Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease†

Identifieur interne : 000830 ( Istex/Corpus ); précédent : 000829; suivant : 000831

Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease†

Auteurs : Chi-Yuan Chou ; Hui-Chuan Chang ; Wen-Chi Hsu ; Tien-Zheng Lin ; Chao-Hsiung Lin ; Gu-Gang Chang

Source :

RBID : ISTEX:2B9EEC83F5D7BDF7B8EA6A12CB2FC2F6D641D3E4

Abstract

SARS (severe acute respiratory syndrome) has been one of the most severe viral infectious diseases last year and still remains as a highly risky public health problem around the world. Exploring the types of interactions responsible for structural stabilities of its component protein molecules constitutes one of the approaches to find a destabilization method for the virion particle. In this study, we performed a series of experiments to characterize the quaternary structure of the dimeric coronavirus main protease (Mpro, 3CLpro). By using the analytical ultracentrifuge, we demonstrated that the dimeric SARS coronavirus main protease exists as the major form in solution at protein concentration as low as 0.10 mg/mL at neutral pH. The enzyme started to dissociate at acidic and alkali pH values. Ionic strength has profound effect on the dimer stability indicating that the major force involved in the subunit association is ionic interactions. The effect of ionic strength on the protease molecule was reflected by the drastic change of electrostatic potential contour of the enzyme in the presence of NaCl. Analysis of the crystal structures indicated that the interfacial ionic interaction was attributed to the Arg-4···Glu-290 ion pair between the subunits. Detailed examination of the dimer−monomer equilibrium at different pH values reveals apparent pKa values of 8.0 ± 0.2 and 5.0 ± 0.1 for the Arg-4 and Glu-290, respectively. Mutation at these two positions reduces the association affinity between subunits, and the Glu-290 mutants had diminished enzyme activity. This information is useful in searching for substances that can intervene in the subunit association, which is attractive as a target to neutralize the virulence of SARS coronavirus.

Url:
DOI: 10.1021/bi0490237

Links to Exploration step

ISTEX:2B9EEC83F5D7BDF7B8EA6A12CB2FC2F6D641D3E4

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease†</title>
<author>
<name sortKey="Chou, Chi Yuan" sort="Chou, Chi Yuan" uniqKey="Chou C" first="Chi-Yuan" last="Chou">Chi-Yuan Chou</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Defense Medical Center.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, Hui Chuan" sort="Chang, Hui Chuan" uniqKey="Chang H" first="Hui-Chuan" last="Chang">Hui-Chuan Chang</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Wen Chi" sort="Hsu, Wen Chi" uniqKey="Hsu W" first="Wen-Chi" last="Hsu">Wen-Chi Hsu</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Tien Zheng" sort="Lin, Tien Zheng" uniqKey="Lin T" first="Tien-Zheng" last="Lin">Tien-Zheng Lin</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Chao Hsiung" sort="Lin, Chao Hsiung" uniqKey="Lin C" first="Chao-Hsiung" last="Lin">Chao-Hsiung Lin</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, Gu Gang" sort="Chang, Gu Gang" uniqKey="Chang G" first="Gu-Gang" last="Chang">Gu-Gang Chang</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Tel:  886-2-2820-1854. Fax:  886-2-2820-1886. E-mail:  ggchang@ym.edu.tw.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2B9EEC83F5D7BDF7B8EA6A12CB2FC2F6D641D3E4</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1021/bi0490237</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-LPM5R260-9/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000830</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000830</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease
<ref type="bib" target="#bi0490237AF2"></ref>
</title>
<author>
<name sortKey="Chou, Chi Yuan" sort="Chou, Chi Yuan" uniqKey="Chou C" first="Chi-Yuan" last="Chou">Chi-Yuan Chou</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Defense Medical Center.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, Hui Chuan" sort="Chang, Hui Chuan" uniqKey="Chang H" first="Hui-Chuan" last="Chang">Hui-Chuan Chang</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Wen Chi" sort="Hsu, Wen Chi" uniqKey="Hsu W" first="Wen-Chi" last="Hsu">Wen-Chi Hsu</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Tien Zheng" sort="Lin, Tien Zheng" uniqKey="Lin T" first="Tien-Zheng" last="Lin">Tien-Zheng Lin</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Chao Hsiung" sort="Lin, Chao Hsiung" uniqKey="Lin C" first="Chao-Hsiung" last="Lin">Chao-Hsiung Lin</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, Gu Gang" sort="Chang, Gu Gang" uniqKey="Chang G" first="Gu-Gang" last="Chang">Gu-Gang Chang</name>
