Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000273 ( Pmc/Corpus ); précédent : 0002729; suivant : 0002740 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Determination of suitable housekeeping genes for normalisation of quantitative real time PCR analysis of cells infected with human immunodeficiency virus and herpes viruses</title>
<author>
<name sortKey="Watson, Sarah" sort="Watson, Sarah" uniqKey="Watson S" first="Sarah" last="Watson">Sarah Watson</name>
<affiliation>
<nlm:aff id="I1">Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mercier, Sarah" sort="Mercier, Sarah" uniqKey="Mercier S" first="Sarah" last="Mercier">Sarah Mercier</name>
<affiliation>
<nlm:aff id="I1">Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bye, Chris" sort="Bye, Chris" uniqKey="Bye C" first="Chris" last="Bye">Chris Bye</name>
<affiliation>
<nlm:aff id="I2">The Howard Florey Institute, University of Melbourne, Melbourne, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wilkinson, John" sort="Wilkinson, John" uniqKey="Wilkinson J" first="John" last="Wilkinson">John Wilkinson</name>
<affiliation>
<nlm:aff id="I3">Biotron Limited, Centre for Immunology, St. Vincent's Hospital, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, Anthony L" sort="Cunningham, Anthony L" uniqKey="Cunningham A" first="Anthony L" last="Cunningham">Anthony L. Cunningham</name>
<affiliation>
<nlm:aff id="I1">Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harman, Andrew N" sort="Harman, Andrew N" uniqKey="Harman A" first="Andrew N" last="Harman">Andrew N. Harman</name>
<affiliation>
<nlm:aff id="I1">Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18053162</idno>
<idno type="pmc">2216015</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2216015</idno>
<idno type="RBID">PMC:2216015</idno>
<idno type="doi">10.1186/1743-422X-4-130</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">000273</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000273</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Determination of suitable housekeeping genes for normalisation of quantitative real time PCR analysis of cells infected with human immunodeficiency virus and herpes viruses</title>
<author>
<name sortKey="Watson, Sarah" sort="Watson, Sarah" uniqKey="Watson S" first="Sarah" last="Watson">Sarah Watson</name>
<affiliation>
<nlm:aff id="I1">Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mercier, Sarah" sort="Mercier, Sarah" uniqKey="Mercier S" first="Sarah" last="Mercier">Sarah Mercier</name>
<affiliation>
<nlm:aff id="I1">Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bye, Chris" sort="Bye, Chris" uniqKey="Bye C" first="Chris" last="Bye">Chris Bye</name>
<affiliation>
<nlm:aff id="I2">The Howard Florey Institute, University of Melbourne, Melbourne, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wilkinson, John" sort="Wilkinson, John" uniqKey="Wilkinson J" first="John" last="Wilkinson">John Wilkinson</name>
<affiliation>
<nlm:aff id="I3">Biotron Limited, Centre for Immunology, St. Vincent's Hospital, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, Anthony L" sort="Cunningham, Anthony L" uniqKey="Cunningham A" first="Anthony L" last="Cunningham">Anthony L. Cunningham</name>
<affiliation>
<nlm:aff id="I1">Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harman, Andrew N" sort="Harman, Andrew N" uniqKey="Harman A" first="Andrew N" last="Harman">Andrew N. Harman</name>
<affiliation>
<nlm:aff id="I1">Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Virology Journal</title>
<idno type="eISSN">1743-422X</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The choice of an appropriate housekeeping gene for normalisation purposes has now become an essential requirement when designing QPCR experiments. This is of particular importance when using QPCR to measure viral and cellular gene transcription levels in the context of viral infections as viruses can significantly interfere with host cell pathways, the components of which traditional housekeeping genes often encode. In this study we have determined the reliability of 10 housekeeping genes in context of four heavily studied viral infections; human immunodeficiency virus type 1, herpes simplex virus type 1, cytomegalovirus and varicella zoster virus infections using a variety of cell types and virus strains. This provides researchers of these viruses with a shortlist of potential housekeeping genes to use as normalisers for QPCR experiments.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Virol J</journal-id>
<journal-title>Virology Journal</journal-title>
<issn pub-type="epub">1743-422X</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18053162</article-id>
<article-id pub-id-type="pmc">2216015</article-id>
<article-id pub-id-type="publisher-id">1743-422X-4-130</article-id>
<article-id pub-id-type="doi">10.1186/1743-422X-4-130</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Methodology</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Determination of suitable housekeeping genes for normalisation of quantitative real time PCR analysis of cells infected with human immunodeficiency virus and herpes viruses</article-title>
</title-group>
<contrib-group>
<contrib id="A1" contrib-type="author">
<name>
<surname>Watson</surname>
<given-names>Sarah</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>sarahlouise53@hotmail.com</email>
</contrib>
<contrib id="A2" contrib-type="author">
<name>
<surname>Mercier</surname>
<given-names>Sarah</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>sarah_mercier@wmi.usyd.edu.au</email>
</contrib>
<contrib id="A3" contrib-type="author">
<name>
<surname>Bye</surname>
<given-names>Chris</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>cbye@hfi.unimelb.edu.au</email>
</contrib>
<contrib id="A4" contrib-type="author">
<name>
<surname>Wilkinson</surname>
<given-names>John</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>john_wilkinson@cfi.unsw.edu.au</email>
</contrib>
<contrib id="A5" contrib-type="author">
<name>
<surname>Cunningham</surname>
<given-names>Anthony L</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>tony_cunningham@wmi.usyd.edu.au</email>
</contrib>
<contrib id="A6" corresp="yes" contrib-type="author">
<name>
<surname>Harman</surname>
<given-names>Andrew N</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>andrew_harman@wmi.usyd.edu.au</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia</aff>
<aff id="I2">
<label>2</label>
The Howard Florey Institute, University of Melbourne, Melbourne, Australia</aff>
<aff id="I3">
<label>3</label>
