Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics

Identifieur interne : 000054 ( PascalFrancis/Corpus ); précédent : 000053; suivant : 000055

Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics

Auteurs : Christopher J. Jr Hogan ; Myong-Hwa Lee ; Pratim Biswas

Source :

RBID : Pascal:04-0419697

Descripteurs français

English descriptors

Abstract

The charge distribution of airborne MS2 bacteriophage nanoparticles and the efficiency of electrical-mobility-based capture mechanisms with bipolar charging were studied. MS2 virions form large agglomerated particles in a suspension. The average charge on airborne MS2 virions can be as high as one unit charge (negatively charged). The application of both soft X-ray irradiation and alpha rays from a Po-210 bipolar charger was shown to not only reduce the average charge on MS2 virion particles but also partially fragment the larger MS2 virion agglomerates, thereby increasing the number of ultrafine MS2 virion particles. A cylindrical electrostatic precipitator with a mounted soft X-ray emitter was used to determine the effectiveness of electrical capture methods for virus particles. At low applied voltages, it was found that the capture efficiency of ultrafine virus particles can be increased by applying in situ soft X-ray irradiation with electrostatic precipitation. It has also been shown that in the presence of both a positive and negative corona, virus particles are readily captured with log removal values exceeding 4. The unit developed and demonstrated in this work is a compact, low-pressure drop system that can be readily mounted in ventilation ducts or air supply systems to remove ultrafine particles such as viruses.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0278-6826
A02 01      @0 ASTYDQ
A03   1    @0 Aerosol sci. tech.
A05       @2 38
A06       @2 5
A08 01  1  ENG  @1 Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics
A11 01  1    @1 HOGAN (Christopher J. JR)
A11 02  1    @1 LEE (Myong-Hwa)
A11 03  1    @1 BISWAS (Pratim)
A14 01      @1 Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis @2 St. Louis, Missouri @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Department of Biological & Environmental Engineering, Cornell University @2 Ithaca, New York @3 USA @Z 1 aut.
A20       @1 475-486
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 19986 @5 354000110532130070
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 26 ref.
A47 01  1    @0 04-0419697
A60       @1 P
A61       @0 A
A64 01  1    @0 Aerosol science and technology
A66 01      @0 GBR
C01 01    ENG  @0 The charge distribution of airborne MS2 bacteriophage nanoparticles and the efficiency of electrical-mobility-based capture mechanisms with bipolar charging were studied. MS2 virions form large agglomerated particles in a suspension. The average charge on airborne MS2 virions can be as high as one unit charge (negatively charged). The application of both soft X-ray irradiation and alpha rays from a Po-210 bipolar charger was shown to not only reduce the average charge on MS2 virion particles but also partially fragment the larger MS2 virion agglomerates, thereby increasing the number of ultrafine MS2 virion particles. A cylindrical electrostatic precipitator with a mounted soft X-ray emitter was used to determine the effectiveness of electrical capture methods for virus particles. At low applied voltages, it was found that the capture efficiency of ultrafine virus particles can be increased by applying in situ soft X-ray irradiation with electrostatic precipitation. It has also been shown that in the presence of both a positive and negative corona, virus particles are readily captured with log removal values exceeding 4. The unit developed and demonstrated in this work is a compact, low-pressure drop system that can be readily mounted in ventilation ducts or air supply systems to remove ultrafine particles such as viruses.
C02 01  X    @0 001C01J06
C03 01  X  FRE  @0 Capture @5 01
C03 01  X  ENG  @0 Capture @5 01
C03 01  X  SPA  @0 Captura @5 01
C03 02  X  FRE  @0 Particule @2 FX @5 02
C03 02  X  ENG  @0 Particle @2 FX @5 02
C03 02  X  SPA  @0 Partícula @2 FX @5 02
C03 03  X  FRE  @0 Rayon X mou @5 03
C03 03  X  ENG  @0 Soft X ray @5 03
C03 03  X  SPA  @0 Rayo X blando @5 03
C03 04  X  FRE  @0 Distribution @5 04
C03 04  X  ENG  @0 Distribution @5 04
C03 04  X  SPA  @0 Distribución @5 04
C03 05  X  FRE  @0 Propriété transport @5 05
C03 05  X  ENG  @0 Transport properties @5 05
C03 05  X  SPA  @0 Propiedad transporte @5 05
C03 06  X  FRE  @0 Nanoparticule @5 06
C03 06  X  ENG  @0 Nanoparticle @5 06
C03 06  X  SPA  @0 Nanopartícula @5 06
C03 07  X  FRE  @0 Bactériophage @2 NW @5 07
C03 07  X  ENG  @0 Phage @2 NW @5 07
C03 07  X  SPA  @0 Phage @2 NW @5 07
C07 01  X  FRE  @0 Virus @2 NW
C07 01  X  ENG  @0 Virus @2 NW
C07 01  X  SPA  @0 Virus @2 NW
N21       @1 236
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 04-0419697 INIST
ET : Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics
AU : HOGAN (Christopher J. JR); LEE (Myong-Hwa); BISWAS (Pratim)
AF : Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis/St. Louis, Missouri/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Biological & Environmental Engineering, Cornell University/Ithaca, New York/Etats-Unis (1 aut.)
DT : Publication en série; Niveau analytique
SO : Aerosol science and technology; ISSN 0278-6826; Coden ASTYDQ; Royaume-Uni; Da. 2004; Vol. 38; No. 5; Pp. 475-486; Bibl. 26 ref.
LA : Anglais
EA : The charge distribution of airborne MS2 bacteriophage nanoparticles and the efficiency of electrical-mobility-based capture mechanisms with bipolar charging were studied. MS2 virions form large agglomerated particles in a suspension. The average charge on airborne MS2 virions can be as high as one unit charge (negatively charged). The application of both soft X-ray irradiation and alpha rays from a Po-210 bipolar charger was shown to not only reduce the average charge on MS2 virion particles but also partially fragment the larger MS2 virion agglomerates, thereby increasing the number of ultrafine MS2 virion particles. A cylindrical electrostatic precipitator with a mounted soft X-ray emitter was used to determine the effectiveness of electrical capture methods for virus particles. At low applied voltages, it was found that the capture efficiency of ultrafine virus particles can be increased by applying in situ soft X-ray irradiation with electrostatic precipitation. It has also been shown that in the presence of both a positive and negative corona, virus particles are readily captured with log removal values exceeding 4. The unit developed and demonstrated in this work is a compact, low-pressure drop system that can be readily mounted in ventilation ducts or air supply systems to remove ultrafine particles such as viruses.
CC : 001C01J06
FD : Capture; Particule; Rayon X mou; Distribution; Propriété transport; Nanoparticule; Bactériophage
FG : Virus
ED : Capture; Particle; Soft X ray; Distribution; Transport properties; Nanoparticle; Phage
EG : Virus
SD : Captura; Partícula; Rayo X blando; Distribución; Propiedad transporte; Nanopartícula; Phage
LO : INIST-19986.354000110532130070
ID : 04-0419697

