<name sortKey="Michaelis, M" uniqKey="Michaelis M">M Michaelis</name>
</author>
<author>
<name sortKey="Hsu, H K" uniqKey="Hsu H">H.K Hsu</name>
</author>
<author>
<name sortKey="Tsai, C C" uniqKey="Tsai C">C.C Tsai</name>
</author>
<author>
<name sortKey="Yang, K D" uniqKey="Yang K">K.D Yang</name>
</author>
<author>
<name sortKey="Wu, Y C" uniqKey="Wu Y">Y.C Wu</name>
</author>
<author>
<name sortKey="Cinatl, J" uniqKey="Cinatl J">J Cinatl</name>
</author>
<author>
<name sortKey="Doerr, H W" uniqKey="Doerr H">H.W Doerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C N" uniqKey="Chen C">C.N Chen</name>
</author>
<author>
<name sortKey="Lin, C P" uniqKey="Lin C">C.P Lin</name>
</author>
<author>
<name sortKey="Huang, K K" uniqKey="Huang K">K.K Huang</name>
</author>
<author>
<name sortKey="Chen, W C" uniqKey="Chen W">W.C Chen</name>
</author>
<author>
<name sortKey="Hsieh, H P" uniqKey="Hsieh H">H.P Hsieh</name>
</author>
<author>
<name sortKey="Liang, P H" uniqKey="Liang P">P.H Liang</name>
</author>
<author>
<name sortKey="Hsu, J T" uniqKey="Hsu J">J.T Hsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y H" uniqKey="Chen Y">Y.H Chen</name>
</author>
<author>
<name sortKey="Chen, A P" uniqKey="Chen A">A.P Chen</name>
</author>
<author>
<name sortKey="Chen, C T" uniqKey="Chen C">C.T Chen</name>
</author>
<author>
<name sortKey="Wang, A H" uniqKey="Wang A">A.H Wang</name>
</author>
<author>
<name sortKey="Liang, P H" uniqKey="Liang P">P.H Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, I J" uniqKey="Cho I">I.J Cho</name>
</author>
<author>
<name sortKey="Lee, C" uniqKey="Lee C">C Lee</name>
</author>
<author>
<name sortKey="Ha, T Y" uniqKey="Ha T">T.Y Ha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chueh, F S" uniqKey="Chueh F">F.S Chueh</name>
</author>
<author>
<name sortKey="Chen, C C" uniqKey="Chen C">C.C Chen</name>
</author>
<author>
<name sortKey="Sagare, A P" uniqKey="Sagare A">A.P Sagare</name>
</author>
<author>
<name sortKey="Tsay, H S" uniqKey="Tsay H">H.S Tsay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cinatl, J" uniqKey="Cinatl J">J Cinatl</name>
</author>
<author>
<name sortKey="Michaelis, M" uniqKey="Michaelis M">M Michaelis</name>
</author>
<author>
<name sortKey="Hoever, G" uniqKey="Hoever G">G Hoever</name>
</author>
<author>
<name sortKey="Preiser, W" uniqKey="Preiser W">W Preiser</name>
</author>
<author>
<name sortKey="Doerr, H W" uniqKey="Doerr H">H.W Doerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cinatl, J" uniqKey="Cinatl J">J Cinatl</name>
</author>
<author>
<name sortKey="Morgenstern, B" uniqKey="Morgenstern B">B Morgenstern</name>
</author>
<author>
<name sortKey="Bauer, G" uniqKey="Bauer G">G Bauer</name>
</author>
<author>
<name sortKey="Chandra, P" uniqKey="Chandra P">P Chandra</name>
</author>
<author>
<name sortKey="Rabenau, H" uniqKey="Rabenau H">H Rabenau</name>
</author>
<author>
<name sortKey="Doerr, H W" uniqKey="Doerr H">H.W Doerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cleri, D J" uniqKey="Cleri D">D.J Cleri</name>
</author>
<author>
<name sortKey="Ricketti, A J" uniqKey="Ricketti A">A.J Ricketti</name>
</author>
<author>
<name sortKey="Vernaleo, J R" uniqKey="Vernaleo J">J.R Vernaleo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cuong, N X" uniqKey="Cuong N">N.X Cuong</name>
</author>
<author>
<name sortKey="Minh, C V" uniqKey="Minh C">C.V Minh</name>
</author>
<author>
<name sortKey="Kiem, P V" uniqKey="Kiem P">P.V Kiem</name>
</author>
<author>
<name sortKey="Huong, H T" uniqKey="Huong H">H.T Huong</name>
</author>
<author>
<name sortKey="Ban, N K" uniqKey="Ban N">N.K Ban</name>
</author>
<author>
<name sortKey="Nhiem, N X" uniqKey="Nhiem N">N.X Nhiem</name>
</author>
<author>
<name sortKey="Tung, N H" uniqKey="Tung N">N.H Tung</name>
</author>
<author>
<name sortKey="Jung, J W" uniqKey="Jung J">J.W Jung</name>
</author>
<author>
<name sortKey="Kim, H J" uniqKey="Kim H">H.J Kim</name>
</author>
<author>
<name sortKey="Kim, S Y" uniqKey="Kim S">S.Y Kim</name>
</author>
<author>
<name sortKey="Kim, J A" uniqKey="Kim J">J.A Kim</name>
</author>
<author>
<name sortKey="Kim, Y H" uniqKey="Kim Y">Y.H Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Clercq, E" uniqKey="De Clercq E">E De Clercq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Gunther, S" uniqKey="Gunther S">S Gunther</name>
</author>
<author>
<name sortKey="Preiser, W" uniqKey="Preiser W">W Preiser</name>
</author>
<author>
<name sortKey="Van Der Werf, S" uniqKey="Van Der Werf S">S van der Werf</name>
</author>
<author>
<name sortKey="Brodt, H R" uniqKey="Brodt H">H.R Brodt</name>
</author>
<author>
<name sortKey="Becker, S" uniqKey="Becker S">S Becker</name>
</author>
<author>
<name sortKey="Rabenau, H" uniqKey="Rabenau H">H Rabenau</name>
</author>
<author>
<name sortKey="Panning, M" uniqKey="Panning M">M Panning</name>
</author>
<author>
<name sortKey="Kolesnikova, L" uniqKey="Kolesnikova L">L Kolesnikova</name>
</author>
<author>
<name sortKey="Fouchier, R A" uniqKey="Fouchier R">R.A Fouchier</name>
</author>
<author>
<name sortKey="Berger, A" uniqKey="Berger A">A Berger</name>
</author>
<author>
<name sortKey="Burguiere, A M" uniqKey="Burguiere A">A.M Burguiere</name>
</author>
<author>
<name sortKey="Cinatl, J" uniqKey="Cinatl J">J Cinatl</name>
</author>
<author>
<name sortKey="Eickmann, M" uniqKey="Eickmann M">M Eickmann</name>
</author>
<author>
<name sortKey="Escriou, N" uniqKey="Escriou N">N Escriou</name>
</author>
<author>
<name sortKey="Grywna, K" uniqKey="Grywna K">K Grywna</name>
</author>
<author>
<name sortKey="Kramme, S" uniqKey="Kramme S">S Kramme</name>
</author>
<author>
<name sortKey="Manuguerra, J C" uniqKey="Manuguerra J">J.C Manuguerra</name>
</author>
<author>
<name sortKey="Muller, S" uniqKey="Muller S">S Muller</name>
</author>
<author>
<name sortKey="Rickerts, V" uniqKey="Rickerts V">V Rickerts</name>
</author>
<author>
<name sortKey="Sturmer, M" uniqKey="Sturmer M">M Sturmer</name>
</author>
<author>
<name sortKey="Vieth, S" uniqKey="Vieth S">S Vieth</name>
</author>
<author>
<name sortKey="Klenk, H D" uniqKey="Klenk H">H.D Klenk</name>
</author>
<author>
<name sortKey="Osterhaus, A D" uniqKey="Osterhaus A">A.D Osterhaus</name>
</author>
<author>
<name sortKey="Schmitz, H" uniqKey="Schmitz H">H Schmitz</name>
</author>
<author>
<name sortKey="Doerr, H W" uniqKey="Doerr H">H.W Doerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gallagher, T M" uniqKey="Gallagher T">T.M Gallagher</name>
</author>
<author>
<name sortKey="Buchmeier, M J" uniqKey="Buchmeier M">M.J Buchmeier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Groneberg, D A" uniqKey="Groneberg D">D.A Groneberg</name>
</author>
<author>
<name sortKey="Poutanen, S M" uniqKey="Poutanen S">S.M Poutanen</name>
</author>
<author>
<name sortKey="Low, D E" uniqKey="Low D">D.E Low</name>
</author>
<author>
<name sortKey="Lode, H" uniqKey="Lode H">H Lode</name>
</author>
<author>
<name sortKey="Welte, T" uniqKey="Welte T">T Welte</name>
</author>
<author>
<name sortKey="Zabel, P" uniqKey="Zabel P">P Zabel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hatano, T" uniqKey="Hatano T">T Hatano</name>
</author>
<author>
<name sortKey="Uebayashi, H" uniqKey="Uebayashi H">H Uebayashi</name>
</author>
<author>
<name sortKey="Ito, H" uniqKey="Ito H">H Ito</name>
</author>
<author>
<name sortKey="Shiota, S" uniqKey="Shiota S">S Shiota</name>
</author>
<author>
<name sortKey="Tsuchiya, T" uniqKey="Tsuchiya T">T Tsuchiya</name>
</author>
<author>
<name sortKey="Yoshida, T" uniqKey="Yoshida T">T Yoshida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoever, G" uniqKey="Hoever G">G Hoever</name>
</author>
<author>
<name sortKey="Baltina, L" uniqKey="Baltina L">L Baltina</name>
</author>
<author>
<name sortKey="Michaelis, M" uniqKey="Michaelis M">M Michaelis</name>
</author>
<author>
<name sortKey="Kondratenko, R" uniqKey="Kondratenko R">R Kondratenko</name>
</author>
<author>
<name sortKey="Baltina, L" uniqKey="Baltina L">L Baltina</name>
</author>
<author>
<name sortKey="Tolstikov, G A" uniqKey="Tolstikov G">G.A Tolstikov</name>
</author>
<author>
<name sortKey="Doerr, H W" uniqKey="Doerr H">H.W Doerr</name>
</author>
<author>
<name sortKey="Cinatl, J" uniqKey="Cinatl J">J Cinatl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmes, K V" uniqKey="Holmes K">K.V Holmes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hyun, S K" uniqKey="Hyun S">S.K Hyun</name>
</author>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H Lee</name>
</author>
<author>
<name sortKey="Kang, S S" uniqKey="Kang S">S.S Kang</name>
</author>
<author>
<name sortKey="Chung, H Y" uniqKey="Chung H">H.Y Chung</name>
</author>
<author>
<name sortKey="Choi, J S" uniqKey="Choi J">J.S Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, W X" uniqKey="Jiang W">W.X Jiang</name>
</author>
<author>
<name sortKey="Xue, B Y" uniqKey="Xue B">B.Y Xue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, M" uniqKey="Jin M">M Jin</name>
</author>
<author>
<name sortKey="Suh, S J" uniqKey="Suh S">S.J Suh</name>
</author>
<author>
<name sortKey="Yang, J H" uniqKey="Yang J">J.H Yang</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y Lu</name>
</author>
<author>
<name sortKey="Kim, S J" uniqKey="Kim S">S.J Kim</name>
</author>
<author>
<name sortKey="Kwon, S" uniqKey="Kwon S">S Kwon</name>
</author>
<author>
<name sortKey="Jo, T H" uniqKey="Jo T">T.H Jo</name>
</author>
<author>
<name sortKey="Kim, J W" uniqKey="Kim J">J.W Kim</name>
</author>
<author>
<name sortKey="Park, Y I" uniqKey="Park Y">Y.I Park</name>
</author>
<author>
<name sortKey="Ahn, G W" uniqKey="Ahn G">G.W Ahn</name>
</author>
<author>
<name sortKey="Lee, C K" uniqKey="Lee C">C.K Lee</name>
</author>
<author>
<name sortKey="Kim, C H" uniqKey="Kim C">C.H Kim</name>
</author>
<author>
<name sortKey="Son, J K" uniqKey="Son J">J.K Son</name>
</author>
<author>
<name sortKey="Son, K H" uniqKey="Son K">K.H Son</name>
</author>
<author>
<name sortKey="Chang, H W" uniqKey="Chang H">H.W Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kakuda, R" uniqKey="Kakuda R">R Kakuda</name>
</author>
<author>
<name sortKey="Iijima, T" uniqKey="Iijima T">T Iijima</name>
</author>
<author>
<name sortKey="Yaoita, Y" uniqKey="Yaoita Y">Y Yaoita</name>
</author>
<author>
<name sortKey="Machida, K" uniqKey="Machida K">K Machida</name>
</author>
<author>
<name sortKey="Kikuchi, M" uniqKey="Kikuchi M">M Kikuchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H Y" uniqKey="Kim H">H.Y Kim</name>
</author>
<author>
<name sortKey="Eo, E Y" uniqKey="Eo E">E.Y Eo</name>
</author>
<author>
<name sortKey="Park, H" uniqKey="Park H">H Park</name>
</author>
<author>