Biotron Limited, Centre for Immunology, St. Vincent's Hospital, Sydney, Australia</aff>
<pub-date pub-type="collection">
<year>2007</year>
</pub-date>
<pub-date pub-type="epub">
<day>3</day>
<month>12</month>
<year>2007</year>
</pub-date>
<volume>4</volume>
<fpage>130</fpage>
<lpage>130</lpage>
<ext-link ext-link-type="uri" xlink:href="http://www.virologyj.com/content/4/1/130"></ext-link>
<history>
<date date-type="received">
<day>10</day>
<month>10</month>
<year>2007</year>
</date>
<date date-type="accepted">
<day>3</day>
<month>12</month>
<year>2007</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2007 Watson et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2007</copyright-year>
<copyright-holder>Watson et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0"></ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
<pmc-comment> Watson Sarah sarahlouise53@hotmail.com Determination of suitable housekeeping genes for normalisation of quantitative real time PCR analysis of cells infected with human immunodeficiency virus and herpes viruses 2007Virology Journal 4(1): 130-. (2007)1743-422X(2007)4:1<130>urn:ISSN:1743-422X</pmc-comment>
</license>
</permissions>
<abstract>
<p>The choice of an appropriate housekeeping gene for normalisation purposes has now become an essential requirement when designing QPCR experiments. This is of particular importance when using QPCR to measure viral and cellular gene transcription levels in the context of viral infections as viruses can significantly interfere with host cell pathways, the components of which traditional housekeeping genes often encode. In this study we have determined the reliability of 10 housekeeping genes in context of four heavily studied viral infections; human immunodeficiency virus type 1, herpes simplex virus type 1, cytomegalovirus and varicella zoster virus infections using a variety of cell types and virus strains. This provides researchers of these viruses with a shortlist of potential housekeeping genes to use as normalisers for QPCR experiments.</p>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Quantitative real-time PCR (QPCR) is an invaluable tool for the measurement of target nucleic acid sequences in clinical diagnostics and research. The technique is capable of the relative or absolute quantification of RNA or DNA sequences in a single sample over a large dynamic range with extreme sensitivity and accuracy. In virology and immunology QPCR is used for the relative measurement of virus and host transcription (gene expression) profiles in response to viral infection and in the quantification of viral load in clinical samples and in research [
<xref ref-type="bibr" rid="B1">1</xref>
].</p>
<p>The sensitivity and accuracy of results obtained by QPCR are dependent on a reliable reference within each sample to normalise for sample to sample and run to run variation [
<xref ref-type="bibr" rid="B2">2</xref>
]. These variations arise from differences in nucleic acid integrity, the efficiency of the reverse transcription of RNA to cDNA and the amount of sample loaded. References for normalising sample and run variation include the use of total nucleic acid concentrations, rRNA concentrations or the simultaneously measurement of the expression of an individual or select group of genes termed 'housekeeping' genes, which has become by far the most commonly used method and is the most reliable [
<xref ref-type="bibr" rid="B3">3</xref>
]. Housekeeping genes are used under the assumption that their expression is unchanged in response to the experimental conditions being investigated. Therefore a major factor when using QPCR is the selection of appropriate control genes, as any variation in the expression of the reference gene between sample groups will reduce the sensitivity of the assay to detect changes in the expression of genes of interest and may also produce artificial changes [
<xref ref-type="bibr" rid="B3">3</xref>
]. Traditionally glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β-actin (BACT) have been most commonly used, however many recent reports have shown that the expression of these genes can be variable under several experimental conditions, making them inappropriate for use as normalisers [
<xref ref-type="bibr" rid="B4">4</xref>
-
<xref ref-type="bibr" rid="B7">7</xref>
]. In reality no cellular gene maintains constant expression levels under all conditions and the evaluation of an appropriate control gene to normalise QPCR data is therefore an essential requirement when designing QPCR experiments using new experimental conditions[
<xref ref-type="bibr" rid="B8">8</xref>
]. This is especially the case when investigating the effects of viruses on host cell gene expression as viruses can interfere with host cell pathways, the components of which traditional housekeeping genes often encode. These include cell cycle, metabolism, DNA replication and transcription, in order to aid their replication cycle [
<xref ref-type="bibr" rid="B9">9</xref>
-
<xref ref-type="bibr" rid="B11">11</xref>
]. Studies have been carried out to determine reliable housekeeping genes in cells infected with a variety of viruses [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
], however to date no such study has been carried out in cells infected with human immunodeficiency virus (HIV) or the herpes viruses, herpes simplex virus (HSV) and varicella zoster virus (VZV). Thus, in this study we have investigated the suitability of 10 commonly used housekeeping genes for use as QPCR normalisers in a variety of cell types infected with a variety of strains of HIV-1, HSV-1, VZV and cytomegalovirus (CMV) compared to mock infected cells.</p>
</sec>
<sec>
<title>Results</title>
<p>A range of cell lines and primary cells were infected with HIV-1 (BaL, NL4.3, RFW strains), HSV-1 (NC-1 strain), CMV (Toledo and Towne strains) and VZV (Schenke strain) and harvested at the earliest time of maximal productive infection as illustrated in Table
<xref ref-type="table" rid="T1">1</xref>
. The expression levels of 10 commonly used QPCR normalisation genes in both and mock and virally infected cells was determined by QPCR. The housekeeping genes investigated were beta-2microglobulin (B2M), peptidylprolyl isomerase A (PPIA), eukaryotic translation elongation factor 1 gamma (EEF1G), succinate dehydrogenase complex subunit A (SDHA), GAPDH, hydroxymethyl-bilane synthase (HMBS), TATA box-binding protein (TBP), 18s Ribosomal RNA (18sRNA), phosphoglycerate kinase 1 (PGK1), and BACT.</p>
<table-wrap position="float" id="T1">
<label>Table 1</label>
<caption>