<affiliation>
<mods:affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> National Yang-Ming University.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Tel:  886-2-2820-1854. Fax:  886-2-2820-1886. E-mail:  ggchang@ym.edu.tw.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published" when="2004-10-30">2004</date>
<date when="2004-11-30">2004</date>
<biblScope unit="vol">43</biblScope>
<biblScope unit="issue">47</biblScope>
<biblScope unit="page" from="14958">14958</biblScope>
<biblScope unit="page" to="14970">14970</biblScope>
</imprint>
<idno type="ISSN">0006-2960</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-2960</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">SARS (severe acute respiratory syndrome) has been one of the most severe viral infectious diseases last year and still remains as a highly risky public health problem around the world. Exploring the types of interactions responsible for structural stabilities of its component protein molecules constitutes one of the approaches to find a destabilization method for the virion particle. In this study, we performed a series of experiments to characterize the quaternary structure of the dimeric coronavirus main protease (Mpro, 3CLpro). By using the analytical ultracentrifuge, we demonstrated that the dimeric SARS coronavirus main protease exists as the major form in solution at protein concentration as low as 0.10 mg/mL at neutral pH. The enzyme started to dissociate at acidic and alkali pH values. Ionic strength has profound effect on the dimer stability indicating that the major force involved in the subunit association is ionic interactions. The effect of ionic strength on the protease molecule was reflected by the drastic change of electrostatic potential contour of the enzyme in the presence of NaCl. Analysis of the crystal structures indicated that the interfacial ionic interaction was attributed to the Arg-4···Glu-290 ion pair between the subunits. Detailed examination of the dimer−monomer equilibrium at different pH values reveals apparent pKa values of 8.0 ± 0.2 and 5.0 ± 0.1 for the Arg-4 and Glu-290, respectively. Mutation at these two positions reduces the association affinity between subunits, and the Glu-290 mutants had diminished enzyme activity. This information is useful in searching for substances that can intervene in the subunit association, which is attractive as a target to neutralize the virulence of SARS coronavirus.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>protease</json:string>
<json:string>main protease</json:string>
<json:string>mutant</json:string>
<json:string>subunit</json:string>
<json:string>coronavirus</json:string>
<json:string>sars</json:string>
<json:string>biochemistry</json:string>
<json:string>quaternary</json:string>
<json:string>recombinant</json:string>
<json:string>nacl</json:string>
<json:string>dimer</json:string>
<json:string>3clc</json:string>
<json:string>quaternary structure</json:string>
<json:string>dimeric</json:string>
<json:string>viral</json:string>
<json:string>datum</json:string>
<json:string>protein concentration</json:string>
<json:string>recombinant main protease</json:string>
<json:string>biol</json:string>
<json:string>experimental datum</json:string>
<json:string>mutation</json:string>
<json:string>ionic strength</json:string>
<json:string>enzymatic activity</json:string>
<json:string>chem</json:string>
<json:string>severe acute respiratory syndrome</json:string>
<json:string>crystal structure</json:string>
<json:string>dissociation constant</json:string>
<json:string>sedimentation velocity experiment</json:string>
<json:string>peptide</json:string>
<json:string>enzyme activity</json:string>
<json:string>biochem</json:string>
<json:string>proteinase</json:string>
<json:string>absorbance</json:string>
<json:string>primer</json:string>
<json:string>fluorogenic</json:string>
<json:string>ionic interaction</json:string>
<json:string>double mutant</json:string>
<json:string>sedimentation</json:string>
<json:string>assay</json:string>
<json:string>enzyme</json:string>
<json:string>subunit association</json:string>
<json:string>reaction mixture</json:string>
<json:string>sars main protease</json:string>
<json:string>dimeric main protease</json:string>
<json:string>enzyme solution</json:string>
<json:string>peptide substrate</json:string>
<json:string>sedphat program</json:string>
<json:string>molar</json:string>
<json:string>national university</json:string>
<json:string>molar mass</json:string>
<json:string>sars coronavirus</json:string>
<json:string>recombinant sarscov main protease</json:string>
<json:string>analytical ultracentrifugation</json:string>
<json:string>hydrophobic interaction</json:string>
<json:string>analytical chromatography</json:string>