<name sortKey="Kim, Y C" uniqKey="Kim Y">Y.C Kim</name>
</author>
<author>
<name sortKey="Park, S" uniqKey="Park S">S Park</name>
</author>
<author>
<name sortKey="Shin, H J" uniqKey="Shin H">H.J Shin</name>
</author>
<author>
<name sortKey="Kim, K" uniqKey="Kim K">K Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J A" uniqKey="Kim J">J.A Kim</name>
</author>
<author>
<name sortKey="Son, N S" uniqKey="Son N">N.S Son</name>
</author>
<author>
<name sortKey="Son, J K" uniqKey="Son J">J.K Son</name>
</author>
<author>
<name sortKey="Jahng, Y" uniqKey="Jahng Y">Y Jahng</name>
</author>
<author>
<name sortKey="Chang, H W" uniqKey="Chang H">H.W Chang</name>
</author>
<author>
<name sortKey="Jang, T S" uniqKey="Jang T">T.S Jang</name>
</author>
<author>
<name sortKey="Na, M" uniqKey="Na M">M Na</name>
</author>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S.H Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Y M" uniqKey="Kim Y">Y.M Kim</name>
</author>
<author>
<name sortKey="Lee, C H" uniqKey="Lee C">C.H Lee</name>
</author>
<author>
<name sortKey="Kim, H G" uniqKey="Kim H">H.G Kim</name>
</author>
<author>
<name sortKey="Lee, H S" uniqKey="Lee H">H.S Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kliger, Y" uniqKey="Kliger Y">Y Kliger</name>
</author>
<author>
<name sortKey="Levanon, E Y" uniqKey="Levanon E">E.Y Levanon</name>
</author>
<author>
<name sortKey="Gerber, D" uniqKey="Gerber D">D Gerber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ksiazek, T G" uniqKey="Ksiazek T">T.G Ksiazek</name>
</author>
<author>
<name sortKey="Erdman, D" uniqKey="Erdman D">D Erdman</name>
</author>
<author>
<name sortKey="Goldsmith, C S" uniqKey="Goldsmith C">C.S Goldsmith</name>
</author>
<author>
<name sortKey="Zaki, S R" uniqKey="Zaki S">S.R Zaki</name>
</author>
<author>
<name sortKey="Peret, T" uniqKey="Peret T">T Peret</name>
</author>
<author>
<name sortKey="Emery, S" uniqKey="Emery S">S Emery</name>
</author>
<author>
<name sortKey="Tong, S" uniqKey="Tong S">S Tong</name>
</author>
<author>
<name sortKey="Urbani, C" uniqKey="Urbani C">C Urbani</name>
</author>
<author>
<name sortKey="Comer, J A" uniqKey="Comer J">J.A Comer</name>
</author>
<author>
<name sortKey="Lim, W" uniqKey="Lim W">W Lim</name>
</author>
<author>
<name sortKey="Rollin, P E" uniqKey="Rollin P">P.E Rollin</name>
</author>
<author>
<name sortKey="Dowell, S F" uniqKey="Dowell S">S.F Dowell</name>
</author>
<author>
<name sortKey="Ling, A E" uniqKey="Ling A">A.E Ling</name>
</author>
<author>
<name sortKey="Humphrey, C D" uniqKey="Humphrey C">C.D Humphrey</name>
</author>
<author>
<name sortKey="Shieh, W J" uniqKey="Shieh W">W.J Shieh</name>
</author>
<author>
<name sortKey="Guarner, J" uniqKey="Guarner J">J Guarner</name>
</author>
<author>
<name sortKey="Paddock, C D" uniqKey="Paddock C">C.D Paddock</name>
</author>
<author>
<name sortKey="Rota, P" uniqKey="Rota P">P Rota</name>
</author>
<author>
<name sortKey="Fields, B" uniqKey="Fields B">B Fields</name>
</author>
<author>
<name sortKey="De Risi, J" uniqKey="De Risi J">J De Risi</name>
</author>
<author>
<name sortKey="Yang, J Y" uniqKey="Yang J">J.Y Yang</name>
</author>
<author>
<name sortKey="Cox, N" uniqKey="Cox N">N Cox</name>
</author>
<author>
<name sortKey="Hughes, J M" uniqKey="Hughes J">J.M Hughes</name>
</author>
<author>
<name sortKey="Le Duc, J W" uniqKey="Le Duc J">J.W Le Duc</name>
</author>
<author>
<name sortKey="Bellini, W J" uniqKey="Bellini W">W.J Bellini</name>
</author>
<author>
<name sortKey="Anderson, L J" uniqKey="Anderson L">L.J Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuiken, T" uniqKey="Kuiken T">T Kuiken</name>
</author>
<author>
<name sortKey="Fouchier, R A" uniqKey="Fouchier R">R.A Fouchier</name>
</author>
<author>
<name sortKey="Schutten, M" uniqKey="Schutten M">M Schutten</name>
</author>
<author>
<name sortKey="Rimmelzwaan, G F" uniqKey="Rimmelzwaan G">G.F Rimmelzwaan</name>
</author>
<author>
<name sortKey="Van Amerongen, G" uniqKey="Van Amerongen G">G van Amerongen</name>
</author>
<author>
<name sortKey="Van Riel, D" uniqKey="Van Riel D">D van Riel</name>
</author>
<author>
<name sortKey="Laman, J D" uniqKey="Laman J">J.D Laman</name>
</author>
<author>
<name sortKey="De Jong, T" uniqKey="De Jong T">T de Jong</name>
</author>
<author>
<name sortKey="Van Doornum, G" uniqKey="Van Doornum G">G van Doornum</name>
</author>
<author>
<name sortKey="Lim, W" uniqKey="Lim W">W Lim</name>
</author>
<author>
<name sortKey="Ling, A E" uniqKey="Ling A">A.E Ling</name>
</author>
<author>
<name sortKey="Chan, P K" uniqKey="Chan P">P.K Chan</name>
</author>
<author>
<name sortKey="Tam, J S" uniqKey="Tam J">J.S Tam</name>
</author>
<author>
<name sortKey="Zambon, M C" uniqKey="Zambon M">M.C Zambon</name>
</author>
<author>
<name sortKey="Gopal, R" uniqKey="Gopal R">R Gopal</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Van Der Werf, S" uniqKey="Van Der Werf S">S van der Werf</name>
</author>
<author>
<name sortKey="Escriou, N" uniqKey="Escriou N">N Escriou</name>
</author>
<author>
<name sortKey="Manuguerra, J C" uniqKey="Manuguerra J">J.C Manuguerra</name>
</author>
<author>
<name sortKey="Stohr, K" uniqKey="Stohr K">K Stohr</name>
</author>
<author>
<name sortKey="Peiris, J S" uniqKey="Peiris J">J.S Peiris</name>
</author>
<author>
<name sortKey="Osterhaus, A D" uniqKey="Osterhaus A">A.D Osterhaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuo, C J" uniqKey="Kuo C">C.J Kuo</name>
</author>
<author>
<name sortKey="Chi, Y H" uniqKey="Chi Y">Y.H Chi</name>
</author>
<author>
<name sortKey="Hsu, J T" uniqKey="Hsu J">J.T Hsu</name>
</author>
<author>
<name sortKey="Liang, P H" uniqKey="Liang P">P.H Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, H Y" uniqKey="Lai H">H.Y Lai</name>
</author>
<author>
<name sortKey="Lim, Y Y" uniqKey="Lim Y">Y.Y Lim</name>
</author>
<author>
<name sortKey="Tan, S P" uniqKey="Tan S">S.P Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, S T" uniqKey="Lai S">S.T Lai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lau, K M" uniqKey="Lau K">K.M Lau</name>
</author>
<author>
<name sortKey="Lee, K M" uniqKey="Lee K">K.M Lee</name>
</author>
<author>
<name sortKey="Koon, C M" uniqKey="Koon C">C.M Koon</name>
</author>
<author>
<name sortKey="Cheung, C S" uniqKey="Cheung C">C.S Cheung</name>
</author>
<author>
<name sortKey="Lau, C P" uniqKey="Lau C">C.P Lau</name>
</author>
<author>
<name sortKey="Ho, H M" uniqKey="Ho H">H.M Ho</name>
</author>
<author>
<name sortKey="Lee, M Y" uniqKey="Lee M">M.Y Lee</name>
</author>
<author>
<name sortKey="Au, S W" uniqKey="Au S">S.W Au</name>
</author>
<author>
<name sortKey="Cheng, C H" uniqKey="Cheng C">C.H Cheng</name>
</author>
<author>
<name sortKey="Lau, C B" uniqKey="Lau C">C.B Lau</name>
</author>
<author>
<name sortKey="Tsui, S K" uniqKey="Tsui S">S.K Tsui</name>
</author>
<author>
<name sortKey="Wan, D C" uniqKey="Wan D">D.C Wan</name>
</author>
<author>
<name sortKey="Waye, M M" uniqKey="Waye M">M.M Waye</name>
</author>
<author>
<name sortKey="Wong, K B" uniqKey="Wong K">K.B Wong</name>
</author>
<author>
<name sortKey="Wong, C K" uniqKey="Wong C">C.K Wong</name>
</author>
<author>
<name sortKey="Lam, C W" uniqKey="Lam C">C.W Lam</name>
</author>
<author>
<name sortKey="Leung, P C" uniqKey="Leung P">P.C Leung</name>
</author>
<author>
<name sortKey="Fung, K P" uniqKey="Fung K">K.P Fung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, S Y" uniqKey="Li S">S.Y Li</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Zhang, H Q" uniqKey="Zhang H">H.Q Zhang</name>
</author>
<author>
<name sortKey="Guo, H Y" uniqKey="Guo H">H.Y Guo</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Hua, S N" uniqKey="Hua S">S.N Hua</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
<author>
<name sortKey="Xiao, P G" uniqKey="Xiao P">P.G Xiao</name>
</author>
<author>
<name sortKey="Li, R S" uniqKey="Li R">R.S Li</name>
</author>
<author>
<name sortKey="Tan, X" uniqKey="Tan X">X Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, C W" uniqKey="Lin C">C.W Lin</name>
</author>
<author>
<name sortKey="Tsai, F J" uniqKey="Tsai F">F.J Tsai</name>
</author>
<author>
<name sortKey="Tsai, C H" uniqKey="Tsai C">C.H Tsai</name>
</author>
<author>
<name sortKey="Lai, C C" uniqKey="Lai C">C.C Lai</name>
</author>
<author>
<name sortKey="Wan, L" uniqKey="Wan L">L Wan</name>
</author>
<author>
<name sortKey="Ho, T Y" uniqKey="Ho T">T.Y Ho</name>
</author>
<author>
<name sortKey="Hsieh, C C" uniqKey="Hsieh C">C.C Hsieh</name>
</author>
<author>
<name sortKey="Chao, P D" uniqKey="Chao P">P.D Chao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris, J S" uniqKey="Peiris J">J.S Peiris</name>
</author>
<author>
<name sortKey="Yuen, K Y" uniqKey="Yuen K">K.Y Yuen</name>
</author>
<author>
<name sortKey="Osterhaus, A D" uniqKey="Osterhaus A">A.D Osterhaus</name>
</author>
<author>
<name sortKey="Stohr, K" uniqKey="Stohr K">K Stohr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryu, Y B" uniqKey="Ryu Y">Y.B Ryu</name>
</author>
<author>
<name sortKey="Jeong, H J" uniqKey="Jeong H">H.J Jeong</name>
</author>
<author>
<name sortKey="Kim, J H" uniqKey="Kim J">J.H Kim</name>
</author>
<author>
<name sortKey="Kim, Y M" uniqKey="Kim Y">Y.M Kim</name>
</author>
<author>
<name sortKey="Park, J Y" uniqKey="Park J">J.Y Park</name>
</author>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D Kim</name>
</author>
<author>
<name sortKey="Nguyen, T T" uniqKey="Nguyen T">T.T Nguyen</name>
</author>
<author>
<name sortKey="Park, S J" uniqKey="Park S">S.J Park</name>
</author>
<author>
<name sortKey="Chang, J S" uniqKey="Chang J">J.S Chang</name>
</author>
<author>
<name sortKey="Park, K H" uniqKey="Park K">K.H Park</name>
</author>
<author>
<name sortKey="Rho, M C" uniqKey="Rho M">M.C Rho</name>
</author>
<author>
<name sortKey="Lee, W S" uniqKey="Lee W">W.S Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="So, L K" uniqKey="So L">L.K So</name>
</author>
<author>
<name sortKey="Lau, A C" uniqKey="Lau A">A.C Lau</name>
</author>
<author>
<name sortKey="Yam, L Y" uniqKey="Yam L">L.Y Yam</name>
</author>
<author>
<name sortKey="Cheung, T M" uniqKey="Cheung T">T.M Cheung</name>
</author>
<author>
<name sortKey="Poon, E" uniqKey="Poon E">E Poon</name>
</author>
<author>
<name sortKey="Yung, R W" uniqKey="Yung R">R.W Yung</name>
</author>
<author>
<name sortKey="Yuen, K Y" uniqKey="Yuen K">K.Y Yuen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stadler, K" uniqKey="Stadler K">K Stadler</name>
</author>
<author>
<name sortKey="Masignani, V" uniqKey="Masignani V">V Masignani</name>
</author>
<author>
<name sortKey="Eickmann, M" uniqKey="Eickmann M">M Eickmann</name>
</author>
<author>