<p>Viral strains, infection and cell culture conditions</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="left">
<bold>Virus</bold>
</td>
<td align="left">
<bold>Strain</bold>
</td>
<td align="left">
<bold>Cell Type</bold>
</td>
<td align="center">
<bold>Time Point</bold>
</td>
<td align="center">
<bold>MOI</bold>
</td>
<td align="center">
<bold>% Infection</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">HIV-1</td>
<td align="left">BaL</td>
<td align="left">MDDC</td>
<td align="center">48 hr</td>
<td align="center">3</td>
<td align="center">>30</td>
</tr>
<tr>
<td align="left">HIV-1</td>
<td align="left">NL4.3</td>
<td align="left">HELA</td>
<td align="center">48 hr</td>
<td align="center">3</td>
<td align="center">>70</td>
</tr>
<tr>
<td align="left">HIV-1</td>
<td align="left">NL4.3</td>
<td align="left">HUT78</td>
<td align="center">48 hr</td>
<td align="center">3</td>
<td align="center">>70</td>
</tr>
<tr>
<td align="left">HIV-1</td>
<td align="left">RFW</td>
<td align="left">HUT78</td>
<td align="center">48 hr</td>
<td align="center">3</td>
<td align="center">>80</td>
</tr>
<tr>
<td align="left">HSV-1</td>
<td align="left">NC1</td>
<td align="left">HELA</td>
<td align="center">18 hr</td>
<td align="center">3</td>
<td align="center">>95</td>
</tr>
<tr>
<td align="left">HSV-1</td>
<td align="left">NC1</td>
<td align="left">HEP2</td>
<td align="center">18 hr</td>
<td align="center">3</td>
<td align="center">>95</td>
</tr>
<tr>
<td align="left">VZV</td>
<td align="left">Schenke</td>
<td align="left">MDDC</td>
<td align="center">72 hr</td>
<td align="center">0.3</td>
<td align="center">>30</td>
</tr>
<tr>
<td align="left">VZV</td>
<td align="left">Schenke</td>
<td align="left">HFF</td>
<td align="center">72 hr</td>
<td align="center">0.3</td>
<td align="center">>60</td>
</tr>
<tr>
<td align="left">CMV</td>
<td align="left">Toledo</td>
<td align="left">HFF</td>
<td align="center">72 hr</td>
<td align="center">3</td>
<td align="center">>90</td>
</tr>
<tr>
<td align="left">CMV</td>
<td align="left">Towne</td>
<td align="left">HFF</td>
<td align="center">72 hr</td>
<td align="center">3</td>
<td align="center">>90</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>In order to accurately ascertain which housekeeping genes would be most reliable for use as normalisers in QPCR we subjected the data to analysis using the GeNorm tool[
<xref ref-type="bibr" rid="B13">13</xref>
] (Table
<xref ref-type="table" rid="T2">2</xref>
). Using the results from the GeNorm analysis it was possible to list the housekeeping genes in order of reliability in the context of each viral infection (Table
<xref ref-type="table" rid="T3">3</xref>
). 18sRNA was the least reliable reference gene as it had had the highest sum
<sub>v </sub>
value (13.26) which represents the standard deviation (SD) of reference gene expression over all viral infections investigated. Correspondingly it was either the least or second least reliable gene in 9 of the 10 experimental settings. Additionally BACT and HMBS also had high sum
<sub>v </sub>
values of 10.51 and 9.65 respectively, indicating that these genes are generally less reliable for use as normalisers for QPCR assays. According to this analysis the most reliable overall reference gene was PP1A with a sum
<sub>v </sub>
value of 7.41 and the most reliable gene in 7 of the 10 viral infections. Other genes with low sum
<sub>v </sub>
values were SDHA (8.91), GAPDH (8.74), TBP (9.06) and EEF1G (9.16), though in the context of HSV-1
<sub>NC1 </sub>
infected HELA cells EEF1G was identified as the least reliable gene. In the case of CMV an almost identical pattern in reliability was observed in infected primary HFF cells regardless of differences in the virus strain used and a very similar pattern was also seen in VZV
<sub>Schenke </sub>
infected cells despite differences in the origin of the primary cell types used for infection. Though the expression pattern of reference genes in HELA and HEP2 cells infected with HSV-1
<sub>NC-1 </sub>
were also similar, it is of note that in HEP2 cells GAPDH was the second most reliable gene whereas in HELA cells it was the third most unreliable. The expression pattern of reference genes in cells infected with HIV-1 was also similar though greater differences were detected compared to the other viruses, probably reflecting variability in both virus strain and cell type. Notable differences included 18sRNA being a relatively reliable gene in MDDCs infected with HIV
<sub>BaL</sub>
, but unreliable in other HIV infections and B2M being an unreliable reference gene in HIV-1
<sub>RFW </sub>
infected HUT78 cells only.</p>
<table-wrap position="float" id="T2">
<label>Table 2</label>
<caption>
<p>Results of GeNorm analysis</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="left">Virus</td>
<td align="left">Cell</td>
<td align="center">
<bold>B2M</bold>
</td>
<td align="center">
<bold>PP1A</bold>
</td>
<td align="center">
<bold>EEF1G</bold>
</td>
<td align="center">
<bold>SDHA</bold>
</td>
<td align="center">
<bold>GAPDH</bold>
</td>
<td align="center">
<bold>HMBS</bold>
</td>
<td align="center">
<bold>18sRNA</bold>
</td>
<td align="center">
<bold>PGK1</bold>
</td>
<td align="center">
<bold>B-ACT</bold>
</td>
<td align="center">
<bold>TBP</bold>
</td>
<td align="center">
<bold>sum
<sub>RGC</sub>
</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">HIV-1
<sub>BaL</sub>
</td>
<td align="left">MDDC</td>
<td align="center">0.98</td>
<td align="center">0.78</td>
<td align="center">1.04</td>
<td align="center">1.26</td>
<td align="center">0.83</td>
<td align="center">0.84</td>
<td align="center">0.98</td>
<td align="center">1.09</td>
<td align="center">1.45</td>
<td align="center">0.97</td>
<td align="center">
<bold>
<italic>10.22</italic>
</bold>
</td>
</tr>
<tr>
<td align="left">HIV-1
<sub>NL4.3</sub>
</td>
<td align="left">HELA</td>
<td align="center">0.84</td>
<td align="center">0.53</td>
<td align="center">0.75</td>
<td align="center">0.88</td>
<td align="center">0.60</td>
<td align="center">0.84</td>
<td align="center">0.93</td>
<td align="center">0.78</td>
<td align="center">0.90</td>
<td align="center">0.72</td>
<td align="center">
<bold>
<italic>7.77</italic>
</bold>
</td>
</tr>
<tr>
<td align="left">HIV-1
<sub>NL4.3</sub>
</td>
<td align="left">HUT78</td>
<td align="center">1.11</td>
<td align="center">1.18</td>
<td align="center">1.34</td>
<td align="center">0.96</td>
<td align="center">1.35</td>
<td align="center">1.13</td>
<td align="center">2.20</td>
<td align="center">1.20</td>
<td align="center">1.38</td>
<td align="center">1.05</td>
<td align="center">
<bold>
