Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adeno-associated virus vector-mediated transduction in the cat brain

Identifieur interne : 000003 ( PascalFrancis/Curation ); précédent : 000002; suivant : 000004

Adeno-associated virus vector-mediated transduction in the cat brain

Auteurs : Charles H. Vite [États-Unis] ; Marco A. Passini [États-Unis] ; Mark E. Haskins [États-Unis] ; John H. Wolfe [États-Unis]

Source :

RBID : Pascal:04-0174547

Descripteurs français

English descriptors

Abstract

Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme β-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AA V1 vector resulted in greater transduction of the gray matter than AA V2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.
pA  
A01 01  1    @0 0969-7128
A03   1    @0 Gene ther. : (Basingstoke)
A05       @2 10
A06       @2 22
A08 01  1  ENG  @1 Adeno-associated virus vector-mediated transduction in the cat brain
A11 01  1    @1 VITE (Charles H.)
A11 02  1    @1 PASSINI (Marco A.)
A11 03  1    @1 HASKINS (Mark E.)
A11 04  1    @1 WOLFE (John H.)
A14 01      @1 School of Veterinary Medicine, University of Pennsylvania @2 Philadelphia, PA @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Children's Hospital of Philadelphia @2 Philadelphia, PA @3 USA @Z 1 aut. @Z 2 aut. @Z 4 aut.
A20       @1 1874-1881
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 26274 @5 354000113002830020
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 46 ref.
A47 01  1    @0 04-0174547
A60       @1 P
A61       @0 A
A64 01  1    @0 Gene therapy : (Basingstoke)
A66 01      @0 GBR
C01 01    ENG  @0 Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme β-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AA V1 vector resulted in greater transduction of the gray matter than AA V2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.
C02 01  X    @0 002A31D01D
C02 02  X    @0 002B27D03
C02 03  X    @0 215
C03 01  X  FRE  @0 Dependovirus @2 NW @5 01
C03 01  X  ENG  @0 Dependovirus @2 NW @5 01
C03 01  X  SPA  @0 Dependovirus @2 NW @5 01
C03 02  X  FRE  @0 Thérapie génique @5 02
C03 02  X  ENG  @0 Gene therapy @5 02
C03 02  X  SPA  @0 Terapia génica @5 02
C03 03  X  FRE  @0 Vecteur @5 03
C03 03  X  ENG  @0 Vector @5 03
C03 03  X  SPA  @0 Vector @5 03
C03 04  X  FRE  @0 Transduction @5 05
C03 04  X  ENG  @0 Transduction @5 05
C03 04  X  SPA  @0 Transducción @5 05
C03 05  X  FRE  @0 Chat @5 06
C03 05  X  ENG  @0 Cat @5 06
C03 05  X  SPA  @0 Gato @5 06
C03 06  X  FRE  @0 Modèle animal @5 07
C03 06  X  ENG  @0 Animal model @5 07
C03 06  X  SPA  @0 Modelo animal @5 07
C03 07  X  FRE  @0 Système nerveux central @5 08
C03 07  X  ENG  @0 Central nervous system @5 08
C03 07  X  SPA  @0 Sistema nervioso central @5 08
C03 08  X  FRE  @0 Encéphale @5 09
C03 08  X  ENG  @0 Encephalon @5 09
C03 08  X  SPA  @0 Encéfalo @5 09
C07 01  X  FRE  @0 Parvovirinae @2 NW
C07 01  X  ENG  @0 Parvovirinae @2 NW
C07 01  X  SPA  @0 Parvovirinae @2 NW
C07 02  X  FRE  @0 Parvoviridae @2 NW
C07 02  X  ENG  @0 Parvoviridae @2 NW
C07 02  X  SPA  @0 Parvoviridae @2 NW
C07 03  X  FRE  @0 Virus @2 NW
C07 03  X  ENG  @0 Virus @2 NW
C07 03  X  SPA  @0 Virus @2 NW
C07 04  X  FRE  @0 Fissipedia @2 NS
C07 04  X  ENG  @0 Fissipedia @2 NS
C07 04  X  SPA  @0 Fissipedia @2 NS
C07 05  X  FRE  @0 Carnivora @2 NS
C07 05  X  ENG  @0 Carnivora @2 NS
C07 05  X  SPA  @0 Carnivora @2 NS
C07 06  X  FRE  @0 Mammalia @2 NS
C07 06  X  ENG  @0 Mammalia @2 NS
C07 06  X  SPA  @0 Mammalia @2 NS
C07 07  X  FRE  @0 Vertebrata @2 NS
C07 07  X  ENG  @0 Vertebrata @2 NS
C07 07  X  SPA  @0 Vertebrata @2 NS
N21       @1 117
N82       @1 PSI