<json:string>analytical ultracentrifuge</json:string>
<json:string>salt bridge</json:string>
<json:string>single mutant</json:string>
<json:string>amino</json:string>
<json:string>residual</json:string>
<json:string>hydrogen bond</json:string>
<json:string>viral protease</json:string>
<json:string>fluorescence emission spectrum</json:string>
<json:string>subunit interfacial region</json:string>
<json:string>dimer formation</json:string>
<json:string>coronavirus main proteinase</json:string>
<json:string>coronavirus main protease</json:string>
<json:string>human cytomegalovirus protease</json:string>
<json:string>fluorogenic substrate</json:string>
<json:string>protease molecule</json:string>
<json:string>enzyme amount</json:string>
<json:string>peptide cleavage</json:string>
<json:string>grid point</json:string>
<json:string>amino acid sequence</json:string>
<json:string>various condition</json:string>
<json:string>dissociation</json:string>
<json:string>monomer</json:string>
<json:string>syndrome</json:string>
<json:string>cleavage</json:string>
<json:string>interface</json:string>
<json:string>chou</json:string>
<json:string>side chain</json:string>
<json:string>extinction coefficient</json:string>
<json:string>yellow circle</json:string>
<json:string>amersham biotech purifier system</json:string>
<json:string>column preequilibrated</json:string>
<json:string>long loop</json:string>
<json:string>protonation site</json:string>
<json:string>genome research center</json:string>
<json:string>elution buffer</json:string>
<json:string>structural domain</json:string>
<json:string>fluorescence analysis</json:string>
<json:string>phosphate buffer</json:string>
<json:string>domain mutant</json:string>
<json:string>surface model</json:string>
<json:string>luminescence spectrometer</json:string>
<json:string>cleavage reaction</json:string>
<json:string>electrostatic potential</json:string>
<json:string>analytical ultracentrifugation analysis</json:string>
<json:string>circular dichroism</json:string>
<json:string>subunit interface</json:string>
<json:string>polymerase chain reaction</json:string>
<json:string>main protease vector</json:string>
<json:string>viral protein</json:string>
<json:string>buffer solution</json:string>
<json:string>sedimentation coefficient</json:string>
<json:string>continuous sedimentation coefficient distribution</json:string>
<json:string>continuous molar mass distribution</json:string>
<json:string>nacl concentration</json:string>
<json:string>typical trace</json:string>
<json:string>dimer stability</json:string>
<json:string>model fitting</json:string>
<json:string>sedimentation coefficient distribution</json:string>
<json:string>same condition</json:string>
<json:string>pair mutation</json:string>
<json:string>fitting residual</json:string>
<json:string>structural stability</json:string>
<json:string>national defense medical center</json:string>
<json:string>various protein concentration</json:string>
<json:string>fluorescence enhancement</json:string>
<json:string>initial velocity</json:string>
<json:string>reliable kinetic parameter</json:string>
<json:string>sedimentation experiment</json:string>
<json:string>standard condition</json:string>
<json:string>pure water</json:string>
<json:string>standard error</json:string>
<json:string>protein quaternary structure</json:string>
<json:string>equation similar</json:string>
<json:string>enzymatically inactive</json:string>
<json:string>dimeric structure</json:string>
<json:string>other hand</json:string>
<json:string>subunit interaction</json:string>
<json:string>binding energy</json:string>
<json:string>large standard error</json:string>
<json:string>large dissociation constant</json:string>
<json:string>electrostatic interaction</json:string>
<json:string>electrostatic complementarity</json:string>
<json:string>solvation energy</json:string>
<json:string>novel coronavirus</json:string>
<json:string>life science</json:string>
<json:string>dimeric enzyme</json:string>
<json:string>global fitting</json:string>
<json:string>main protease biochemistry</json:string>
<json:string>sedimentation datum</json:string>
<json:string>extra domain</json:string>
<json:string>method enzymol</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>CHOU Chi-Yuan</name>
<affiliations>
<json:string>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</json:string>
<json:string>National Defense Medical Center.</json:string>
</affiliations>
</json:item>
<json:item>
<name>CHANG Hui-Chuan</name>
<affiliations>
<json:string>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</json:string>
<json:string>National Yang-Ming University.</json:string>
</affiliations>
</json:item>
<json:item>
<name>HSU Wen-Chi</name>
<affiliations>
<json:string>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</json:string>