<italic>12.90</italic>
</bold>
</td>
</tr>
<tr>
<td align="left">HIV-1
<sub>RFW</sub>
</td>
<td align="left">HUT78</td>
<td align="center">1.21</td>
<td align="center">0.64</td>
<td align="center">0.83</td>
<td align="center">0.90</td>
<td align="center">0.99</td>
<td align="center">1.17</td>
<td align="center">1.53</td>
<td align="center">0.87</td>
<td align="center">0.97</td>
<td align="center">1.16</td>
<td align="center">
<bold>
<italic>10.27</italic>
</bold>
</td>
</tr>
<tr>
<td align="left">HSV-1
<sub>NC1</sub>
</td>
<td align="left">HELA</td>
<td align="center">0.80</td>
<td align="center">0.65</td>
<td align="center">1.33</td>
<td align="center">0.62</td>
<td align="center">0.91</td>
<td align="center">0.59</td>
<td align="center">0.89</td>
<td align="center">0.60</td>
<td align="center">0.92</td>
<td align="center">0.74</td>
<td align="center">
<bold>
<italic>8.05</italic>
</bold>
</td>
</tr>
<tr>
<td align="left">HSV-1
<sub>NC1</sub>
</td>
<td align="left">HEP2</td>
<td align="center">0.41</td>
<td align="center">0.42</td>
<td align="center">0.44</td>
<td align="center">0.50</td>
<td align="center">0.37</td>
<td align="center">0.38</td>
<td align="center">0.60</td>
<td align="center">0.41</td>
<td align="center">0.57</td>
<td align="center">0.54</td>
<td align="center">
<bold>
<italic>4.64</italic>
</bold>
</td>
</tr>
<tr>
<td align="left">VZV
<sub>Schenke</sub>
</td>
<td align="left">MDDC</td>
<td align="center">0.99</td>
<td align="center">0.93</td>
<td align="center">0.96</td>
<td align="center">1.09</td>
<td align="center">0.93</td>
<td align="center">1.23</td>
<td align="center">1.83</td>
<td align="center">1.30</td>
<td align="center">1.02</td>
<td align="center">0.94</td>
<td align="center">
<bold>
<italic>12.22</italic>
</bold>
</td>
</tr>
<tr>
<td align="left">VZV
<sub>Schenke</sub>
</td>
<td align="left">HFF</td>
<td align="center">1.56</td>
<td align="center">1.09</td>
<td align="center">1.12</td>
<td align="center">1.34</td>
<td align="center">1.45</td>
<td align="center">1.75</td>
<td align="center">1.94</td>
<td align="center">1.87</td>
<td align="center">1.70</td>
<td align="center">1.54</td>
<td align="center">
<bold>
<italic>15.36</italic>
</bold>
</td>
</tr>
<tr>
<td align="left">CMV
<sub>Towne</sub>
</td>
<td align="left">HFF</td>
<td align="center">0.65</td>
<td align="center">0.58</td>
<td align="center">0.60</td>
<td align="center">0.60</td>
<td align="center">0.82</td>
<td align="center">0.60</td>
<td align="center">1.14</td>
<td align="center">0.58</td>
<td align="center">0.74</td>
<td align="center">0.63</td>
<td align="center">
<bold>
<italic>6.8</italic>
</bold>
</td>
</tr>
<tr>
<td align="left">CMV
<sub>Toledo</sub>
</td>
<td align="left">HFF</td>
<td align="center">0.86</td>
<td align="center">0.61</td>
<td align="center">0.75</td>
<td align="center">0.76</td>
<td align="center">0.71</td>
<td align="center">0.90</td>
<td align="center">1.22</td>
<td align="center">0.73</td>
<td align="center">0.86</td>
<td align="center">0.77</td>
<td align="center">
<bold>
<italic>7.87</italic>
</bold>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<bold>
<italic>sum</italic>
<sub>
<italic>v</italic>
</sub>
</bold>
</td>
<td align="center">
<bold>
<italic>9.41</italic>
</bold>
</td>
<td align="center">
<bold>
<italic>7.41</italic>
</bold>
</td>
<td align="center">
<bold>
<italic>9.16</italic>
</bold>
</td>
<td align="center">
<bold>
<italic>8.91</italic>
</bold>
</td>
<td align="center">
<bold>
<italic>8.74</italic>
</bold>
</td>
<td align="center">
<bold>
<italic>9.65</italic>
</bold>
</td>
<td align="center">
<bold>
<italic>13.26</italic>
</bold>
</td>
<td align="center">
<bold>
<italic>9.43</italic>
</bold>
</td>
<td align="center">
<bold>
<italic>10.51</italic>
</bold>
</td>
<td align="center">
<bold>
<italic>9.06</italic>
</bold>
</td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>The standard deviations of reference gene expression as determined by GeNorm are shown. Abbreviations: Sum
<sub>v</sub>
: Sum of viral infection GeNorm values; sum
<sub>RGC</sub>
: sum of reference gene GeNorm values</p>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="T3">
<label>Table 3</label>
<caption>
<p>Reliability of references genes for each viral – cell pair</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="left">
<bold>Virus</bold>
</td>
<td align="left">
<bold>HIV-1
<sub>BaL</sub>
</bold>
</td>
<td align="left">
<bold>HIV-1
<sub>NL4.3</sub>
</bold>
</td>
<td align="left">
<bold>HIV-1
<sub>NL4.3</sub>
</bold>
</td>
<td align="left">
<bold>HIV-1
<sub>RFW</sub>
</bold>
</td>
<td align="left">
<bold>HSV-1
<sub>NC1</sub>
</bold>
</td>
<td align="left">
<bold>HSV-1
<sub>NC1</sub>
</bold>
</td>
<td align="left">
<bold>VZV
<sub>Schenke</sub>
</bold>
</td>
<td align="left">
<bold>VZV
<sub>Schenke</sub>
</bold>
</td>
<td align="left">
<bold>CMV
<sub>Towne</sub>
</bold>
</td>
<td align="left">
<bold>CMV
<sub>Toledo</sub>
</bold>
</td>
<td align="left">
<bold>Overall</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>Cell</bold>
</td>
<td align="left">
<bold>MDDC</bold>
</td>
<td align="left">
<bold>HELA</bold>
</td>
<td align="left">
<bold>HUT78</bold>
</td>
<td align="left">
<bold>HUT78</bold>
</td>
<td align="left">
<bold>HELA</bold>
</td>
<td align="left">
<bold>HEP2</bold>
</td>
<td align="left">
<bold>MDDC</bold>
</td>
<td align="left">
<bold>HFF</bold>
</td>
<td align="left">
<bold>HFF</bold>
</td>
<td align="left">
<bold>HFF</bold>
</td>
<td align="left">
<bold>-</bold>
</td>
</tr>
<tr>
<td colspan="12">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<bold>1st</bold>
</td>
<td align="left">PP1A</td>
<td align="left">PP1A</td>
<td align="left">SDHA</td>
<td align="left">PP1A</td>
<td align="left">HMBS</td>
<td align="left">HMBS</td>
<td align="left">PP1A*</td>
<td align="left">PP1A</td>
<td align="left">PP1A*</td>
<td align="left">PP1A</td>
<td align="left">
<bold>PP1A</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>2nd</bold>
</td>
<td align="left">GAPDH</td>
<td align="left">GAPDH</td>
<td align="left">TBP</td>
<td align="left">EEFIG</td>
<td align="left">PGK1</td>
<td align="left">GAPDH</td>
<td align="left">GAPDH*</td>
<td align="left">EEFIG</td>
<td align="left">PGK1*</td>
<td align="left">GAPDH</td>
<td align="left">
<bold>GAPDH</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>3rd</bold>
</td>
<td align="left">HMBS</td>
<td align="left">TBP</td>
<td align="left">B2M</td>
<td align="left">PGK1</td>
<td align="left">SDHA</td>
<td align="left">PGK*</td>
<td align="left">TBP</td>
<td align="left">SDHA</td>
<td align="left">GAPDH**</td>