<name sortKey="Becker, S" uniqKey="Becker S">S Becker</name>
</author>
<author>
<name sortKey="Abrignani, S" uniqKey="Abrignani S">S Abrignani</name>
</author>
<author>
<name sortKey="Klenk, H D" uniqKey="Klenk H">H.D Klenk</name>
</author>
<author>
<name sortKey="Rappuoli, R" uniqKey="Rappuoli R">R Rappuoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stroher, U" uniqKey="Stroher U">U Stroher</name>
</author>
<author>
<name sortKey="Di Caro, A" uniqKey="Di Caro A">A Di Caro</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Strong, J E" uniqKey="Strong J">J.E Strong</name>
</author>
<author>
<name sortKey="Aoki, F" uniqKey="Aoki F">F Aoki</name>
</author>
<author>
<name sortKey="Plummer, F" uniqKey="Plummer F">F Plummer</name>
</author>
<author>
<name sortKey="Jones, S M" uniqKey="Jones S">S.M Jones</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, P F" uniqKey="Su P">P.F Su</name>
</author>
<author>
<name sortKey="Li, C J" uniqKey="Li C">C.J Li</name>
</author>
<author>
<name sortKey="Hsu, C C" uniqKey="Hsu C">C.C Hsu</name>
</author>
<author>
<name sortKey="Benson, S" uniqKey="Benson S">S Benson</name>
</author>
<author>
<name sortKey="Wang, S Y" uniqKey="Wang S">S.Y Wang</name>
</author>
<author>
<name sortKey="Aravindaram, K" uniqKey="Aravindaram K">K Aravindaram</name>
</author>
<author>
<name sortKey="Chan, S I" uniqKey="Chan S">S.I Chan</name>
</author>
<author>
<name sortKey="Wu, S H" uniqKey="Wu S">S.H Wu</name>
</author>
<author>
<name sortKey="Yang, F L" uniqKey="Yang F">F.L Yang</name>
</author>
<author>
<name sortKey="Huang, C H" uniqKey="Huang C">C.H Huang</name>
</author>
<author>
<name sortKey="Shyur, L F" uniqKey="Shyur L">L.F Shyur</name>
</author>
<author>
<name sortKey="Yang, N S" uniqKey="Yang N">N.S Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, P F" uniqKey="Su P">P.F Su</name>
</author>
<author>
<name sortKey="Staniforth, V" uniqKey="Staniforth V">V Staniforth</name>
</author>
<author>
<name sortKey="Li, C J" uniqKey="Li C">C.J Li</name>
</author>
<author>
<name sortKey="Wang, C Y" uniqKey="Wang C">C.Y Wang</name>
</author>
<author>
<name sortKey="Chiao, M T" uniqKey="Chiao M">M.T Chiao</name>
</author>
<author>
<name sortKey="Wang, S Y" uniqKey="Wang S">S.Y Wang</name>
</author>
<author>
<name sortKey="Shyur, L F" uniqKey="Shyur L">L.F Shyur</name>
</author>
<author>
<name sortKey="Yang, N S" uniqKey="Yang N">N.S Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, E L" uniqKey="Tan E">E.L Tan</name>
</author>
<author>
<name sortKey="Ooi, E E" uniqKey="Ooi E">E.E Ooi</name>
</author>
<author>
<name sortKey="Lin, C Y" uniqKey="Lin C">C.Y Lin</name>
</author>
<author>
<name sortKey="Tan, H C" uniqKey="Tan H">H.C Tan</name>
</author>
<author>
<name sortKey="Ling, A E" uniqKey="Ling A">A.E Ling</name>
</author>
<author>
<name sortKey="Lim, B" uniqKey="Lim B">B Lim</name>
</author>
<author>
<name sortKey="Stanton, L W" uniqKey="Stanton L">L.W Stanton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Deng, M" uniqKey="Deng M">M Deng</name>
</author>
<author>
<name sortKey="Zhang, S Y" uniqKey="Zhang S">S.Y Zhang</name>
</author>
<author>
<name sortKey="Zhou, Z K" uniqKey="Zhou Z">Z.K Zhou</name>
</author>
<author>
<name sortKey="Tian, W X" uniqKey="Tian W">W.X Tian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Zhang, S Y" uniqKey="Zhang S">S.Y Zhang</name>
</author>
<author>
<name sortKey="Ma, X F" uniqKey="Ma X">X.F Ma</name>
</author>
<author>
<name sortKey="Tian, W X" uniqKey="Tian W">W.X Tian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wen, C C" uniqKey="Wen C">C.C Wen</name>
</author>
<author>
<name sortKey="Kuo, Y H" uniqKey="Kuo Y">Y.H Kuo</name>
</author>
<author>
<name sortKey="Jan, J T" uniqKey="Jan J">J.T Jan</name>
</author>
<author>
<name sortKey="Liang, P H" uniqKey="Liang P">P.H Liang</name>
</author>
<author>
<name sortKey="Wang, S Y" uniqKey="Wang S">S.Y Wang</name>
</author>
<author>
<name sortKey="Liu, H G" uniqKey="Liu H">H.G Liu</name>
</author>
<author>
<name sortKey="Lee, C K" uniqKey="Lee C">C.K Lee</name>
</author>
<author>
<name sortKey="Chang, S T" uniqKey="Chang S">S.T Chang</name>
</author>
<author>
<name sortKey="Kuo, C J" uniqKey="Kuo C">C.J Kuo</name>
</author>
<author>
<name sortKey="Lee, S S" uniqKey="Lee S">S.S Lee</name>
</author>
<author>
<name sortKey="Hou, C C" uniqKey="Hou C">C.C Hou</name>
</author>
<author>
<name sortKey="Hsiao, P W" uniqKey="Hsiao P">P.W Hsiao</name>
</author>
<author>
<name sortKey="Chien, S C" uniqKey="Chien S">S.C Chien</name>
</author>
<author>
<name sortKey="Shyur, L F" uniqKey="Shyur L">L.F Shyur</name>
</author>
<author>
<name sortKey="Yang, N S" uniqKey="Yang N">N.S Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, C H" uniqKey="Wu C">C.H Wu</name>
</author>
<author>
<name sortKey="Yen, G C" uniqKey="Yen G">G.C Yen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, C Y" uniqKey="Wu C">C.Y Wu</name>
</author>
<author>
<name sortKey="Jan, J T" uniqKey="Jan J">J.T Jan</name>
</author>
<author>
<name sortKey="Ma, S H" uniqKey="Ma S">S.H Ma</name>
</author>
<author>
<name sortKey="Kuo, C J" uniqKey="Kuo C">C.J Kuo</name>
</author>
<author>
<name sortKey="Juan, H F" uniqKey="Juan H">H.F Juan</name>
</author>
<author>
<name sortKey="Cheng, Y S" uniqKey="Cheng Y">Y.S Cheng</name>
</author>
<author>
<name sortKey="Hsu, H H" uniqKey="Hsu H">H.H Hsu</name>
</author>
<author>
<name sortKey="Huang, H C" uniqKey="Huang H">H.C Huang</name>
</author>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D Wu</name>
</author>
<author>
<name sortKey="Brik, A" uniqKey="Brik A">A Brik</name>
</author>
<author>
<name sortKey="Liang, F S" uniqKey="Liang F">F.S Liang</name>
</author>
<author>
<name sortKey="Liu, R S" uniqKey="Liu R">R.S Liu</name>
</author>
<author>
<name sortKey="Fang, J M" uniqKey="Fang J">J.M Fang</name>
</author>
<author>
<name sortKey="Chen, S T" uniqKey="Chen S">S.T Chen</name>
</author>
<author>
<name sortKey="Liang, P H" uniqKey="Liang P">P.H Liang</name>
</author>
<author>
<name sortKey="Wong, C H" uniqKey="Wong C">C.H Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yi, L" uniqKey="Yi L">L Yi</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Yuan, K" uniqKey="Yuan K">K Yuan</name>
</author>
<author>
<name sortKey="Qu, X" uniqKey="Qu X">X Qu</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Luo, H" uniqKey="Luo H">H Luo</name>
</author>
<author>
<name sortKey="Zhu, L" uniqKey="Zhu L">L Zhu</name>
</author>
<author>
<name sortKey="Jiang, P" uniqKey="Jiang P">P Jiang</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
<author>
<name sortKey="Shen, Y" uniqKey="Shen Y">Y Shen</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Zuo, G" uniqKey="Zuo G">G Zuo</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J Hu</name>
</author>
<author>
<name sortKey="Duan, D" uniqKey="Duan D">D Duan</name>
</author>
<author>
<name sortKey="Nie, Y" uniqKey="Nie Y">Y Nie</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X Shi</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Han, Y" uniqKey="Han Y">Y Han</name>
</author>
<author>
<name sortKey="Li, T" uniqKey="Li T">T Li</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Ding, M" uniqKey="Ding M">M Ding</name>
</author>
<author>
<name sortKey="Deng, H" uniqKey="Deng H">H Deng</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X Xu</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Tradit Complement Med</journal-id>
<journal-id journal-id-type="iso-abbrev">J Tradit Complement Med</journal-id>
<journal-id journal-id-type="publisher-id">JTCM</journal-id>
<journal-title-group>
<journal-title>Journal of Traditional and Complementary Medicine</journal-title>
</journal-title-group>
<issn pub-type="epub">2225-4110</issn>
<publisher>
<publisher-name>Medknow Publications & Media Pvt Ltd</publisher-name>
<publisher-loc>India</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24716104</article-id>
<article-id pub-id-type="pmc">3942999</article-id>
<article-id pub-id-type="publisher-id">JTCM-1-41</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Traditional Chinese medicine herbal extracts of
<italic>Cibotium barometz</italic>
,
<italic>Gentiana scabra</italic>
,
<italic>Dioscorea batatas</italic>
,
<italic>Cassia tora</italic>
, and
<italic>Taxillus chinensis</italic>
inhibit SARS-CoV replication</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wen</surname>
<given-names>Chih-Chun</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="author-notes" rid="fn1">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shyur</surname>
<given-names>Lie-Fen</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="author-notes" rid="fn1">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jan</surname>
<given-names>Jia-Tsrong</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
<xref ref-type="author-notes" rid="fn1">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liang</surname>
<given-names>Po-Huang</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kuo</surname>
<given-names>Chih-Jung</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="aff" rid="aff5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Arulselvan</surname>
<given-names>Palanisamy</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Jin-Bin</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kuo</surname>
<given-names>Sheng-Chu</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Ning-Sun</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan</aff>
<aff id="aff2">
<label>2</label>
Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan</aff>
<aff id="aff3">
<label>3</label>
Genomics Research Center, Academia Sinica, Taipei 115, Taiwan</aff>
<aff id="aff4">
<label>4</label>
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan</aff>
<aff id="aff5">
<label>5</label>
Department of Population Medicine and Diagnostic Science, Veterinary Medical Center, Cornell University, Ithaca, NY, 14853 USA</aff>
<author-notes>
<fn id="fn1">
<label>§</label>
<p>Contributed equally</p>
</fn>
<corresp id="cor1">
<label>*</label>
<bold>
<italic>Correspondence to:</italic>
Dr. Ning-Sun Yang</bold>
. Agricultural Biotechnology Research Center, Academia Sinica. No. 128, Academia Sinica Rd. Sec. 2, Nankang District, Taipei 11529, Taiwan, Tel: + 886-2-2787-2067, Fax: + 886-2-2651-1127, E-mail:
<email xlink:href="nsyang@gate.sinica.edu.tw">nsyang@gate.sinica.edu.tw</email>
<bold>Dr. Sheng-Chu Kuo</bold>
. Graduate Institute of Pharmaceutical Chemistry, China Medical University. No.91, Hsueh-Shih Road,Taichung, Taiwan 40402, Taiwan, Tel: + 886-4-2205-3366 ext 5608, E-mail:
<email xlink:href="sckuo@mail.cmu.edu.tw">sckuo@mail.cmu.edu.tw</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<season>Oct-Dec</season>