Links to Exploration step

Pascal:04-0419697

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics</title>
<author>
<name sortKey="Hogan, Christopher J Jr" sort="Hogan, Christopher J Jr" uniqKey="Hogan C" first="Christopher J. Jr" last="Hogan">Christopher J. Jr Hogan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological & Environmental Engineering, Cornell University</s1>
<s2>Ithaca, New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lee, Myong Hwa" sort="Lee, Myong Hwa" uniqKey="Lee M" first="Myong-Hwa" last="Lee">Myong-Hwa Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Biswas, Pratim" sort="Biswas, Pratim" uniqKey="Biswas P" first="Pratim" last="Biswas">Pratim Biswas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0419697</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0419697 INIST</idno>
<idno type="RBID">Pascal:04-0419697</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000054</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics</title>
<author>
<name sortKey="Hogan, Christopher J Jr" sort="Hogan, Christopher J Jr" uniqKey="Hogan C" first="Christopher J. Jr" last="Hogan">Christopher J. Jr Hogan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological & Environmental Engineering, Cornell University</s1>
<s2>Ithaca, New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lee, Myong Hwa" sort="Lee, Myong Hwa" uniqKey="Lee M" first="Myong-Hwa" last="Lee">Myong-Hwa Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Biswas, Pratim" sort="Biswas, Pratim" uniqKey="Biswas P" first="Pratim" last="Biswas">Pratim Biswas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Aerosol science and technology</title>
<title level="j" type="abbreviated">Aerosol sci. tech.</title>
<idno type="ISSN">0278-6826</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Aerosol science and technology</title>
<title level="j" type="abbreviated">Aerosol sci. tech.</title>
<idno type="ISSN">0278-6826</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Capture</term>
<term>Distribution</term>
<term>Nanoparticle</term>
<term>Particle</term>
<term>Phage</term>
<term>Soft X ray</term>
<term>Transport properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Capture</term>
<term>Particule</term>
<term>Rayon X mou</term>
<term>Distribution</term>
<term>Propriété transport</term>
<term>Nanoparticule</term>
<term>Bactériophage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The charge distribution of airborne MS2 bacteriophage nanoparticles and the efficiency of electrical-mobility-based capture mechanisms with bipolar charging were studied. MS2 virions form large agglomerated particles in a suspension. The average charge on airborne MS2 virions can be as high as one unit charge (negatively charged). The application of both soft X-ray irradiation and alpha rays from a Po-210 bipolar charger was shown to not only reduce the average charge on MS2 virion particles but also partially fragment the larger MS2 virion agglomerates, thereby increasing the number of ultrafine MS2 virion particles. A cylindrical electrostatic precipitator with a mounted soft X-ray emitter was used to determine the effectiveness of electrical capture methods for virus particles. At low applied voltages, it was found that the capture efficiency of ultrafine virus particles can be increased by applying in situ soft X-ray irradiation with electrostatic precipitation. It has also been shown that in the presence of both a positive and negative corona, virus particles are readily captured with log removal values exceeding 4. The unit developed and demonstrated in this work is a compact, low-pressure drop system that can be readily mounted in ventilation ducts or air supply systems to remove ultrafine particles such as viruses.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0278-6826</s0>
</fA01>
<fA02 i1="01">
<s0>ASTYDQ</s0>
</fA02>
<fA03 i2="1">
<s0>Aerosol sci. tech.</s0>
</fA03>
<fA05>
<s2>38</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HOGAN (Christopher J. JR)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LEE (Myong-Hwa)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BISWAS (Pratim)</s1>
</fA11>
<fA14 i1="01">
<s1>Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis</s1>
<s2>St. Louis, Missouri</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Biological & Environmental Engineering, Cornell University</s1>
<s2>Ithaca, New York</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>475-486</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19986</s2>
