Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels

Identifieur interne : 000770 ( Istex/Corpus ); précédent : 000769; suivant : 000771

Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels

Auteurs : Catherine A. Goubko ; Ajoy Basak ; Swapan Majumdar ; Xudong Cao

Source :

RBID : ISTEX:E655C4EFDAFDA71A2944805784B27A8FAA75D475

Abstract

Techniques to pattern cells on biocompatible hydrogels allow for the creation of highly controlled cell microenvironments within materials that mimic the physicochemical properties of native tissues. Such technology has the potential to further enhance our knowledge of cell biology and to play a role in the development of novel tissue engineering devices. Light is an ideal stimulus to catalyze pattern formation since it can be controlled spatially as well as temporally. Herein, we have developed and enhanced a hydrogel cell patterning strategy. It is based on photoactive caged RGDS peptides incorporated into a hyaluronic acid (HA) hydrogel, which can be subsequently activated with near‐UV light to create cell‐adhesive regions within an otherwise non‐adhesive hydrogel. With this strategy, we have been able to pattern multiple cell populations—either in contact with one another or held apart—on an underlying chemically patterned HA hydrogel. Furthermore, the hydrogel cell pattern could be altered with time, even 2 weeks after initial seeding, to create additional adhesive regions to regulate the direction of cell growth and migration. These dynamic hydrogel cell patterns, created with a standard fluorescence microscope, were shown to be robust and lasted at least 3 weeks in vitro. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 381–391, 2014.