<td align="left">PGK1</td>
<td align="left">
<bold>SDHA</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>4th</bold>
</td>
<td align="left">TBP</td>
<td align="left">EEFIG</td>
<td align="left">HMBS</td>
<td align="left">SDHA</td>
<td align="left">PP1A</td>
<td align="left">B2M*</td>
<td align="left">EEF1G</td>
<td align="left">GAPDH</td>
<td align="left">EEF1G**</td>
<td align="left">EEFIG</td>
<td align="left">
<bold>TBP</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>5th</bold>
</td>
<td align="left">B2M</td>
<td align="left">PGK1</td>
<td align="left">PP1A</td>
<td align="left">BACT</td>
<td align="left">TBP</td>
<td align="left">PPIA</td>
<td align="left">B2M</td>
<td align="left">TBP</td>
<td align="left">SDHA**</td>
<td align="left">SDHA</td>
<td align="left">
<bold>EEF1G</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>6th</bold>
</td>
<td align="left">18sRNA</td>
<td align="left">HMBS*</td>
<td align="left">PGK1</td>
<td align="left">GAPDH</td>
<td align="left">B2M</td>
<td align="left">EEF1G</td>
<td align="left">BACT</td>
<td align="left">B2M</td>
<td align="left">TBP</td>
<td align="left">TBP</td>
<td align="left">
<bold>B2M</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>7th</bold>
</td>
<td align="left">EEF1G</td>
<td align="left">B2M*</td>
<td align="left">EEFIG</td>
<td align="left">TBP</td>
<td align="left">18sRNA</td>
<td align="left">SDHA</td>
<td align="left">SDHA</td>
<td align="left">BACT</td>
<td align="left">B2M</td>
<td align="left">B2M*</td>
<td align="left">
<bold>PGK1</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>8th</bold>
</td>
<td align="left">PGK1</td>
<td align="left">SDHA</td>
<td align="left">GAPDH</td>
<td align="left">HMBS</td>
<td align="left">GAPDH</td>
<td align="left">TBP</td>
<td align="left">HMBS</td>
<td align="left">HMBS</td>
<td align="left">BACT</td>
<td align="left">BACT*</td>
<td align="left">
<bold>HMBS</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>9th</bold>
</td>
<td align="left">SDHA</td>
<td align="left">BACT</td>
<td align="left">18sRNA</td>
<td align="left">B2M</td>
<td align="left">BACT</td>
<td align="left">BACT</td>
<td align="left">PGK1</td>
<td align="left">PGK1</td>
<td align="left">HMBS</td>
<td align="left">HMBS</td>
<td align="left">
<bold>BACT</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>10th</bold>
</td>
<td align="left">BACT</td>
<td align="left">18sRNA</td>
<td align="left">BACT</td>
<td align="left">18sRNA</td>
<td align="left">EEFIG</td>
<td align="left">18sRNA</td>
<td align="left">18sRNA</td>
<td align="left">18sRNA</td>
<td align="left">18sRNA</td>
<td align="left">18sRNA</td>
<td align="left">
<bold>18sRNA</bold>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Where two or more genes were equally reliable these are labelled with * or **.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Discussion</title>
<p>There are now many reports describing the unreliability of conventionally used housekeeping genes for the normalisation of QPCR data in certain experimental settings [
<xref ref-type="bibr" rid="B4">4</xref>
-
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B14">14</xref>
,
<xref ref-type="bibr" rid="B15">15</xref>
]. Careful consideration must therefore be carried out when choosing appropriate reference genes in QPCR experiments and the reliability of a panel of potential genes should be determined for individual experimental conditions[
<xref ref-type="bibr" rid="B3">3</xref>
,
<xref ref-type="bibr" rid="B8">8</xref>
]. Ideally the best two or three of these genes would then be used for normalisation purposes [
<xref ref-type="bibr" rid="B16">16</xref>
]. This is of particular concern to molecular virologists as most viruses modulate key cellular processes which may involve changing the expression of QPCR reference genes. Different viruses manipulate different cellular transcription pathways and the extent to which these pathways are affected will be dependent on the specific strain of virus and the cell type infected. Thus it is not possible to identify a single housekeeping gene for use in QPCR studies of viral infections. Nevertheless it is of benefit for researchers to be able to determine a shortlist of potential candidates. To date the variability of housekeeping gene expression has been studied in cells infected with SARS corona virus, yellow fever virus, human herpes virus-6, camelpox virus, CMV [
<xref ref-type="bibr" rid="B7">7</xref>
] and Epstein-Barr virus (EBV) [
<xref ref-type="bibr" rid="B12">12</xref>
]. However such a study has never been carried out using the key human pathogens HIV, HSV and VZV. Therefore in this study we have extended the published investigations by determining the suitability of 10 commonly used reference genes in the context of infection with various strains of HIV-1, HSV-1, CMV and VZV in a range of both primary and cultured cell lines using the GeNorm tool[
<xref ref-type="bibr" rid="B13">13</xref>
].</p>
<p>We found that overall 18sRNA was the least reliable gene studied and that BACT was also consistently unreliable. This correlates with the data from Radonic
<italic>et al </italic>
[
<xref ref-type="bibr" rid="B7">7</xref>
] who found BACT to be the most unreliable of 10 reference genes studied in a range of 5 viral infections. 18sRNA was not included in their study however. In contrast Bernasconi
<italic>et al </italic>
[
<xref ref-type="bibr" rid="B12">12</xref>
] found BACT had the lowest coefficient of variation of 451 housekeeping genes spotted on microarrays in EBV infection in B cells from patients with Burkitt's lymphoma. It is of note however that the γ-herpes virus EBV was not included in our study or of that of Radonic
<italic>et al </italic>
though the β-herpes virus CMV and α-herpes viruses HSV-1 and VZV were. In agreement with Radonic
<italic>et al </italic>
we found that PP1A was the most reliable reference gene across all infections. However in contrast to their finding that TBP was equally reliable as PP1A we found it to be the 4
<sup>th </sup>
most reliable gene. Other reliable genes identified by our study included GAPDH and SDHA.</p>
<p>A comprehensive literature review of expression studies published in high-impact journals found that GAPDH, BACT, 18sRNA and 28sRNA were used as a single control gene in >90% of cases[
<xref ref-type="bibr" rid="B13">13</xref>
]. However, we found that two of these (18sRNA and BACT) were the least reliable in the context of the viral infections that we investigated. In contrast to all other infections, 18sRNA was not an unreliable control gene when MDDCs were infected with HIV-1