<year>2011</year>
</pub-date>
<volume>1</volume>
<issue>1</issue>
<fpage>41</fpage>
<lpage>50</lpage>
<permissions>
<copyright-statement>Copyright: © Journal of Traditional and Complementary Medicine</copyright-statement>
<copyright-year>2011</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-sa/3.0">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Development of anti-severe acute respiratory syndrome associated coronavirus (SARS-CoV) agents is pivotal to prevent the reemergence of the life-threatening disease, SARS. In this study, more than 200 extracts from Chinese medicinal herbs were evaluated for anti-SARS-CoV activities using a cell-based assay that measured SARS-CoV-induced cytopathogenic effect (CPE)
<italic>in vitro</italic>
on Vero E6 cells. Six herbal extracts, one each from Gentianae Radix (龍膽 lóng dǎn; the dried rhizome of
<italic>Gentiana scabra</italic>
), Dioscoreae Rhizoma (山藥 shān yào; the tuber of
<italic>Dioscorea batatas</italic>
), Cassiae Semen (決明子 jué míng zǐ; the dried seed of
<italic>Cassia tora</italic>
) and Loranthi Ramus (桑寄生 sāng jì shēng; the dried stem, with leaf of
<italic>Taxillus chinensis</italic>
) (designated as GSH, DBM, CTH and TCH, respectively), and two from Rhizoma Cibotii (狗脊 gǒu jǐ; the dried rhizome of
<italic>Cibotium barometz</italic>
) (designated as CBE and CBM), were found to be potent inhibitors of SARS-CoV at concentrations between 25 and 200 μg/ml. The concentrations of the six extracts needed to inhibit 50% of Vero E6 cell proliferation (CC
<sub>50</sub>
) and 50% of viral replication (EC
<sub>50</sub>
) were determined. The resulting selective index values (SI = CC
<sub>50</sub>
/EC
<sub>50</sub>
) of the most effective extracts CBE, GSH, DBM, CTH and TCH were > 59.4, > 57.5, > 62.1, > 59.4, and > 92.9, respectively. Among these extracts, CBM and DBM also showed significant inhibition of SARS-CoV 3CL protease activity with IC
<sub>50</sub>
values of 39 μg/ml and 44 μg/ml, respectively. Our findings suggest that these six herbal extracts may have potential as candidates for future development of anti-SARS therapeutics.</p>
<sec id="st1">
<title></title>
<def-list>
<title>Abbreviations</title>
<def-item>
<term>SARS,</term>
<def>
<p>severe acute respiratory syndrome</p>
</def>
</def-item>
<def-item>
<term>CoV,</term>
<def>
<p>coronavirus</p>
</def>
</def-item>
<def-item>
<term>CPE,</term>
<def>
<p>cytopathogenic effect</p>
</def>
</def-item>
<def-item>
<term>TCM,</term>
<def>
<p>traditional Chinese medicine</p>
</def>
</def-item>
</def-list>
</sec>
</abstract>
<kwd-group>
<kwd>Severe acute respiratory syndrome (SARS)</kwd>
<kwd>Traditional Chinese medicine (TCM)</kwd>
<kwd>Cytopathogenic effect (CPE)</kwd>
<kwd>SARS 3CL protease</kwd>
<kwd>
<italic>Cibotium barometz</italic>
</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1-1">
<title>Introduction</title>
<p>Severe acute respiratory syndrome (SARS) is a highly infectious, life-threatening disease caused by a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV) (Drosten et al., 2003; Ksiazek et al., 2003; Kuiken et al., 2003). In 2003, SARS spread quickly in over 25 countries and caused 8098 probable SARS cases and 774 SARS-related deaths. Although various candidate drugs have subsequently been reported to attenuate the disease (Cinatl et al., 2005; Hoever et al., 2005; Holmes, 2003), there are currently still no clinically approved or recommended antiviral drugs specific for SARS use. Currently, the most frequent treatment for SARS is antiviral and supportive treatment using a combination of ribavirin and corticosteroids (Peiris et al., 2003; So et al., 2003). However, ribavirin is only marginally effective against the SARS virus, and shows serious adverse side effects (Cinatl et al., 2003; Stroher et al., 2004). Since the SARS outbreak, considerable effort has been put into antiviral research to evaluate drug candidates for anti-SARS-CoV activity to prevent possible re-emergence of the disease (Wen et al., 2007; Wu et al., 2004). Notably, glycyrrhizin from licorice roots and a number of glycyrrhizin derivatives have been shown to possess demonstrable anti-SARS-CoV bioactivities (Hoever et al., 2005; Wu et al., 2004). And the non-steroidal anti-inflammatory drug, indomethacin, was also found to confer potent antiviral activity against SARS-CoV (Amici et al., 2006). A number of traditional herbal medicines have also been reported to possess antiviral activity against SARS-CoV (Chen et al., 2008; Li et al., 2005; Lin et al., 2005; Ryu et al., 2010).</p>
<p>The SARS-CoV genome encodes various key protein molecules that may serve as potential targets for chemotherapeutic inhibition of viral infection and replication (Lai, 2005; Stadler et al., 2003). These vital targets include: the spike protein (S), the SARS-CoV main protease (3CL protease), the NTPase/helicase, the RNA-dependent RNA polymerase, the membrane protein (M), the envelope protein (E), and the nucleocapsid phosphoprotein (N) and possibly other viral protein-mediated processes (De Clercq, 2004; Gallagher and Buchmeier, 2001; Groneberg et al., 2005; Holmes, 2003; Kliger et al., 2005; Lai, 2005; Stadler et al., 2003). Anti-SARS-CoV agents that can inhibit SARS-CoV replication may be involved in inhibition of one or more of the above protein targets including SARS-CoV 3CL protease. This important protease regulates the proteolytic processing of replicase polypeptides into functional proteins, playing an essential role in viral replication (Chen et al., 2002; Kuo et al., 2004). SARS-CoV 3CL protease is thus an attractive target for drug candidates against SARS.</p>
<p>In this study, we first investigated the effects of extracts of traditional Chinese medicinal (TCM) herbs on anti-SARS-CoV activity using a Vero E6 cell-based cytopathogenic effect (CPE) assay. The herbal extracts with anti-SARS-CoV activity shown by the CPE assay were subsequently evaluated for inhibition of SARS-CoV replication using ELISA. These bioactive extracts were then further investigated for inhibition of SARS-CoV 3CL protease activity. Our findings demonstrate that six previously unreported specific herbal extracts may have potential for use as drug targets for future development of anti-SARS therapeutics.</p>
</sec>
<sec sec-type="materials|methods" id="sec1-2">
<title>Materials and Methods</title>
<sec id="sec2-1">
<title>Preparation of extracts from traditional Chinese medicinal herbs</title>
<p>More than 50 traditional Chinese medicinal herbs were prepared and used as shown in
<xref ref-type="fig" rid="F1">Figure 1</xref>
. Briefly, plant materials were ground into a powder, immersed in 10-fold volume of water in a sonicator for 1 hour, and filtered. Three-fold volume of 95% ethanol was further added to the filtrate left for 1 hour and centrifuged at 10000g for 20 minutes, at 4℃. The supernatant was rotor-evaporated and then freeze-dried to obtain the E fraction, and the 70% ethanol precipitated fraction was freeze-dried to obtain the W fraction. The previous residue was mixed with 5-fold volume of methanol, left for 1 hour, and filtered again to obtain two fractions, the filtrate and the residue. The filtrate was rotor-evaporated, and further freeze-dried to obtain the M fraction. The residue was then mixed with 5-fold volume of
<italic>n</italic>
-hexane in a sonicator for 1 hour, kept overnight, filtered, rotor-evaporated, and further freeze-dried to obtain a filtrate (H). All plant materials were coded as the first letters of the name of the genus and species followed by the abbreviation for the preparative method. For example, the W, E, M and H extracts of
<italic>Cibotium barometz</italic>
were abbreviated as CBW, CBE, CBM and CBH, respectively.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>Schematic representation of different preparations of test herbal extracts. The E, W, M and H fractions from all tested plant materials were fractionated and dried as described in Materials and Methods.</p>
</caption>
<graphic xlink:href="JTCM-1-41-g001"></graphic>
</fig>
</sec>
<sec id="sec2-2">
<title>Cytopathogenic effect of SARS-CoV on Vero E6 cells</title>
<p>Eight wells were prepared to test each extract: three wells contained virus-infection only with no test extract (as positive control for CPE); three wells contained virus-infection with extract treatment; and two wells contained extract treatment only, without viral infection. In brief, Vero E6 cells (2 × 10
<sup>4</sup>
/well) were cultured in 96-well plates in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10 % fetal bovine serum (FBS) at 37℃ in an incubator with 5% CO
<sub>2</sub>
for one day. When cells reached 80-90% confluence, the culture medium was removed and replenished with 100 μL DMEM supplemented with 2% FBS. Test cell cultures at≧90% confluence were treated with or withou
<italic>t</italic>
tested extracts in a DMEM + 2% FBS medium. Two hours later, test cells in 50 μL of culture medium were incubated with SARS-CoV (Hong Kong strain) at a dose of 100 TCID
<sub>50</sub>
(50% tissue culture infectious doses) per well. The cytopathogenic morphology of cells was observed and evaluated at 72 hours post infection using inverted phase contrast microscopy.</p>
<p>Inhibition of SARS-CoV mediated CPE by the tested extracts was classified into three levels (+++, ++, +) as previously reported (Tan et al., 2004). Cell cultures in which less than 25% of Vero E6 cells showed cytopathogenic morphology in response to SARS-CoV after treatment with extracts were scored as +++. Cell cultures in which 25-50% and 50-70% cells showed cytopathogenic morphology were scored as ++ and +, respectively.</p>
</sec>
<sec id="sec2-3">
<title>Cytotoxicity of test extracts on Vero E6 Cells</title>
<p>The assay protocol was as reported previously (Wen et al., 2007). Briefly, Vero E6 cells (2 × 10
<sup>4</sup>
/well) were cultured in 96-well plates in DMEM supplemented with 10% FBS at 37℃ in a 5% CO
<sub>2</sub>
incubator. After incubation for one day during which cultured cells reached 90% confluence, the culture medium was replenished with 100 μL fresh DMEM medium containing 2% FBS and test extracts at varying concentrations, were placed into microwells and incubated for 3 days. The test culture medium was then replenished with 100 μL fresh culture medium containing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) at a concentration of 0.5 mg/mL per well for 4 hours. Optical density (OD) was then measured with a spectrophotometer at 570 nm. Survival of Vero E6 cells after treatment was calculated using the formula: viable cell number (%) = [OD
<sub>570 (treated cells)</sub>
]/OD
<sub>570 (vehicle control cells)</sub>