<json:string>National Yang-Ming University.</json:string>
</affiliations>
</json:item>
<json:item>
<name>LIN Tien-Zheng</name>
<affiliations>
<json:string>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</json:string>
<json:string>National Yang-Ming University.</json:string>
</affiliations>
</json:item>
<json:item>
<name>LIN Chao-Hsiung</name>
<affiliations>
<json:string>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</json:string>
<json:string>National Yang-Ming University.</json:string>
</affiliations>
</json:item>
<json:item>
<name>CHANG Gu-Gang</name>
<affiliations>
<json:string>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</json:string>
<json:string>National Yang-Ming University.</json:string>
<json:string>To whom correspondence should be addressed. Tel:  886-2-2820-1854. Fax:  886-2-2820-1886. E-mail:  ggchang@ym.edu.tw.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-LPM5R260-9</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>SARS (severe acute respiratory syndrome) has been one of the most severe viral infectious diseases last year and still remains as a highly risky public health problem around the world. Exploring the types of interactions responsible for structural stabilities of its component protein molecules constitutes one of the approaches to find a destabilization method for the virion particle. In this study, we performed a series of experiments to characterize the quaternary structure of the dimeric coronavirus main protease (Mpro, 3CLpro). By using the analytical ultracentrifuge, we demonstrated that the dimeric SARS coronavirus main protease exists as the major form in solution at protein concentration as low as 0.10 mg/mL at neutral pH. The enzyme started to dissociate at acidic and alkali pH values. Ionic strength has profound effect on the dimer stability indicating that the major force involved in the subunit association is ionic interactions. The effect of ionic strength on the protease molecule was reflected by the drastic change of electrostatic potential contour of the enzyme in the presence of NaCl. Analysis of the crystal structures indicated that the interfacial ionic interaction was attributed to the Arg-4···Glu-290 ion pair between the subunits. Detailed examination of the dimer−monomer equilibrium at different pH values reveals apparent pKa values of 8.0 ± 0.2 and 5.0 ± 0.1 for the Arg-4 and Glu-290, respectively. Mutation at these two positions reduces the association affinity between subunits, and the Glu-290 mutants had diminished enzyme activity. This information is useful in searching for substances that can intervene in the subunit association, which is attractive as a target to neutralize the virulence of SARS coronavirus.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>8466</pdfWordCount>
<pdfCharCount>51411</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>13</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>651</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>false</refBibsNative>
<abstractWordCount>268</abstractWordCount>
<abstractCharCount>1765</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease†</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0006-2960</json:string>
</issn>
<eissn>
<json:string>1520-4995</json:string>
</eissn>
<volume>43</volume>
<issue>47</issue>
<pages>
<first>14958</first>
<last>14970</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-LPM5R260-9</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1021/bi0490237</json:string>
</doi>
<id>2B9EEC83F5D7BDF7B8EA6A12CB2FC2F6D641D3E4</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LPM5R260-9/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LPM5R260-9/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LPM5R260-9/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-LPM5R260-9/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease†</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 2004 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="e-published" when="2004-10-30">2004</date>
<date when="2004-11-30">2004</date>
<date type="Copyright" when="2004">2004</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease
<ref type="bib" target="#bi0490237AF2"></ref>
</title>
<author xml:id="author-0000">
<persName>
<surname>Chou</surname>
<forename type="first">Chi-Yuan</forename>
</persName>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan </affiliation>
<note place="foot">
<ref></ref>
<p>  National Defense Medical Center.</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Chang</surname>
<forename type="first">Hui-Chuan</forename>
</persName>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan </affiliation>
<note place="foot">
<ref>§</ref>
<p>  National Yang-Ming University.</p>
</note>
</author>
<author xml:id="author-0002">