<s5>354000110532130070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0419697</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Aerosol science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The charge distribution of airborne MS2 bacteriophage nanoparticles and the efficiency of electrical-mobility-based capture mechanisms with bipolar charging were studied. MS2 virions form large agglomerated particles in a suspension. The average charge on airborne MS2 virions can be as high as one unit charge (negatively charged). The application of both soft X-ray irradiation and alpha rays from a Po-210 bipolar charger was shown to not only reduce the average charge on MS2 virion particles but also partially fragment the larger MS2 virion agglomerates, thereby increasing the number of ultrafine MS2 virion particles. A cylindrical electrostatic precipitator with a mounted soft X-ray emitter was used to determine the effectiveness of electrical capture methods for virus particles. At low applied voltages, it was found that the capture efficiency of ultrafine virus particles can be increased by applying in situ soft X-ray irradiation with electrostatic precipitation. It has also been shown that in the presence of both a positive and negative corona, virus particles are readily captured with log removal values exceeding 4. The unit developed and demonstrated in this work is a compact, low-pressure drop system that can be readily mounted in ventilation ducts or air supply systems to remove ultrafine particles such as viruses.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01J06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Capture</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Capture</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Captura</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Particule</s0>
<s2>FX</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Particle</s0>
<s2>FX</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Partícula</s0>
<s2>FX</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Rayon X mou</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Soft X ray</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Rayo X blando</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Distribution</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Distribution</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Distribución</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Propriété transport</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Transport properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Propiedad transporte</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Bactériophage</s0>
<s2>NW</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Phage</s0>
<s2>NW</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Phage</s0>
<s2>NW</s2>
<s5>07</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fN21>
<s1>236</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0419697 INIST</NO>
<ET>Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics</ET>
<AU>HOGAN (Christopher J. JR); LEE (Myong-Hwa); BISWAS (Pratim)</AU>
<AF>Aerosol and Air Quality Research Laboratory, Environmental Engineering Science, Washington University in St. Louis/St. Louis, Missouri/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Biological & Environmental Engineering, Cornell University/Ithaca, New York/Etats-Unis (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Aerosol science and technology; ISSN 0278-6826; Coden ASTYDQ; Royaume-Uni; Da. 2004; Vol. 38; No. 5; Pp. 475-486; Bibl. 26 ref.</SO>
<LA>Anglais</LA>
<EA>The charge distribution of airborne MS2 bacteriophage nanoparticles and the efficiency of electrical-mobility-based capture mechanisms with bipolar charging were studied. MS2 virions form large agglomerated particles in a suspension. The average charge on airborne MS2 virions can be as high as one unit charge (negatively charged). The application of both soft X-ray irradiation and alpha rays from a Po-210 bipolar charger was shown to not only reduce the average charge on MS2 virion particles but also partially fragment the larger MS2 virion agglomerates, thereby increasing the number of ultrafine MS2 virion particles. A cylindrical electrostatic precipitator with a mounted soft X-ray emitter was used to determine the effectiveness of electrical capture methods for virus particles. At low applied voltages, it was found that the capture efficiency of ultrafine virus particles can be increased by applying in situ soft X-ray irradiation with electrostatic precipitation. It has also been shown that in the presence of both a positive and negative corona, virus particles are readily captured with log removal values exceeding 4. The unit developed and demonstrated in this work is a compact, low-pressure drop system that can be readily mounted in ventilation ducts or air supply systems to remove ultrafine particles such as viruses.</EA>
<CC>001C01J06</CC>
<FD>Capture; Particule; Rayon X mou; Distribution; Propriété transport; Nanoparticule; Bactériophage</FD>
<FG>Virus</FG>
<ED>Capture; Particle; Soft X ray; Distribution; Transport properties; Nanoparticle; Phage</ED>
<EG>Virus</EG>
<SD>Captura; Partícula; Rayo X blando; Distribución; Propiedad transporte; Nanopartícula; Phage</SD>
<LO>INIST-19986.354000110532130070</LO>
<ID>04-0419697</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0419697
   |texte=   Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021