] × 100. The CC
<sub>50</sub>
value was taken to be the test compound concentration at which cell viability was reduced by 50%.</p>
</sec>
<sec id="sec2-4">
<title>Inhibition of viral replication in SARS-CoV-infected Vero E6 cells</title>
<p>The inhibitory effects of test extracts on SARS-CoV replication were measured as previously described (Wen et al., 2007). Briefly, after test extracts had been added to Vero E6 cells and incubated for 3 days with SARS-CoV, the cells were gently rinsed with PBS three times and then fixed with 10% formalin for 5 minutes at room temperature. The 10% formalin was removed and the cells were fixed again in methanol/acetone (v/v, 1:1) solution for 5 minutes at room temperature. Cells were then blocked with 3% skim milk in PBS for 2 hours at room temperature, rinsed three times with PBS, and then incubated for 1 hour at 37℃ with 1:2,000 dilution of monoclonal antibody against the spike protein of SARS-CoV. All samples were then rinsed with three changes of PBS containing 0.05% Tween 20 (PBS-T buffer) followed by washing twice with fresh PBS at room temperature; and finally rinsed with 3% skim milk in PBS-T buffer. Cells were then incubated with a horseradish peroxidase-conjugated goat anti-mouse IgG for 30 minutes at room temperature. After rinsing three times with PBS-T buffer, a substrate solution containing o-phenylenediamine dihydrochloride, citrate buffer (pH 5.0), and hydrogen peroxide was added to each well. Plates were covered and gently shaken at room temperature for 10 minutes in the dark. The reaction was stopped by addition of 2 N sulfuric acid, and absorbance was read immediately at 492 nm on an ELISA reader. The EC
<sub>50</sub>
value for each test compound was calculated from a linear regression plot of compound concentration versus OD
<sub>492</sub>
.</p>
</sec>
<sec id="sec2-5">
<title>SARS-CoV 3CL protease inhibition assay</title>
<p>The gene encoding the SARS-CoV main protease was cloned from the whole viral genome by polymerase chain reaction (PCR) and primer insertion (forward primer 5′-GGTATTGAGGGTCGCAGTGGTTTTAGG-3′ and reverse primer 5′-AGAGGAGAGTTAGAGCCTTATTGGAAGGTAACACC-3′) into the pET32Xa/Lic vector as reported previously (Chen et al., 2002; Kuo et al., 2004). The recombinant 3CL protease plasmid was then transformed into
<italic>E. coli</italic>
JM109 competent cells that were streaked on a Luria–Bertani (LB) agar plate containing 100 μg/mL of ampicillin. The correct construct was subsequently transformed into
<italic>E. coli</italic>
BL21 host cells for expression of the His-tagged protein, which was then digested with FXa protease to remove the tag. The purified protein was confirmed by N-terminal sequencing and mass spectrometry analysis. The enzyme concentration used in all experiments was measured by the absorbance at 280 nm.</p>
<p>The kinetic measurements were performed in a solution containing 20 mM bis[(2-hydroxyethyl)amino]tris(hydroxymethyl)methane (pH 7.0) at 25℃. Enhanced fluorescence resulting from cleavage of the fluorogenic substrate peptide (Dabcyl-KTSAVLQ-SGFRKME-Edans) of SARS 3CL-protease was monitored on a fluorescence plate reader (538 nm emission, 355 nm excitation). The initial velocities of the inhibiting activities on 50 nM SARS 3CL-protease using 6 μM fluorogenic substrate were plotted against the different inhibitor concentrations to obtain IC
<sub>50</sub>
values using Equation 1 (Eq. 1), where
<italic>A</italic>
[
<italic>I</italic>
] is the enzyme activity with inhibitor concentration [
<italic>I</italic>
]; and
<italic>A</italic>
[0] is the enzyme activity without interference from an inhibitor:</p>
<p>
<italic>A</italic>
[
<italic>I</italic>
] =
<italic>A</italic>
[0] × {1 − [[I]/([
<italic>I</italic>
] + IC
<sub>50</sub>
)]}      (Eq. 1)</p>
</sec>
</sec>
<sec sec-type="results" id="sec1-3">
<title>Results</title>
<sec id="sec2-6">
<title>Anti-SARS-CoV activity of test extracts as measured by cell-based cytopathogenic effect (CPE) assay</title>
<p>The anti-SARS-CoV activity of test extracts was first measured using a cell-based assay of the cytopathogenic effect on infected Vero E6 cells as described previously (Wen et al., 2007).
<xref ref-type="fig" rid="F2">Figure 2</xref>
, panel A, shows the original morphology of the Vero E6 cells without treatment with test extracts (negative control), and panel B shows the cytopathic morphology of SARS-CoV-infected Vero E6 cells (positive control). Inhibition of SARS-CoV mediated CPE in Vero E6 cells was graded into three levels +, ++ and +++ (where + represented least inhibition, and +++ represented most inhibition) as shown in panels C, D, and E, respectively. Valinomycin (VAL), which has previously been reported to exhibit strong anti-SARS bioactivity
<italic>in vitro</italic>
(Wu et al., 2004), was employed as a reference control with high inhibition (level +++) (
<xref ref-type="table" rid="T1">Table 1</xref>
). Among all tested extracts, none of the W fractions from test plant materials conferred significant anti-SARS activity. For E, M and H fractions from all herbal extracts, only six extracts, CBE and CBM from Rhizoma Cibotii (狗脊 gǒu jǐ; the dried rhizome of
<italic>Cibotium barometz</italic>
), GSH from Gentianae Radix (龍膽 lóng dǎn; the dried rhizome of
<italic>Gentiana scabra</italic>
), DBM from Dioscoreae Rhizoma (山藥 shān yào; the tuber of
<italic>Dioscorea batatas</italic>
), CTH from Cassiae Semen (決明子 jué míng zǐ; the dried seed of
<italic>Cassia tora</italic>
), and TCH from Loranthi Ramus (桑寄生 sāng jì shēng; the dried stem, with leaf of
<italic>Taxillus chinensis</italic>
) (designated as GSH, DBM, CTH and TCH, respectively), and two from showed inhibitory activities (at levels + to +++) in the CPE assays at concentrations between 25 and 200 μg/ml (
<xref ref-type="table" rid="T1">Table 1</xref>
). To evaluate whether the vehicle solvent (0.2 - 0.4% DMSO) can result in possible cytotoxic or negative effects on Vero E6 cells, MTT assay and microscopic examinations were performed. Our results showed little or no cytotoxic effect was detectable in 0.2-0.4% DMSO-treated cells, as in good agreement with our previous findings (Wen et al., 2007).</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>Inhibition of cytopathogenic effect (CPE) of SARS-CoV-infected Vero E6 cells by TCM phytoextracts. Representative cell-culture phenotypes or behavior of Vero E6 cells with or without infection with SARS-CoV are shown in A and B, respectively. C, D, and E are semiquantitative representations of the three levels of CPE inhibition (low +, moderate ++, and high +++), as revealed by phase contrast microscopy.</p>
</caption>
<graphic xlink:href="JTCM-1-41-g002"></graphic>
</fig>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Effect of Traditional Chinese Medicine extracts on cytopathogenic effect (CPE) of SARS-CoV on Vero E6 cells</p>
</caption>
<graphic xlink:href="JTCM-1-41-g003"></graphic>
</table-wrap>
</sec>
<sec id="sec2-7">
<title>Inhibition of SARS-CoV replication evaluated using ELISA.</title>
<p>To investigate whether the six herbal extracts that exhibited potent inhibitory activity could significantly inhibit viral replication, levels of spike protein in SARS-CoV infected Vero E6 cells with or without treatment with test extracts, were measured by ELISA. As seen in
<xref ref-type="fig" rid="F3">Figure 3A</xref>
the six extracts showed anti-SARS-CoV replication activities at concentrations of 0.1 - 10 μg/ml as detected by ELISA. The concentration of each test extract required to inhibit 50% of viral replication (EC
<sub>50</sub>
) was calculated and summarized in
<xref ref-type="table" rid="T2">Table 2</xref>
. In contrast to CBM which had EC
<sub>50</sub>
values higher than 10 μg/ml, the EC
<sub>50</sub>
values of CBE, GSH, DBM, CTH and TCH were determined at 8.42, 8.70, 8.06, 8.42 and, 5.39 μg/ml, respectively. Although these values are 2-3 fold higher than that of the reference compound valinomycin (VAL) (EC
<sub>50</sub>
= 1.87 μg/ml), the considerably low EC
<sub>50</sub>
values (< 10 μg/ml) of these extracts are very interesting, and may suggest that these test extracts apparently can significantly inhibit SARS-CoV replication with specificities.</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>Inhibitory effect of test extracts on replication of SARS-CoV and on proliferation of Vero E6 cells. (A) Inhibition of SARS-CoV replication in response to treatment with specific extracts is measured by the level of SARS-CoV spike protein (SARS-CoV S) in test Vero E6 cell cultures using ELISA. % of Control = (OD
<sub>492</sub>
of SARS-CoV infection – OD
<sub>492</sub>
of mock infection [concn X]) / (OD
<sub>492</sub>
of SARS-CoV infection – OD
<sub>492</sub>
of Mock infection [concn 0]). (B) Cytotoxic effects of test extracts on Vero E6 cells were determined using MTT assay. Each data point represents the mean ± SD (
<italic>n</italic>
= 3). Cell viability (%) = (OD
<sub>570</sub>
of treated cells / OD
<sub>570</sub>
of vehicle cells) × 100.</p>
</caption>
<graphic xlink:href="JTCM-1-41-g004"></graphic>
</fig>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Effect of test extracts on Vero E6 cell proliferation and SARS-CoV replication</p>
</caption>
<graphic xlink:href="JTCM-1-41-g005"></graphic>
</table-wrap>
</sec>
<sec id="sec2-8">
<title>Cytotoxic effects of test extracts on Vero E6 Cells.</title>
<p>Since it is possible that the anti-SARS-CoV activity of the test extracts may result from a direct inhibition on the growth of test Vero E6 cells, MTT assay was thus conducted to evaluate potential cytotoxic effect of test phytoextracts in concentrations ranging from 10 to 500 μg/ml on Vero E6 cells. As seen in
<xref ref-type="table" rid="T2">Table 2</xref>
and
<xref ref-type="fig" rid="F3">Figure 3B</xref>
, the cytotoxic concentrations of individual extracts that reduced the cell viability to 50% of the untreated control (CC
<sub>50</sub>
) were calculated and compared with each other. The CC
<sub>50</sub>
values for all test extracts were detected to be higher than 500 μg/ml; interestingly, however, the positive control valinomycin had in fact a relatively low CC
<sub>50</sub>
value (75.01 μg/ml). This result suggests that these extracts had little or no interference with the growth of Vero E6 cells, and they can be considered as generally biologically safe to the host cells. According to the results in
<xref ref-type="table" rid="T2">Table 2</xref>
, we hence suggest that it is quite unlikely that the inhibitory effects detected for the tested herbal extracts on viral replication of SARS-CoV were due to the inhibitory effect on cell growth or viability of host cells. In addition, the selective index (SI), the ratio of CC