<sub>BaL. </sub>
In addition it is of note that although GAPDH was one of the most reliable reference genes identified overall, it was the third most unreliable gene in HELA cells infected with HSV-1
<sub>NC1</sub>
(whereas it was the second most reliable reference gene in HEP2 cells infected with the same strain of HSV-1). These findings therefore highlight the importance of re-evaluating the choice housekeeping genes when making even slight changes to experimental settings.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>In summary, PPIA, GAPDH and SDHA were the best QPCR control genes and we would recommend molecular virologists begin by short listing these genes when designing QPCR experiments. 18sRNA and BACT were consistently unreliable and should be used with caution in studies involving virally infected cells.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and methods</title>
<sec>
<title>Virus culture</title>
<p>HSV-1 strain NC1, CMV strains Towne and Toledo, VZV strain Schenke and HIV-1 strains BaL, NL4.3 and RFW were propagated according to standard protocols [
<xref ref-type="bibr" rid="B16">16</xref>
-
<xref ref-type="bibr" rid="B20">20</xref>
]. The cell types infected, MOI, time of infection and percentage of cells infected are shown in table
<xref ref-type="table" rid="T1">1</xref>
. Cells were infected with each virus strain at a MOI and duration in order to achieve the maximal percentage of infected cells as determined by QPCR for all HIV-1, HSV-1 and CMV infected cells, [
<xref ref-type="bibr" rid="B21">21</xref>
] and by flow cytometry for VZV infected cells[
<xref ref-type="bibr" rid="B22">22</xref>
].</p>
</sec>
<sec>
<title>RNA extraction and DNase treatment</title>
<p>Total RNA from cells derived from four independent experiments was extracted using the RNAqueous-Midi kit (Ambion, TA), quantified by UV spectroscopy and the integrity confirmed using an agilent 2100 bioanalyzer. 1 μg of the total RNA was then DNase treated using 1 U RNase free DNase (Promega, Madison WI).</p>
</sec>
<sec>
<title>cDNA synthesis</title>
<p>cDNA was produced using the Superscript III RT-PCR System (Invitrogen, Rockville, MD) according to the manufacturer's recommendations for oligo(dT)20 primed cDNA-synthesis. cDNA synthesis from RNA was performed using 1 μg of RNA, at 50°C. The cDNA was then treated with RNase H (Invitrogen) and diluted 1:100 before use for QPCR.</p>
</sec>
<sec>
<title>Quantitative PCR</title>
<p>In order to measure housekeeping gene expression, cDNA was subject to QPCR using the platinum QPCR super mix kit (Invitrogen) and pre-designed certified LUX primers (Invitrogen) designed to amplify the following transcripts: B2M, PPIA, EEF1G, SDHA, GAPDH, HMBS, TBP, 18sRNA, PGK1, BACT. Fluorescent PCR amplicons were detected using a Stratagene Mx3005 QPCR thermocycler using 96-well microtiter plates in a final volume of 25 μl under the following cycle conditions: 50°C for 2 minutes, 95°C for 2 minute, 45 cycles of 95°C for 15 seconds 55°C for 30 seconds and 72°C for 30 seconds.</p>
</sec>
<sec>
<title>Data analysis</title>
<p>The ΔΔCT [
<xref ref-type="bibr" rid="B23">23</xref>
] method was used for initial data analysis. Four biological replicates were used for each infection and a two tailed test with a significance level of 5% was used to measure the significance between sample replicates. Repeated measures analysis of variance was then used to test for the presence of interaction between the effects of the within experiment factors for housekeeping gene and viral status of the cell sample. Data analysis was also performed using the GeNorm tool[
<xref ref-type="bibr" rid="B13">13</xref>
].</p>
</sec>
</sec>
<sec>
<title>Abbreviations</title>
<p>QPCR, quantitative PCR; CMV, cytomegalovirus; HSV, herpes simplex virus; VZV, varicella zoster virus; B2M, beta-2microglobulin; PP1A, peptidylprolyl isomerase A; EEF1G, eukaryotic translation elongation factor 1 gamma; SDHA, succinate dehydrogenase complex subunit A; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; BACT, beta actin; HMBS, hydroxymethyl-bilane synthase; TBP, TATA box-binding protein; 18sRNA, 18s Ribosomal RNA; PGK1, phosphoglycerate kinase 1.</p>
</sec>
<sec>
<title>Competing interests</title>
<p>The author(s) declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>AH, JW, CB and AC conceived of the study. AH designed and supervised the experiments, prepared the HIV infected MDDC extracts, and prepared the manuscript with CB. SW carried out the QPCR experiments and conducted data analysis with the help of SM. AC provided intellectual input, and grant funding. All authors read and approved the final manuscript.</p>
</sec>
</body>
<back>
<ack>
<sec>
<title>Acknowledgements</title>
<p>We would like to thank the following members of the Centre for Virus Research for providing infected cell extracts and determining infectivity rates: Kavitha Gowrishankar and Elizabeth Sloan (VZV), Winnie Garcia (CMV), Debbie Ko (HSV-1), and Judith Edmonds, Sarah Sherwood, Sabine Piller and Valerie Marsden (HIV-1). The authors are grateful to Heather Donaghy for critical reading of the manuscript.</p>
<p>This project was supported by a National Health and Medical Research Council (NHMRC) Program Grant. ID number 358399.</p>
</sec>
</ack>
<ref-list>
<ref id="B1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mackay</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Arden</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Nitsche</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Real-time PCR in virology</article-title>
<source>Nucleic Acids Res</source>
<year>2002</year>
<volume>30</volume>
<fpage>1292</fpage>
<lpage>1305</lpage>
<pub-id pub-id-type="pmid">11884626</pub-id>
<pub-id pub-id-type="doi">10.1093/nar/30.6.1292</pub-id>
</citation>
</ref>
<ref id="B2">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pfaffl</surname>
<given-names>MW</given-names>
</name>
</person-group>
<article-title>A new mathematical model for relative quantification in real-time RT-PCR</article-title>
<source>Nucleic Acids Res</source>
<year>2001</year>
<volume>29</volume>
<fpage>e45</fpage>
<pub-id pub-id-type="pmid">11328886</pub-id>
<pub-id pub-id-type="doi">10.1093/nar/29.9.e45</pub-id>
</citation>
</ref>
<ref id="B3">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thellin</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Zorzi</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lakaye</surname>
<given-names>B</given-names>
</name>
<name>