<persName>
<surname>Hsu</surname>
<forename type="first">Wen-Chi</forename>
</persName>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan </affiliation>
<note place="foot">
<ref>§</ref>
<p>  National Yang-Ming University.</p>
</note>
</author>
<author xml:id="author-0003">
<persName>
<surname>Lin</surname>
<forename type="first">Tien-Zheng</forename>
</persName>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan </affiliation>
<note place="foot">
<ref>§</ref>
<p>  National Yang-Ming University.</p>
</note>
</author>
<author xml:id="author-0004">
<persName>
<surname>Lin</surname>
<forename type="first">Chao-Hsiung</forename>
</persName>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan </affiliation>
<note place="foot">
<ref>§</ref>
<p>  National Yang-Ming University.</p>
</note>
</author>
<author xml:id="author-0005" role="corresp">
<persName>
<surname>Chang</surname>
<forename type="first">Gu-Gang</forename>
</persName>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan </affiliation>
<note place="foot">
<ref>§</ref>
<p>  National Yang-Ming University.</p>
</note>
<affiliation role="corresp"> To whom correspondence should be addressed. Tel:  886-2-2820-1854. Fax:  886-2-2820-1886. E-mail:  ggchang@ym.edu.tw.</affiliation>
</author>
<idno type="istex">2B9EEC83F5D7BDF7B8EA6A12CB2FC2F6D641D3E4</idno>
<idno type="ark">ark:/67375/TPS-LPM5R260-9</idno>
<idno type="DOI">10.1021/bi0490237</idno>
</analytic>
<monogr>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="acspubs">bi</idno>
<idno type="coden">bichaw</idno>
<idno type="pISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published" when="2004-10-30">2004</date>
<date when="2004-11-30">2004</date>
<biblScope unit="vol">43</biblScope>
<biblScope unit="issue">47</biblScope>
<biblScope unit="page" from="14958">14958</biblScope>
<biblScope unit="page" to="14970">14970</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract>
<graphic url="bi0490237n00001.tif"></graphic>
<p>SARS (severe acute respiratory syndrome) has been one of the most severe viral infectious diseases last year and still remains as a highly risky public health problem around the world. Exploring the types of interactions responsible for structural stabilities of its component protein molecules constitutes one of the approaches to find a destabilization method for the virion particle. In this study, we performed a series of experiments to characterize the quaternary structure of the dimeric coronavirus main protease (M
<hi rend="superscript">pro</hi>
, 3CL
<hi rend="superscript">pro</hi>
). By using the analytical ultracentrifuge, we demonstrated that the dimeric SARS coronavirus main protease exists as the major form in solution at protein concentration as low as 0.10 mg/mL at neutral pH. The enzyme started to dissociate at acidic and alkali pH values. Ionic strength has profound effect on the dimer stability indicating that the major force involved in the subunit association is ionic interactions. The effect of ionic strength on the protease molecule was reflected by the drastic change of electrostatic potential contour of the enzyme in the presence of NaCl. Analysis of the crystal structures indicated that the interfacial ionic interaction was attributed to the Arg-4···Glu-290 ion pair between the subunits. Detailed examination of the dimer−monomer equilibrium at different pH values reveals apparent p
<hi rend="italic">K</hi>
<hi rend="subscript">a</hi>
values of 8.0 ± 0.2 and 5.0 ± 0.1 for the Arg-4 and Glu-290, respectively. Mutation at these two positions reduces the association affinity between subunits, and the Glu-290 mutants had diminished enzyme activity. This information is useful in searching for substances that can intervene in the subunit association, which is attractive as a target to neutralize the virulence of SARS coronavirus. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="zxx"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2019-08-1">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-2.0.3">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bi</journal-id>
<journal-id journal-id-type="coden">bichaw</journal-id>
<journal-title-group>
<journal-title>Biochemistry</journal-title>
<abbrev-journal-title>Biochemistry</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-2960</issn>
<issn pub-type="epub">1520-4995</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/biochemistry</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bi0490237</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease
<xref rid="bi0490237AF2"></xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Chou</surname>
<given-names>Chi-Yuan</given-names>
</name>
<xref rid="bi0490237AF3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chang</surname>