<sub>50</sub>
to EC
<sub>50</sub>
, was also then calculated to evaluate the potency of anti-SARS-CoV activity of test extracts (
<xref ref-type="table" rid="T2">Table 2</xref>
). The SI values of CBE, CBM, GSH, DBM, CTH and TCH were determined at the value of > 59.4, not calculable, > 57.5, > 62.1, > 59.4, and > 92.9, respectively. These SI values, with the exception of CBM, are all higher than the value of the reference control valinomycin (SI = 41.4) as determined in parallel in this study and as we previously reported (Wu et al., 2004).</p>
</sec>
<sec id="sec2-9">
<title>Inhibitory effects of test extracts on SARS-CoV 3CL protease activity.</title>
<p>The proteolytic cleavage of viral polyproteins at specific sites by 3CL protease plays an important role in SARS-CoV replication (Chen et al., 2002; Kuo et al., 2004). To understand whether the anti-SARS-CoV activity of these extracts can result from inhibition of SARS-CoV 3CL protease activity, all six test extracts were further evaluated in a 3CL protease inhibition assay. The IC
<sub>50</sub>
values of extracts were measured using a quenched fluorescence energy transfer (FRET) method as previously described (Kuo et al., 2004). Niclosamide (NIC) has been reported to be an inhibitor of SARS-CoV 3CL protease activity and was used as a reference control: NIC had an IC
<sub>50</sub>
value of 13 μg/ml in this study. As seen in
<xref ref-type="fig" rid="F4">Figure 4</xref>
and
<xref ref-type="table" rid="T3">Table 3</xref>
, among these extracts tested, only CBM and DBM conferred a considerable inhibition of SARS-CoV 3CL protease activity, with IC
<sub>50</sub>
values of 39 μg/ml and 44 μg/ml, respectively. The IC
<sub>50</sub>
values of the other test extracts were all higher than 50 μg/ml.</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>Inhibition of the enzymatic activity of SARS-CoV 3CL protease by CBM and DBM. The initial velocities of the inhibitory activities on 50 nM SARS 3CL-protease using 6 μM fluorogenic substrate were plotted against the different inhibitor concentrations (0 – 0.08 mg/ml) of CBM (A) and DBM (B) to obtain the IC
<sub>50</sub>
values using Eq. 1, as described in Materials and Methods.</p>
</caption>
<graphic xlink:href="JTCM-1-41-g006"></graphic>
</fig>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>IC
<sub>50</sub>
values of test extracts on the enzymatic activities of SARS-CoV 3CL protease</p>
</caption>
<graphic xlink:href="JTCM-1-41-g007"></graphic>
</table-wrap>
</sec>
</sec>
<sec sec-type="conclusion" id="sec1-4">
<title>Conclusion</title>
<p>Since the outbreak of SARS in 2003, considerable effort has been put into research of the disease; however, to date, no drug has been approved for potential future clinical use in patients with SARS (Cleri et al., 2010). To assure adequate public safety and control of infection in the event of a re-emergence of this illness, effective anti-SARS-CoV agents may still be highly desirable or even necessary. Plant materials, especially for those that were previously used in traditional Chinese medicines, we believe are rich resources for development of the related therapeutic agents or drug candidates. In this study, we have employed a cell-based cytopathogenic effect (CPE) assay in SARS-CoV-infected Vero E6 cells for screening more than 200 extracts for candidate anti-SARS-CoV activity. Six herbal extracts from traditional Chinese medicinal herbs were found to exhibit significant levels (+ to +++) of anti-SARS-CoV activity at concentrations of 25 and 100 μg/ml (
<xref ref-type="table" rid="T1">Table 1</xref>
). As measured and compared by results from the CPE assays, this level of anti-SARS-CoV activity is better than that reported for glycyrrhizin (Cinatl et al., 2003), a compound with known anti-SARS-CoV activity, and extracts of other traditional herbs previously reported to confer anti-SARS-CoV activity (Lau et al., 2008; Li et al., 2005).</p>
<p>The CPE of viral infection may involve complex interactions of a number of molecular mechanisms between the SARS-CoV and test Vero E6 cells (Stadler et al., 2003). By quantification of the amount of spike protein present in SARS-CoV-infected Vero E6 cells (EC
<sub>50</sub>
), we showed that the anti-SARS-CoV activity of these extracts may act specifically on the inhibition of viral replication (
<xref ref-type="table" rid="T2">Table 2</xref>
and
<xref ref-type="fig" rid="F3">Figure 3A</xref>
). In addition, a MTT assay was adopted to determine the CC
<sub>50</sub>
of test extracts, and our data led us to suggest that the anti-viral activities we detected were apparently not due to the effects of cytotoxicity of test extracts on the host cells, as evidenced by the low EC
<sub>50</sub>
of the extracts. The selective index (SI) value was calculated as the ratio of CC
<sub>50</sub>
to EC
<sub>50</sub>
as an indicator of the potency of test phytoextracts. In comparison to the positive control, valinomycin (VAL) (Wu et al., 2004), CBE, GSH, DBM, CTH and TCH showed potent activities against CPE, and they also exhibited marked inhibitory effects on SARS-CoV replication. The SI values (
<xref ref-type="table" rid="T2">Table 2</xref>
) for these five bioactive extracts are significantly higher even than the SI value of the positive control valinomycin (SI = 41.4). The SI values (all > 55) of these five extracts are also higher than two other traditional Chinese herbs previously reported to inhibit SARS-CoV infection;
<italic>Cinnamomi cortex</italic>
was shown to inhibit SARS-CoV infection at a SI value of 23.4, and
<italic>Toona sinensis</italic>
extract was shown to inhibit SARS-CoV replication with an SI value of (12 to 17) (Chen et al., 2008). Taken together, we hence suggest that the six TCM phytoextracts reported here can inhibit SARS-CoV replication with little or no cytotoxicity to Vero E6 cells, and are may thus serve as useful candidates for future development of anti-SARS therapeutics.</p>
<p>The SARS-CoV 3CL protease is involved in the viral maturation process by cleaving the virus-encoded polyproteins (Chen et al., 2002). Because of its pivotal role in the SARS-CoV life cycle, the 3CL protease is recognized as an important target for discovery of anti-SARS-CoV agents. Among the extracts tested for inhibition of SARS-CoV 3CL protease activity, the IC
<sub>50</sub>
values of CBM (39 μg/ml) and DBM (44 μg/ml) suggest that these two extracts can exhibit significant inhibitory activity against 3CL protease. A number of studies have contributed to the identification of inhibitors of SARS-CoV 3CL protease [15, 28-29]. However, the IC
<sub>50</sub>
values of CBM and DBM for inhibition of SARS-CoV 3CL protease are also similar or higher than extracts from other anti-SARS-CoV medicinal herbs reported to date, including
<italic>Isatis indigotica</italic>
(IC
<sub>50</sub>
= 53.8 μg/ml) (Li et al., 2005),
<italic>Torreya nucifera</italic>
(IC
<sub>50</sub>
= 100 μg/ml), tea extract (IC
<sub>50</sub>
= 125 μg/ml) (Chen et al., 2005) and
<italic>Houttuynia cordata</italic>
(IC
<sub>50</sub>
= 1000 μg/ml) (Lau et al., 2008). We therefore suggest that the herbal extracts of CBM and DBM may be useful drug candidates against SARS-CoV 3CL protease and may have potential for use as alternative herbal therapies against SARS. The other four herbal extracts we tested other than these two herbal extracts may inhibit SARS-CoV replication via different working mechanisms including blocking of viral binding, inhibition of SARS-CoV fusion with the host cells, inhibition on activity of other SARS-CoV proteases and inhibition of RNA transcription (Kliger et al., 2005).</p>
<p>Recently, phytochemicals or extracts derived from traditionally used medicinal plants or herbs have been contemplated or clinically evaluated as alternative or complementary treatments for various diseases. Previous reports showed that
<italic>Cibotium barometz</italic>
inhibited osteoclast formation and has antioxidative, tyrosinase inhibiting and antibacterial activities (Cuong et al., 2009; Lai et al., 2009). In this study,
<italic>Cibotium barometz</italic>
was found to possess good anti-SAR-CoV activity and effectively inhibit SARS 3CL protease activity. The bioactive components responsible for these activities should therefore warrant further investigations.
<italic>Gentiana scabra</italic>
has previously been shown to confer a hepatoprotective effect (Jiang and Xue, 2005) and contains triterpenoids of secoiridoid and its glycosides (Chueh et al., 2001; Kakuda et al., 2001; Kim et al., 2009). Based on our previous study on anti-SARS-CoV phytocompounds (Wen et al., 2007), specific triterpenoids have been shown to inhibit SARS-CoV replication. We therefore suggest here that secoiridoid and its glycosides may contribute to the anti-SARS activity detected for
<italic>Gentiana scabra</italic>
extract, and secoiridoid and its glycosiedes may have potential for further evaluation as anti-SARS lead compounds. In our previous study (Su et al., 2011; Su et al., 2008), two specific polysaccharide-containing fractions from
<italic>Dioscorea batatas</italic>
tuber extracts significantly increased GM-CSF promoter activity in normal and inflamed skin, enhanced murine splenocyte proliferation
<italic>ex vivo</italic>
and improved regeneration of bone marrow cells
<italic>in vivo</italic>
. Other studies also revealed that the ethanolic extract from
<italic>Dioscorea batatas</italic>
can exert anti-inflammatory effect through the inhibition of NF-κB-mediated iNOS and COX-2 expressions (Jin et al., 2010). Interference of cyclooxygenase-2 (COX-2) expression may be correlated with anti-SARS-CoV and other antiviral activities (Amici et al., 2006; Kim et al., 2010). We therefore hypothesize that the anti-SARS-CoV activities we demonstrated here may result from inhibition of COX-2 activity.
<italic>Cassia tora</italic>
has been found to confer anti-hypertensive (Hyun et al., 2009), anti-hyperlipidemia (Cho et al., 2007), anti-bacterial (Hatano et al., 1999), and anti-fungal properties (Kim et al., 2004). Anthraquinones including emodin, physcion, and rhein may be the active phytocompounds that confer these activities (Kim et al., 2004; Wu and Yen, 2004). Because emodin has already been found to exhibit anti-SARS-CoV activity via inhibition of the viral entry by binding with the spike proteins and interfering with the SARS-CoV 3CL protease activity, we hypothesize that the active phytochemical components responsible for anti-SARS-CoV activity of CTH may be contributed by emodin or another anthraquinone(s) suggested or known to present in CTH.