<surname>De Borman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Coumans</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hennen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Grisar</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Igout</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Heinen</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Housekeeping genes as internal standards: use and limits</article-title>
<source>J Biotechnol</source>
<year>1999</year>
<volume>75</volume>
<fpage>291</fpage>
<lpage>295</lpage>
<pub-id pub-id-type="pmid">10617337</pub-id>
<pub-id pub-id-type="doi">10.1016/S0168-1656(99)00163-7</pub-id>
</citation>
</ref>
<ref id="B4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glare</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Divjak</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Walters</surname>
<given-names>EH</given-names>
</name>
</person-group>
<article-title>beta-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels</article-title>
<source>Thorax</source>
<year>2002</year>
<volume>57</volume>
<fpage>765</fpage>
<lpage>770</lpage>
<pub-id pub-id-type="pmid">12200519</pub-id>
<pub-id pub-id-type="doi">10.1136/thorax.57.9.765</pub-id>
</citation>
</ref>
<ref id="B5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Selvey</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Matthaei</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lea</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Irving</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Griffiths</surname>
<given-names>LR</given-names>
</name>
</person-group>
<article-title>Beta-actin–an unsuitable internal control for RT-PCR</article-title>
<source>Mol Cell Probes</source>
<year>2001</year>
<volume>15</volume>
<fpage>307</fpage>
<lpage>311</lpage>
<pub-id pub-id-type="pmid">11735303</pub-id>
<pub-id pub-id-type="doi">10.1006/mcpr.2001.0376</pub-id>
</citation>
</ref>
<ref id="B6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhong</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Simons</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia</article-title>
<source>Biochem Biophys Res Commun</source>
<year>1999</year>
<volume>259</volume>
<fpage>523</fpage>
<lpage>526</lpage>
<pub-id pub-id-type="pmid">10364451</pub-id>
<pub-id pub-id-type="doi">10.1006/bbrc.1999.0815</pub-id>
</citation>
</ref>
<ref id="B7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Radonic</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Thulke</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Siegert</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Nitsche</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections</article-title>
<source>Virol J</source>
<year>2005</year>
<volume>2</volume>
<fpage>7</fpage>
<pub-id pub-id-type="pmid">15705200</pub-id>
<pub-id pub-id-type="doi">10.1186/1743-422X-2-7</pub-id>
</citation>
</ref>
<ref id="B8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Radonic</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Thulke</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mackay</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Landt</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Siegert</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Nitsche</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Guideline to reference gene selection for quantitative real-time PCR</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2004</year>
<volume>313</volume>
<fpage>856</fpage>
<lpage>862</lpage>
<pub-id pub-id-type="pmid">14706621</pub-id>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2003.11.177</pub-id>
</citation>
</ref>
<ref id="B9">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalejta</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Shenk</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Manipulation of the cell cycle by human cytomegalovirus</article-title>
<source>Front Biosci</source>
<year>2002</year>
<volume>7</volume>
<fpage>d295</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="pmid">11779699</pub-id>
<pub-id pub-id-type="doi">10.2741/kalejta</pub-id>
</citation>
</ref>
<ref id="B10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schang</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>The cell cycle, cyclin-dependent kinases, and viral infections: new horizons and unexpected connections</article-title>
<source>Prog Cell Cycle Res</source>
<year>2003</year>
<volume>5</volume>
<fpage>103</fpage>
<lpage>124</lpage>
<pub-id pub-id-type="pmid">14593705</pub-id>
</citation>
</ref>
<ref id="B11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayward</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fujimuro</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Notch and Wnt signaling: mimicry and manipulation by gamma herpesviruses</article-title>
<source>Sci STKE</source>
<year>2006</year>
<volume>2006</volume>
<fpage>re4</fpage>
<pub-id pub-id-type="pmid">16705130</pub-id>
<pub-id pub-id-type="doi">10.1126/stke.3352006re4</pub-id>
</citation>
</ref>
<ref id="B12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernasconi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sigrist</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Bonanomi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sobek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Niggli</surname>
<given-names>FK</given-names>
</name>
<name>
<surname>Nadal</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray</article-title>
<source>Virol J</source>
<year>2006</year>
<volume>3</volume>
<fpage>43</fpage>
<pub-id pub-id-type="pmid">16756670</pub-id>
<pub-id pub-id-type="doi">10.1186/1743-422X-3-43</pub-id>
</citation>
</ref>
<ref id="B13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vandesompele</surname>
<given-names>J</given-names>
</name>
<name>
<surname>De Preter</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pattyn</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Poppe</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Van Roy</surname>
<given-names>N</given-names>
</name>
<name>
<surname>De Paepe</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Speleman</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes</article-title>
<source>Genome Biol</source>
<year>2002</year>
<volume>3</volume>
<fpage>RESEARCH0034</fpage>
<pub-id pub-id-type="pmid">12184808</pub-id>
<pub-id pub-id-type="doi">10.1186/gb-2002-3-7-research0034</pub-id>
</citation>
</ref>
<ref id="B14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsiao</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Dangond</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>RV</given-names>