<given-names>Hui-Chuan</given-names>
</name>
<xref rid="bi0490237AF4">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hsu</surname>
<given-names>Wen-Chi</given-names>
</name>
<xref rid="bi0490237AF4">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lin</surname>
<given-names>Tien-Zheng</given-names>
</name>
<xref rid="bi0490237AF4">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lin</surname>
<given-names>Chao-Hsiung</given-names>
</name>
<xref rid="bi0490237AF4">§</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Chang</surname>
<given-names>Gu-Gang</given-names>
</name>
<xref rid="bi0490237AF1">*</xref>
<xref rid="bi0490237AF4">§</xref>
</contrib>
<aff>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan </aff>
</contrib-group>
<author-notes>
<fn id="bi0490237AF3">
<label></label>
<p>  National Defense Medical Center.</p>
</fn>
<fn id="bi0490237AF4">
<label>§</label>
<p>  National Yang-Ming University.</p>
</fn>
<corresp id="bi0490237AF1">  To whom correspondence should be addressed. Tel:  886-2-2820-1854. Fax:  886-2-2820-1886. E-mail:  ggchang@ym.edu.tw.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>30</day>
<month>10</month>
<year>2004</year>
</pub-date>
<pub-date pub-type="ppub">
<day>30</day>
<month>11</month>
<year>2004</year>
</pub-date>
<volume>43</volume>
<issue>47</issue>
<fpage>14958</fpage>
<lpage>14970</lpage>
<history>
<date date-type="received">
<day>14</day>
<month>05</month>
<year>2004</year>
</date>
<date date-type="rev-recd">
<day>11</day>
<month>09</month>
<year>2004</year>
</date>
<date date-type="asap">
<day>30</day>
<month>10</month>
<year>2004</year>
</date>
<date date-type="issue-pub">
<day>30</day>
<month>11</month>
<year>2004</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2004 American Chemical Society</copyright-statement>
<copyright-year>2004</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<graphic content-type="abstract-graphic" xlink:href="bi0490237n00001.tif"></graphic>
<p>SARS (severe acute respiratory syndrome) has been one of the most severe viral infectious diseases last year and still remains as a highly risky public health problem around the world. Exploring the types of interactions responsible for structural stabilities of its component protein molecules constitutes one of the approaches to find a destabilization method for the virion particle. In this study, we performed a series of experiments to characterize the quaternary structure of the dimeric coronavirus main protease (M
<sup>pro</sup>
, 3CL
<sup>pro</sup>
). By using the analytical ultracentrifuge, we demonstrated that the dimeric SARS coronavirus main protease exists as the major form in solution at protein concentration as low as 0.10 mg/mL at neutral pH. The enzyme started to dissociate at acidic and alkali pH values. Ionic strength has profound effect on the dimer stability indicating that the major force involved in the subunit association is ionic interactions. The effect of ionic strength on the protease molecule was reflected by the drastic change of electrostatic potential contour of the enzyme in the presence of NaCl. Analysis of the crystal structures indicated that the interfacial ionic interaction was attributed to the Arg-4···Glu-290 ion pair between the subunits. Detailed examination of the dimer−monomer equilibrium at different pH values reveals apparent p
<italic>K</italic>
<sub>a</sub>
values of 8.0 ± 0.2 and 5.0 ± 0.1 for the Arg-4 and Glu-290, respectively. Mutation at these two positions reduces the association affinity between subunits, and the Glu-290 mutants had diminished enzyme activity. This information is useful in searching for substances that can intervene in the subunit association, which is attractive as a target to neutralize the virulence of SARS coronavirus. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bi0490237</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="bi0490237AF2">
<label></label>
<p>  This work was supported by the National Science Council, ROC (SARS Project, Grant NSC 92-2751-B-010-004-Y).</p>
</notes>
</front>
<body></body>
<back></back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease†</title>
</titleInfo>
<name type="personal">
<namePart type="family">CHOU</namePart>
<namePart type="given">Chi-Yuan</namePart>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</affiliation>
<affiliation> National Defense Medical Center.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">CHANG</namePart>
<namePart type="given">Hui-Chuan</namePart>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</affiliation>
<affiliation> National Yang-Ming University.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">HSU</namePart>
<namePart type="given">Wen-Chi</namePart>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</affiliation>