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0174547

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Adeno-associated virus vector-mediated transduction in the cat brain</title>
<author>
<name sortKey="Vite, Charles H" sort="Vite, Charles H" uniqKey="Vite C" first="Charles H." last="Vite">Charles H. Vite</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Children's Hospital of Philadelphia</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Passini, Marco A" sort="Passini, Marco A" uniqKey="Passini M" first="Marco A." last="Passini">Marco A. Passini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Children's Hospital of Philadelphia</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Haskins, Mark E" sort="Haskins, Mark E" uniqKey="Haskins M" first="Mark E." last="Haskins">Mark E. Haskins</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Wolfe, John H" sort="Wolfe, John H" uniqKey="Wolfe J" first="John H." last="Wolfe">John H. Wolfe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Children's Hospital of Philadelphia</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0174547</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0174547 INIST</idno>
<idno type="RBID">Pascal:04-0174547</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000056</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000003</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Adeno-associated virus vector-mediated transduction in the cat brain</title>
<author>
<name sortKey="Vite, Charles H" sort="Vite, Charles H" uniqKey="Vite C" first="Charles H." last="Vite">Charles H. Vite</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Children's Hospital of Philadelphia</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Passini, Marco A" sort="Passini, Marco A" uniqKey="Passini M" first="Marco A." last="Passini">Marco A. Passini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Children's Hospital of Philadelphia</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Haskins, Mark E" sort="Haskins, Mark E" uniqKey="Haskins M" first="Mark E." last="Haskins">Mark E. Haskins</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Wolfe, John H" sort="Wolfe, John H" uniqKey="Wolfe J" first="John H." last="Wolfe">John H. Wolfe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Children's Hospital of Philadelphia</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Gene therapy : (Basingstoke)</title>
<title level="j" type="abbreviated">Gene ther. : (Basingstoke)</title>
<idno type="ISSN">0969-7128</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Gene therapy : (Basingstoke)</title>
<title level="j" type="abbreviated">Gene ther. : (Basingstoke)</title>
<idno type="ISSN">0969-7128</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal model</term>
<term>Cat</term>
<term>Central nervous system</term>
<term>Dependovirus</term>
<term>Encephalon</term>
<term>Gene therapy</term>
<term>Transduction</term>
<term>Vector</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dependovirus</term>
<term>Thérapie génique</term>
<term>Vecteur</term>
<term>Transduction</term>
<term>Chat</term>
<term>Modèle animal</term>
<term>Système nerveux central</term>
<term>Encéphale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme β-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AA V1 vector resulted in greater transduction of the gray matter than AA V2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0969-7128</s0>
</fA01>
<fA03 i2="1">
<s0>Gene ther. : (Basingstoke)</s0>
</fA03>
<fA05>
<s2>10</s2>
</fA05>
<fA06>
<s2>22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Adeno-associated virus vector-mediated transduction in the cat brain</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VITE (Charles H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PASSINI (Marco A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HASKINS (Mark E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WOLFE (John H.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Children's Hospital of Philadelphia</s1>
<s2>Philadelphia, PA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1874-1881</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26274</s2>
<s5>354000113002830020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>46 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0174547</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Gene therapy : (Basingstoke)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme β-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AA V1 vector resulted in greater transduction of the gray matter than AA V2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A31D01D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B27D03</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>215</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dependovirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Dependovirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Dependovirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Thérapie génique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Gene therapy</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Terapia génica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Vecteur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Vector</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Vector</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Transduction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Transduction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Transducción</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Chat</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Cat</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Gato</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modèle animal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Animal model</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelo animal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Encephalon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>09</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Parvovirinae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Parvovirinae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Parvovirinae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Parvoviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Parvoviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Parvoviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Fissipedia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Fissipedia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Fissipedia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Carnivora</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Carnivora</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Carnivora</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>117</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:04-0174547
   |texte=   Adeno-associated virus vector-mediated transduction in the cat brain
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021