</name>
<name>
<surname>Misra</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dillon</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Haverty</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A compendium of gene expression in normal human tissues</article-title>
<source>Physiol Genomics</source>
<year>2001</year>
<volume>7</volume>
<fpage>97</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="pmid">11773596</pub-id>
</citation>
</ref>
<ref id="B15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warrington</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Nair</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mahadevappa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tsyganskaya</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes</article-title>
<source>Physiol Genomics</source>
<year>2000</year>
<volume>2</volume>
<fpage>143</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="pmid">11015593</pub-id>
</citation>
</ref>
<ref id="B16">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harman</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Wilkinson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bye</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Bosnjak</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Stern</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Nicholle</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells</article-title>
<source>J Immunol</source>
<year>2006</year>
<volume>177</volume>
<fpage>7103</fpage>
<lpage>7113</lpage>
<pub-id pub-id-type="pmid">17082627</pub-id>
</citation>
</ref>
<ref id="B17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diefenbach</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Miranda-Saksena</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Diefenbach</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Holland</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Boadle</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Armati</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain</article-title>
<source>J Virol</source>
<year>2002</year>
<volume>76</volume>
<fpage>3282</fpage>
<lpage>3291</lpage>
<pub-id pub-id-type="pmid">11884553</pub-id>
<pub-id pub-id-type="doi">10.1128/JVI.76.7.3282-3291.2002</pub-id>
</citation>
</ref>
<ref id="B18">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Willemsen</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Hitchen</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Bodetti</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Apolloni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Warrilow</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Piller</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Harrich</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Protein methylation is required to maintain optimal HIV-1 infectivity</article-title>
<source>Retrovirology</source>
<year>2006</year>
<volume>3</volume>
<fpage>92</fpage>
<pub-id pub-id-type="pmid">17169163</pub-id>
<pub-id pub-id-type="doi">10.1186/1742-4690-3-92</pub-id>
</citation>
</ref>
<ref id="B19">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gowrishankar</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Slobedman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Miranda-Saksena</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Boadle</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Abendroth</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Productive varicella-zoster virus infection of cultured intact human Ganglia</article-title>
<source>J Virol</source>
<year>2007</year>
<volume>81</volume>
<fpage>6752</fpage>
<lpage>6756</lpage>
<pub-id pub-id-type="pmid">17409155</pub-id>
<pub-id pub-id-type="doi">10.1128/JVI.02793-06</pub-id>
</citation>
</ref>
<ref id="B20">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Piller</surname>
<given-names>SC</given-names>
</name>
</person-group>
<article-title>A 100-amino acid truncation in the cytoplasmic tail of glycoprotein 41 in the reference HIV type 1 strain RF</article-title>
<source>AIDS Res Hum Retroviruses</source>
<year>2002</year>
<volume>18</volume>
<fpage>513</fpage>
<lpage>517</lpage>
<pub-id pub-id-type="pmid">12015905</pub-id>
<pub-id pub-id-type="doi">10.1089/088922202317406664</pub-id>
</citation>
</ref>
<ref id="B21">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roback</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Hillyer</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Drew</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Laycock</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Luka</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mocarski</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Slobedman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Soderberg-Naucler</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Todd</surname>
<given-names>DS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multicenter evaluation of PCR methods for detecting CMV DNA in blood donors</article-title>
<source>Transfusion</source>
<year>2001</year>
<volume>41</volume>
<fpage>1249</fpage>
<lpage>1257</lpage>
<pub-id pub-id-type="pmid">11606824</pub-id>
<pub-id pub-id-type="doi">10.1046/j.1537-2995.2001.41101249.x</pub-id>
</citation>
</ref>
<ref id="B22">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morrow</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Slobedman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Abendroth</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Varicella-zoster virus productively infects mature dendritic cells and alters their immune function</article-title>
<source>J Virol</source>
<year>2003</year>
<volume>77</volume>
<fpage>4950</fpage>
<lpage>4959</lpage>
<pub-id pub-id-type="pmid">12663800</pub-id>
<pub-id pub-id-type="doi">10.1128/JVI.77.8.4950-4959.2003</pub-id>
</citation>
</ref>
<ref id="B23">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Livak</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Schmittgen</surname>
<given-names>TD</given-names>
</name>
</person-group>
<article-title>Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method</article-title>
<source>Methods</source>
<year>2001</year>
<volume>25</volume>
<fpage>402</fpage>
<lpage>408</lpage>
<pub-id pub-id-type="pmid">11846609</pub-id>
<pub-id pub-id-type="doi">10.1006/meth.2001.1262</pub-id>
</citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000273  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000273  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021