<affiliation> National Yang-Ming University.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">LIN</namePart>
<namePart type="given">Tien-Zheng</namePart>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</affiliation>
<affiliation> National Yang-Ming University.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">LIN</namePart>
<namePart type="given">Chao-Hsiung</namePart>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</affiliation>
<affiliation> National Yang-Ming University.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">CHANG</namePart>
<namePart type="given">Gu-Gang</namePart>
<affiliation>Graduate Institute of Life Sciences, National Defense Medical Center, and Faculty of Life Sciences, Institute of Biochemistry,Structural Biology Program, and Proteome Research Center, National Yang-Ming University, Taipei, Taiwan</affiliation>
<affiliation> National Yang-Ming University.</affiliation>
<affiliation> To whom correspondence should be addressed. Tel:  886-2-2820-1854. Fax:  886-2-2820-1886. E-mail:  ggchang@ym.edu.tw.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">2004-10-30</dateCreated>
<dateIssued encoding="w3cdtf">2004-11-30</dateIssued>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<note type="footnote" ID="bi0490237AF2"> This work was supported by the National Science Council, ROC (SARS Project, Grant NSC 92-2751-B-010-004-Y).</note>
<abstract>SARS (severe acute respiratory syndrome) has been one of the most severe viral infectious diseases last year and still remains as a highly risky public health problem around the world. Exploring the types of interactions responsible for structural stabilities of its component protein molecules constitutes one of the approaches to find a destabilization method for the virion particle. In this study, we performed a series of experiments to characterize the quaternary structure of the dimeric coronavirus main protease (Mpro, 3CLpro). By using the analytical ultracentrifuge, we demonstrated that the dimeric SARS coronavirus main protease exists as the major form in solution at protein concentration as low as 0.10 mg/mL at neutral pH. The enzyme started to dissociate at acidic and alkali pH values. Ionic strength has profound effect on the dimer stability indicating that the major force involved in the subunit association is ionic interactions. The effect of ionic strength on the protease molecule was reflected by the drastic change of electrostatic potential contour of the enzyme in the presence of NaCl. Analysis of the crystal structures indicated that the interfacial ionic interaction was attributed to the Arg-4···Glu-290 ion pair between the subunits. Detailed examination of the dimer−monomer equilibrium at different pH values reveals apparent pKa values of 8.0 ± 0.2 and 5.0 ± 0.1 for the Arg-4 and Glu-290, respectively. Mutation at these two positions reduces the association affinity between subunits, and the Glu-290 mutants had diminished enzyme activity. This information is useful in searching for substances that can intervene in the subunit association, which is attractive as a target to neutralize the virulence of SARS coronavirus.</abstract>
<note type="footnote" ID="bi0490237AF2"> This work was supported by the National Science Council, ROC (SARS Project, Grant NSC 92-2751-B-010-004-Y).</note>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biochemistry</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0006-2960</identifier>
<identifier type="eISSN">1520-4995</identifier>
<identifier type="acspubs">bi</identifier>
<identifier type="coden">BICHAW</identifier>
<identifier type="uri">pubs.acs.org/biochemistry</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>43</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>47</number>
</detail>
<extent unit="pages">
<start>14958</start>
<end>14970</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">2B9EEC83F5D7BDF7B8EA6A12CB2FC2F6D641D3E4</identifier>
<identifier type="ark">ark:/67375/TPS-LPM5R260-9</identifier>
<identifier type="DOI">10.1021/bi0490237</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 2004 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">ACS</recordContentSource>
<recordOrigin>Copyright © 2004 American Chemical Society</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LPM5R260-9/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/2B9EEC83F5D7BDF7B8EA6A12CB2FC2F6D641D3E4/annexes/tiff</uri>
</json:item>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LPM5R260-9/annexes.gif</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000830 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000830 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2B9EEC83F5D7BDF7B8EA6A12CB2FC2F6D641D3E4
   |texte=   Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021