<italic>Taxillus chinensis</italic>
was shown to inhibit fatty acid synthase (Wang et al., 2008; Wang et al., 2006). Based on the previous study (Yi et al., 2004), which showed luteolin and quercetin can interfere with the entry of the virus to its host cells, we therefore hypothesize that specific glycosylated flavonoid and quercetin may play an effective role in this activity. Whether these flavonoids can also contribute to the detected anti-SARS activity warrants future investigation.</p>
<p>In summary, in this study we showed that six phytoextracts from Rhizoma Cibotii (狗脊 gǒu jǐ), Gentianae Radix (龍膽 lóng dǎn), Dioscoreae Rhizoma (山藥 shān yào), Cassiae Semen (決明子 jué míng zǐ), and Loranthi Ramus (桑寄生 sāng jì shēng;) can confer effective anti-SARS-CoV activity via inhibition of SARS-CoV replication. The CBM and DBM extracts also inhibited the 3CL protease activity of SARS-CoV. These findings suggest that these phytoextracts studied as a TCM experience may be valued as a useful approach for future development of anti-SARS-CoV therapeutic agents.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgement</title>
<p>We thank Ms Miranda Loney, Academia Sinica, for professional editing of this manuscript.</p>
</ack>
<ref-list>
<ref id="ref1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amici</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Di Coro</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ciucci</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chiappa</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Castilletti</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Martella</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Decaro</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Buonavoglia</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Capobianchi</surname>
<given-names>M.R</given-names>
</name>
<name>
<surname>Santoro</surname>
<given-names>M.G</given-names>
</name>
</person-group>
<article-title>Indomethacin has a potent antiviral activity against SARS coronavirus</article-title>
<source>Antiviral Therapy</source>
<year>2006</year>
<volume>11</volume>
<fpage>1021</fpage>
<lpage>1030</lpage>
<pub-id pub-id-type="pmid">17302372</pub-id>
</element-citation>
</ref>
<ref id="ref2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>C.J</given-names>
</name>
<name>
<surname>Michaelis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>H.K</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>C.C</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>K.D</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.C</given-names>
</name>
<name>
<surname>Cinatl</surname>
<given-names>J</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Doerr</surname>
<given-names>H.W</given-names>
</name>
</person-group>
<article-title>Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication</article-title>
<source>Journal of Ethnopharmacology</source>
<year>2008</year>
<volume>120</volume>
<fpage>108</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="pmid">18762235</pub-id>
</element-citation>
</ref>
<ref id="ref3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>C.N</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C.P</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>K.K</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>W.C</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>H.P</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>P.H</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>J.T</given-names>
</name>
</person-group>
<article-title>Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3’-digallate (TF3)</article-title>
<source>Evidence-based Complementary and Alternative Medicine</source>
<year>2005</year>
<volume>2</volume>
<fpage>209</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="pmid">15937562</pub-id>
</element-citation>
</ref>
<ref id="ref4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y.H</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>A.P</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>A.H</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>P.H</given-names>
</name>
</person-group>
<article-title>Probing the conformational change of Escherichia coli undecaprenyl pyrophosphate synthase during catalysis using an inhibitor and tryptophan mutants</article-title>
<source>Journal of Biological Chemistry</source>
<year>2002</year>
<volume>277</volume>
<fpage>7369</fpage>
<lpage>7376</lpage>
<pub-id pub-id-type="pmid">11744728</pub-id>
</element-citation>
</ref>
<ref id="ref5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cho</surname>
<given-names>I.J</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ha</surname>
<given-names>T.Y</given-names>
</name>
</person-group>
<article-title>Hypolipidemic effect of soluble fiber isolated from seeds of Cassia tora Linn. in rats fed a high- cholesterol diet</article-title>
<source>Journal of Agricultural and Food Chemistry</source>
<year>2007</year>
<volume>55</volume>
<fpage>1592</fpage>
<lpage>1596</lpage>
<pub-id pub-id-type="pmid">17300158</pub-id>
</element-citation>
</ref>
<ref id="ref6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chueh</surname>
<given-names>F.S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.C</given-names>
</name>
<name>
<surname>Sagare</surname>
<given-names>A.P</given-names>
</name>
<name>
<surname>Tsay</surname>
<given-names>H.S</given-names>
</name>
</person-group>
<article-title>Quantitative determination of secoiridoid glucosides in
<italic>in vitro</italic>
propagated plants of Gentiana davidii var formosana by high performance liquid chromatography</article-title>
<source>Planta Medica</source>
<year>2001</year>
<volume>67</volume>
<fpage>70</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="pmid">11270726</pub-id>
</element-citation>
</ref>
<ref id="ref7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cinatl</surname>
<given-names>J</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Michaelis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hoever</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Preiser</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Doerr</surname>
<given-names>H.W</given-names>
</name>
</person-group>
<article-title>Development of antiviral therapy for severe acute respiratory syndrome</article-title>
<source>Antiviral Research</source>
<year>2005</year>
<volume>66</volume>
<fpage>81</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="pmid">15878786</pub-id>
</element-citation>
</ref>
<ref id="ref8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cinatl</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Morgenstern</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Chandra</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rabenau</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Doerr</surname>
<given-names>H.W</given-names>
</name>
</person-group>
<article-title>Glycyrrhizin an active component of liquorice roots, and replication of SARS-associated coronavirus</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>361</volume>
<fpage>2045</fpage>
<lpage>2046</lpage>
<pub-id pub-id-type="pmid">12814717</pub-id>
</element-citation>
</ref>
<ref id="ref9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cleri</surname>
<given-names>D.J</given-names>
</name>
<name>
<surname>Ricketti</surname>
<given-names>A.J</given-names>
</name>
<name>
<surname>Vernaleo</surname>
<given-names>J.R</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome (SARS)</article-title>
<source>Infectious Disease Clinics of North America</source>
<year>2010</year>
<volume>24</volume>
<fpage>175</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="pmid">20171552</pub-id>
</element-citation>
</ref>
<ref id="ref10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cuong</surname>
<given-names>N.X</given-names>
</name>
<name>
<surname>Minh</surname>
<given-names>C.V</given-names>
</name>
<name>
<surname>Kiem</surname>
<given-names>P.V</given-names>
</name>
<name>
<surname>Huong</surname>
<given-names>H.T</given-names>
</name>
<name>
<surname>Ban</surname>
<given-names>N.K</given-names>
</name>
<name>
<surname>Nhiem</surname>
<given-names>N.X</given-names>
</name>
<name>
<surname>Tung</surname>
<given-names>N.H</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>J.W</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.Y</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.A</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.H</given-names>
</name>
</person-group>
<article-title>Inhibitors of osteoclast formation from rhizomes of Cibotium barometz</article-title>
<source>Journal of Natural Products</source>
<year>2009</year>
<volume>72</volume>
<fpage>1673</fpage>
<lpage>1677</lpage>
<pub-id pub-id-type="pmid">19739599</pub-id>
</element-citation>
</ref>
<ref id="ref11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Clercq</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Antivirals and antiviral strategies</article-title>
<source>Nature Reviews Microbiology</source>
<year>2004</year>
<volume>2</volume>
<fpage>704</fpage>
<lpage>720</lpage>
</element-citation>
</ref>
<ref id="ref12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gunther</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Preiser</surname>
<given-names>W</given-names>
</name>
<name>
<surname>van der Werf</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brodt</surname>
<given-names>H.R</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rabenau</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Panning</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kolesnikova</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>R.A</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Burguiere</surname>
<given-names>A.M</given-names>
</name>
<name>
<surname>Cinatl</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Eickmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Escriou</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Grywna</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kramme</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Manuguerra</surname>
<given-names>J.C</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rickerts</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Sturmer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vieth</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Klenk</surname>
<given-names>H.D</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A.D</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Doerr</surname>
<given-names>H.W</given-names>
</name>
</person-group>
<article-title>Identification of a novel coronavirus in patients with severe acute respiratory syndrome</article-title>
<source>New England Journal of Medicine</source>
<year>2003</year>
<volume>348</volume>
<fpage>1967</fpage>
<lpage>1976</lpage>
<pub-id pub-id-type="pmid">12690091</pub-id>
</element-citation>
</ref>
<ref id="ref13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallagher</surname>
<given-names>T.M</given-names>
</name>
<name>
<surname>Buchmeier</surname>
<given-names>M.J</given-names>
</name>
</person-group>
<article-title>Coronavirus spike proteins in viral entry and pathogenesis</article-title>
<source>Virology</source>
<year>2001</year>
<volume>279</volume>
<fpage>371</fpage>
<lpage>374</lpage>
<pub-id pub-id-type="pmid">11162792</pub-id>
</element-citation>
</ref>
<ref id="ref14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Groneberg</surname>
<given-names>D.A</given-names>
</name>
<name>
<surname>Poutanen</surname>
<given-names>S.M</given-names>
</name>
<name>
<surname>Low</surname>
<given-names>D.E</given-names>
</name>
<name>
<surname>Lode</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Welte</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zabel</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Treatment and vaccines for severe acute respiratory syndrome</article-title>
<source>Lancet Infectious Disease</source>
<year>2005</year>
<volume>5</volume>
<fpage>147</fpage>
<lpage>155</lpage>
</element-citation>
</ref>
<ref id="ref15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hatano</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Uebayashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shiota</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tsuchiya</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus</article-title>
<source>Chemical & Pharmaceutical Bulletin (Tokyo)</source>
<year>1999</year>
<volume>47</volume>
<fpage>1121</fpage>
<lpage>1127</lpage>
</element-citation>
</ref>
<ref id="ref16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoever</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Baltina</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Michaelis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kondratenko</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Baltina</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tolstikov</surname>
<given-names>G.A</given-names>
</name>
<name>
<surname>Doerr</surname>
<given-names>H.W</given-names>
</name>
<name>
<surname>Cinatl</surname>
<given-names>J</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus</article-title>
<source>Journal of Medicinal Chemistry</source>
<year>2005</year>
<volume>48</volume>
<fpage>1256</fpage>
<lpage>1259</lpage>
<pub-id pub-id-type="pmid">15715493</pub-id>
</element-citation>
</ref>
<ref id="ref17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmes</surname>
<given-names>K.V</given-names>
</name>
</person-group>
<article-title>SARS coronavirus: a new challenge for prevention and therapy</article-title>
<source>Journal of Clinical Investigation</source>
<year>2003</year>
<volume>111</volume>
<fpage>1605</fpage>
<lpage>1609</lpage>
<pub-id pub-id-type="pmid">12782660</pub-id>
</element-citation>
</ref>
<ref id="ref18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hyun</surname>
<given-names>S.K</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>S.S</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>H.Y</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J.S</given-names>
</name>
</person-group>
<article-title>Inhibitory activities of Cassia tora and its anthraquinone constituents on angiotensin-converting enzyme</article-title>
<source>Phytotherapy Research</source>
<year>2009</year>
<volume>23</volume>
<fpage>178</fpage>
<lpage>184</lpage>
<pub-id pub-id-type="pmid">18803227</pub-id>
</element-citation>
</ref>
<ref id="ref19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>W.X</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>B.Y</given-names>
</name>
</person-group>
<article-title>Hepatoprotective effects of Gentiana scabra on the acute liver injuries in mice</article-title>
<source>Zhongguo Zhong Yao Za Zhi</source>
<year>2005</year>
<volume>30</volume>
<fpage>1105</fpage>
<lpage>1107</lpage>
<pub-id pub-id-type="pmid">16161450</pub-id>
</element-citation>
</ref>
<ref id="ref20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>S.J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.H</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.J</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jo</surname>
<given-names>T.H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.W</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>Y.I</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>G.W</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.K</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>C.H</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>J.K</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>K.H</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H.W</given-names>
</name>
</person-group>
<article-title>Anti-inflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW264.7 cells via NF-kappaB and ERK1/2 inactivation</article-title>
<source>Food and Chemical Toxicology</source>
<year>2010</year>
<volume>48</volume>
<fpage>3073</fpage>
<lpage>3079</lpage>
<pub-id pub-id-type="pmid">20691245</pub-id>
</element-citation>
</ref>
<ref id="ref21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kakuda</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Iijima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yaoita</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Machida</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Secoiridoid glycosides from Gentiana scabra</article-title>
<source>Journal of Natural Products</source>
<year>2001</year>
<volume>64</volume>
<fpage>1574</fpage>
<lpage>1575</lpage>
<pub-id pub-id-type="pmid">11754617</pub-id>
</element-citation>
</ref>
<ref id="ref22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H.Y</given-names>
</name>
<name>
<surname>Eo</surname>
<given-names>E.Y</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.C</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>H.J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Medicinal herbal extracts of Sophorae radix, Acanthopanacis cortex, Sanguisorbae radix and Torilis fructus inhibit coronavirus replication
<italic>in vitro</italic>
</article-title>
<source>Antiviral therapy</source>
<year>2010</year>
<volume>15</volume>
<fpage>697</fpage>
<lpage>709</lpage>
<pub-id pub-id-type="pmid">20710051</pub-id>
</element-citation>
</ref>
<ref id="ref23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J.A</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>N.S</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>J.K</given-names>
</name>
<name>
<surname>Jahng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H.W</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>T.S</given-names>
</name>
<name>
<surname>Na</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.H</given-names>
</name>
</person-group>
<article-title>Two new secoiridoid glycosides from the rhizomes of Gentiana scabra</article-title>
<source>Bunge Archives of Pharmacal Research</source>
<year>2009</year>
<volume>32</volume>
<fpage>863</fpage>
<lpage>867</lpage>
</element-citation>
</ref>
<ref id="ref24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>Y.M</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.G</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H.S</given-names>
</name>
</person-group>
<article-title>Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi</article-title>
<source>Journal of Agricultural and Food Chemistry</source>
<year>2004</year>
<volume>52</volume>
<fpage>6096</fpage>
<lpage>6100</lpage>
<pub-id pub-id-type="pmid">15453672</pub-id>
</element-citation>
</ref>
<ref id="ref25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kliger</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Levanon</surname>
<given-names>E.Y</given-names>
</name>
<name>
<surname>Gerber</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>From genome to antivirals: SARS as a test tube</article-title>
<source>Drug Discovery Today</source>
<year>2005</year>
<volume>10</volume>
<fpage>345</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="pmid">15749283</pub-id>
</element-citation>
</ref>
<ref id="ref26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ksiazek</surname>
<given-names>T.G</given-names>
</name>
<name>
<surname>Erdman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Goldsmith</surname>
<given-names>C.S</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>S.R</given-names>
</name>
<name>
<surname>Peret</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Emery</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Urbani</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Comer</surname>
<given-names>J.A</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Rollin</surname>
<given-names>P.E</given-names>
</name>
<name>
<surname>Dowell</surname>
<given-names>S.F</given-names>
</name>
<name>
<surname>Ling</surname>
<given-names>A.E</given-names>
</name>
<name>
<surname>Humphrey</surname>
<given-names>C.D</given-names>
</name>
<name>
<surname>Shieh</surname>
<given-names>W.J</given-names>
</name>
<name>
<surname>Guarner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Paddock</surname>
<given-names>C.D</given-names>
</name>
<name>
<surname>Rota</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Fields</surname>
<given-names>B</given-names>
</name>
<name>
<surname>De Risi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.Y</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>J.M</given-names>
</name>
<name>
<surname>Le Duc</surname>
<given-names>J.W</given-names>
</name>
<name>
<surname>Bellini</surname>
<given-names>W.J</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>L.J</given-names>
</name>
</person-group>
<article-title>A novel coronavirus associated with severe acute respiratory syndrome</article-title>
<source>New England Journal of Medicine</source>
<year>2003</year>
<volume>348</volume>
<fpage>1953</fpage>
<lpage>1966</lpage>
<pub-id pub-id-type="pmid">12690092</pub-id>
</element-citation>
</ref>
<ref id="ref27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuiken</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>R.A</given-names>
</name>
<name>
<surname>Schutten</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rimmelzwaan</surname>
<given-names>G.F</given-names>
</name>
<name>
<surname>van Amerongen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>van Riel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Laman</surname>
<given-names>J.D</given-names>
</name>
<name>
<surname>de Jong</surname>
<given-names>T</given-names>
</name>
<name>
<surname>van Doornum</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Ling</surname>
<given-names>A.E</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>P.K</given-names>
</name>
<name>
<surname>Tam</surname>
<given-names>J.S</given-names>
</name>
<name>
<surname>Zambon</surname>
<given-names>M.C</given-names>
</name>
<name>
<surname>Gopal</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
<name>
<surname>van der Werf</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Escriou</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Manuguerra</surname>
<given-names>J.C</given-names>
</name>
<name>
<surname>Stohr</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Peiris</surname>
<given-names>J.S</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A.D</given-names>
</name>
</person-group>
<article-title>Newly discovered coronavirus as the primary cause of severe acute respiratory</article-title>
<source>syndrome Lancet</source>
<year>2003</year>
<volume>362</volume>
<fpage>263</fpage>
<lpage>270</lpage>
</element-citation>
</ref>
<ref id="ref28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuo</surname>
<given-names>C.J</given-names>
</name>
<name>
<surname>Chi</surname>
<given-names>Y.H</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>J.T</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>P.H</given-names>
</name>
</person-group>
<article-title>Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate</article-title>
<source>Biochemical and Biophysical Research Communications</source>
<year>2004</year>
<volume>318</volume>
<fpage>862</fpage>
<lpage>867</lpage>
<pub-id pub-id-type="pmid">15147951</pub-id>
</element-citation>
</ref>
<ref id="ref29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lai</surname>
<given-names>H.Y</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>Y.Y</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S.P</given-names>
</name>
</person-group>
<article-title>Antioxidative tyrosinase inhibiting and antibacterial activities of leaf extracts from medicinal ferns</article-title>
<source>Bioscience Biotechnology & Biochemistry</source>
<year>2009</year>
<volume>73</volume>
<fpage>1362</fpage>
<lpage>1366</lpage>
</element-citation>
</ref>
<ref id="ref30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lai</surname>
<given-names>S.T</given-names>
</name>
</person-group>
<article-title>Treatment of severe acute respiratory syndrome</article-title>
<source>European Journal of Clinical Microbiology & Infectious Diseases</source>
<year>2005</year>
<volume>24</volume>
<fpage>583</fpage>
<lpage>591</lpage>
<pub-id pub-id-type="pmid">16172857</pub-id>
</element-citation>
</ref>
<ref id="ref31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lau</surname>
<given-names>K.M</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>K.M</given-names>
</name>
<name>
<surname>Koon</surname>
<given-names>C.M</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>C.S</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>C.P</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>H.M</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M.Y</given-names>
</name>
<name>
<surname>Au</surname>
<given-names>S.W</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>C.H</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>C.B</given-names>
</name>
<name>
<surname>Tsui</surname>
<given-names>S.K</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>D.C</given-names>
</name>
<name>
<surname>Waye</surname>
<given-names>M.M</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>K.B</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>C.K</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>C.W</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>P.C</given-names>
</name>
<name>
<surname>Fung</surname>
<given-names>K.P</given-names>
</name>
</person-group>
<article-title>Immunomodulatory and anti-SARS activities of Houttuynia cordata</article-title>
<source>Journal of Ethnopharmacology</source>
<year>2008</year>
<volume>118</volume>
<fpage>79</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="pmid">18479853</pub-id>
</element-citation>
</ref>
<ref id="ref32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>S.Y</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.Q</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>H.Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>S.N</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>P.G</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>R.S</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Identification of natural compounds with antiviral activities against SARS-associated coronavirus</article-title>
<source>Antiviral Research</source>
<year>2005</year>
<volume>67</volume>
<fpage>18</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">15885816</pub-id>
</element-citation>
</ref>
<ref id="ref33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>C.W</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>F.J</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>C.H</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>C.C</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>T.Y</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>C.C</given-names>
</name>
<name>
<surname>Chao</surname>
<given-names>P.D</given-names>
</name>
</person-group>
<article-title>Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds</article-title>
<source>Antiviral Research</source>
<year>2005</year>
<volume>68</volume>
<fpage>36</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">16115693</pub-id>
</element-citation>
</ref>
<ref id="ref34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris</surname>
<given-names>J.S</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>K.Y</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A.D</given-names>
</name>
<name>
<surname>Stohr</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The severe acute respiratory syndrome</article-title>
<source>New England Journal of Medicine</source>
<year>2003</year>
<volume>349</volume>
<fpage>2431</fpage>
<lpage>2441</lpage>
<pub-id pub-id-type="pmid">14681510</pub-id>
</element-citation>
</ref>
<ref id="ref35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ryu</surname>
<given-names>Y.B</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>H.J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.M</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.Y</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>T.T</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.J</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>J.S</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>K.H</given-names>
</name>
<name>
<surname>Rho</surname>
<given-names>M.C</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>W.S</given-names>
</name>
</person-group>
<article-title>Biflavonoids from Torreya nucifera displaying SARS- CoV 3CL(pro) inhibition</article-title>
<source>Bioorganic & Medicinal Chemistry</source>
<year>2010</year>
<volume>18</volume>
<fpage>7940</fpage>
<lpage>7947</lpage>
<pub-id pub-id-type="pmid">20934345</pub-id>
</element-citation>
</ref>
<ref id="ref36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>So</surname>
<given-names>L.K</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>A.C</given-names>
</name>
<name>
<surname>Yam</surname>
<given-names>L.Y</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>T.M</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Yung</surname>
<given-names>R.W</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>K.Y</given-names>
</name>
</person-group>
<article-title>Development of a standard treatment protocol for severe acute respiratory syndrome</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>361</volume>
<fpage>1615</fpage>
<lpage>1617</lpage>
<pub-id pub-id-type="pmid">12747883</pub-id>
</element-citation>
</ref>
<ref id="ref37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stadler</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Masignani</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Eickmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Abrignani</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Klenk</surname>
<given-names>H.D</given-names>
</name>
<name>
<surname>Rappuoli</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>SARS--beginning to understand a new virus</article-title>
<source>Nature Reviews Microbiology</source>
<year>2003</year>
<volume>1</volume>
<fpage>209</fpage>
<lpage>218</lpage>
</element-citation>
</ref>
<ref id="ref38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stroher</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Di Caro</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Strong</surname>
<given-names>J.E</given-names>
</name>
<name>
<surname>Aoki</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Plummer</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>S.M</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- alpha</article-title>
<source>Journal of Infectious Diseases</source>
<year>2004</year>
<volume>189</volume>
<fpage>1164</fpage>
<lpage>1167</lpage>
<pub-id pub-id-type="pmid">15031783</pub-id>
</element-citation>
</ref>
<ref id="ref39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>P.F</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.J</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>C.C</given-names>
</name>
<name>
<surname>Benson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.Y</given-names>
</name>
<name>
<surname>Aravindaram</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>S.I</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>S.H</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>F.L</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C.H</given-names>
</name>
<name>
<surname>Shyur</surname>
<given-names>L.F</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>N.S</given-names>
</name>
</person-group>
<article-title>Dioscorea phytocompounds enhance murine splenocyte proliferation
<italic>ex vivo</italic>
and improve regeneration of bone marrow cells
<italic>in vivo</italic>
</article-title>
<source>Evidence-Based Complementary and Alternative Medicine</source>
<year>2011</year>
<volume>2011</volume>
<fpage>1</fpage>
<lpage>11</lpage>
</element-citation>
</ref>
<ref id="ref40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>P.F</given-names>
</name>
<name>
<surname>Staniforth</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.Y</given-names>
</name>
<name>
<surname>Chiao</surname>
<given-names>M.T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.Y</given-names>
</name>
<name>
<surname>Shyur</surname>
<given-names>L.F</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>N.S</given-names>
</name>
</person-group>
<article-title>Immunomodulatory effects of phytocompounds characterized by
<italic>in vivo</italic>
transgenic human GM-CSF promoter activity in skin tissues</article-title>
<source>Journal of Biomedical Science</source>
<year>2008</year>
<volume>15</volume>
<fpage>813</fpage>
<lpage>822</lpage>
<pub-id pub-id-type="pmid">18622761</pub-id>
</element-citation>
</ref>
<ref id="ref41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>E.L</given-names>
</name>
<name>
<surname>Ooi</surname>
<given-names>E.E</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C.Y</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>H.C</given-names>
</name>
<name>
<surname>Ling</surname>
<given-names>A.E</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Stanton</surname>
<given-names>L.W</given-names>
</name>
</person-group>
<article-title>Inhibition of SARS coronavirus infection
<italic>in vitro</italic>
with clinically approved antiviral drugs</article-title>
<source>Emerging Infectious Disease</source>
<year>2004</year>
<volume>10</volume>
<fpage>581</fpage>
<lpage>586</lpage>
</element-citation>
</ref>
<ref id="ref42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Z.K</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>W.X</given-names>
</name>
</person-group>
<article-title>Parasitic loranthus from Loranthaceae rather than Viscaceae potently inhibits fatty acid synthase and reduces body weight in mice</article-title>
<source>Journal of Ethnopharmacology</source>
<year>2008</year>
<volume>118</volume>
<fpage>473</fpage>
<lpage>478</lpage>
<pub-id pub-id-type="pmid">18583073</pub-id>
</element-citation>
</ref>
<ref id="ref43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.Y</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>X.F</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>W.X</given-names>
</name>
</person-group>
<article-title>Potent inhibition of fatty acid synthase by parasitic loranthus [Taxillus chinensis (dc.) danser] and its constituent avicularin</article-title>
<source>Journal of Enzyme Inhibition and Medicinal Chemistry</source>
<year>2006</year>
<volume>21</volume>
<fpage>87</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">16570511</pub-id>
</element-citation>
</ref>
<ref id="ref44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wen</surname>
<given-names>C.C</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>Y.H</given-names>
</name>
<name>
<surname>Jan</surname>
<given-names>J.T</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>P.H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.G</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.K</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>S.T</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>C.J</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.S</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>C.C</given-names>
</name>
<name>
<surname>Hsiao</surname>
<given-names>P.W</given-names>
</name>
<name>
<surname>Chien</surname>
<given-names>S.C</given-names>
</name>
<name>
<surname>Shyur</surname>
<given-names>L.F</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>N.S</given-names>
</name>
</person-group>
<article-title>Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome corona virus</article-title>
<source>Journal of Medicinal Chemistry</source>
<year>2007</year>
<volume>50</volume>
<fpage>4087</fpage>
<lpage>4095</lpage>
<pub-id pub-id-type="pmid">17663539</pub-id>
</element-citation>
</ref>
<ref id="ref45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>C.H</given-names>
</name>
<name>
<surname>Yen</surname>
<given-names>G.C</given-names>
</name>
</person-group>
<article-title>Antigenotoxic properties of Cassia tea (Cassia tora L): mechanism of action and the influence of roasting process</article-title>
<source>Life Science</source>
<year>2004</year>
<volume>76</volume>
<fpage>85</fpage>
<lpage>101</lpage>
</element-citation>
</ref>
<ref id="ref46">
<label>46</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>C.Y</given-names>
</name>
<name>
<surname>Jan</surname>
<given-names>J.T</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>S.H</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>C.J</given-names>
</name>
<name>
<surname>Juan</surname>
<given-names>H.F</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y.S</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>H.H</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H.C</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Brik</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>F.S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>R.S</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J.M</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.T</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>P.H</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>C.H</given-names>
</name>
</person-group>
<article-title>Small molecules targeting severe acute respiratory syndrome human coronavirus</article-title>
<year>2004</year>
<volume>101</volume>
<publisher-name>Proceedings of the National Academy of Sciences of the United States of America</publisher-name>
<fpage>10012</fpage>
<lpage>10017</lpage>
</element-citation>
</ref>
<ref id="ref47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zuo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Nie</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells</article-title>
<source>Journal of Virology</source>
<year>2004</year>
<volume>78</volume>
<fpage>11334</fpage>
<lpage>11339</lpage>
<pub-id pub-id-type="pmid">15452254</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000638 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000638 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3942999
   |texte=   Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24716104" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021