Url:
DOI: 10.1002/jbm.a.34712

Links to Exploration step

ISTEX:E655C4EFDAFDA71A2944805784B27A8FAA75D475

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels</title>
<author>
<name sortKey="Goubko, Catherine A" sort="Goubko, Catherine A" uniqKey="Goubko C" first="Catherine A." last="Goubko">Catherine A. Goubko</name>
<affiliation>
<mods:affiliation>Department of Chemical and Biological Engineering, University of Ottawa, Ontario, K1N 6N5, Ottawa, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Basak, Ajoy" sort="Basak, Ajoy" uniqKey="Basak A" first="Ajoy" last="Basak">Ajoy Basak</name>
<affiliation>
<mods:affiliation>Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program, The Ottawa Hospital, University of Ottawa, 725 Parkdale Avenue, Ontario, K1Y 4Y9, Ottawa, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Majumdar, Swapan" sort="Majumdar, Swapan" uniqKey="Majumdar S" first="Swapan" last="Majumdar">Swapan Majumdar</name>
<affiliation>
<mods:affiliation>Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program, The Ottawa Hospital, University of Ottawa, 725 Parkdale Avenue, Ontario, K1Y 4Y9, Ottawa, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cao, Xudong" sort="Cao, Xudong" uniqKey="Cao X" first="Xudong" last="Cao">Xudong Cao</name>
<affiliation>
<mods:affiliation>Department of Chemical and Biological Engineering, University of Ottawa, K1N 6N5, Ottawa, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Ottawa‐Carleton Institute for Biomedical Engineering, University of Ottawa, Ontario, K1N 6N5, Ottawa, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: xcao@eng.uottawa.ca</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E655C4EFDAFDA71A2944805784B27A8FAA75D475</idno>
<date when="2014" year="2014">2014</date>
<idno type="doi">10.1002/jbm.a.34712</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-JCVVQ53Z-R/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000770</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000770</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels</title>
<author>
<name sortKey="Goubko, Catherine A" sort="Goubko, Catherine A" uniqKey="Goubko C" first="Catherine A." last="Goubko">Catherine A. Goubko</name>
<affiliation>
<mods:affiliation>Department of Chemical and Biological Engineering, University of Ottawa, Ontario, K1N 6N5, Ottawa, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Basak, Ajoy" sort="Basak, Ajoy" uniqKey="Basak A" first="Ajoy" last="Basak">Ajoy Basak</name>
<affiliation>
<mods:affiliation>Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program, The Ottawa Hospital, University of Ottawa, 725 Parkdale Avenue, Ontario, K1Y 4Y9, Ottawa, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Majumdar, Swapan" sort="Majumdar, Swapan" uniqKey="Majumdar S" first="Swapan" last="Majumdar">Swapan Majumdar</name>
<affiliation>
<mods:affiliation>Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program, The Ottawa Hospital, University of Ottawa, 725 Parkdale Avenue, Ontario, K1Y 4Y9, Ottawa, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cao, Xudong" sort="Cao, Xudong" uniqKey="Cao X" first="Xudong" last="Cao">Xudong Cao</name>
<affiliation>
<mods:affiliation>Department of Chemical and Biological Engineering, University of Ottawa, K1N 6N5, Ottawa, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Ottawa‐Carleton Institute for Biomedical Engineering, University of Ottawa, Ontario, K1N 6N5, Ottawa, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: xcao@eng.uottawa.ca</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="ISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<imprint>
<biblScope unit="vol">102</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="381">381</biblScope>
<biblScope unit="page" to="391">391</biblScope>
<biblScope unit="page-count">11</biblScope>
<date type="published" when="2014-02">2014-02</date>
</imprint>
<idno type="ISSN">1549-3296</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1549-3296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Techniques to pattern cells on biocompatible hydrogels allow for the creation of highly controlled cell microenvironments within materials that mimic the physicochemical properties of native tissues. Such technology has the potential to further enhance our knowledge of cell biology and to play a role in the development of novel tissue engineering devices. Light is an ideal stimulus to catalyze pattern formation since it can be controlled spatially as well as temporally. Herein, we have developed and enhanced a hydrogel cell patterning strategy. It is based on photoactive caged RGDS peptides incorporated into a hyaluronic acid (HA) hydrogel, which can be subsequently activated with near‐UV light to create cell‐adhesive regions within an otherwise non‐adhesive hydrogel. With this strategy, we have been able to pattern multiple cell populations—either in contact with one another or held apart—on an underlying chemically patterned HA hydrogel. Furthermore, the hydrogel cell pattern could be altered with time, even 2 weeks after initial seeding, to create additional adhesive regions to regulate the direction of cell growth and migration. These dynamic hydrogel cell patterns, created with a standard fluorescence microscope, were shown to be robust and lasted at least 3 weeks in vitro. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 381–391, 2014.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>hydrogel</json:string>
<json:string>patterning</json:string>
<json:string>rgds</json:string>
<json:string>peptide</json:string>
<json:string>seeding</json:string>
<json:string>uorescence</json:string>
<json:string>broblasts</json:string>
<json:string>uorescence microscope</json:string>
<json:string>chem</json:string>
<json:string>photocaged</json:string>
<json:string>biomedical</json:string>
<json:string>goubko</json:string>
<json:string>hyaluronic</json:string>
<json:string>rges</json:string>
<json:string>biomaterials</json:string>
<json:string>fibroblast</json:string>
<json:string>light exposure</json:string>
<json:string>cell population</json:string>
<json:string>scale bar equal</json:string>
<json:string>cell pattern</json:string>
<json:string>fluorescence microscope</json:string>
<json:string>second cell population</json:string>
<json:string>cell patterning</json:string>
<json:string>biomedical material research</json:string>
<json:string>post exposure</json:string>
<json:string>adhesive island</json:string>
<json:string>ottawa</json:string>
<json:string>caging group</json:string>
<json:string>chemical pattern</json:string>
<json:string>color figure</json:string>
<json:string>online issue</json:string>
<json:string>cell binding</json:string>
<json:string>day post seeding</json:string>
<json:string>tissue engineering</json:string>
<json:string>multiple cell population</json:string>
<json:string>post seeding</json:string>
<json:string>cell adhesion</json:string>
<json:string>angew chem</json:string>
<json:string>pattern geometry</json:string>
<json:string>ethidium homodimer</json:string>
<json:string>experimental surface</json:string>
<json:string>fresh medium</json:string>
<json:string>biomed mater</json:string>
<json:string>additional reaction step</json:string>
<json:string>multiple cell type</json:string>
<json:string>additional adhesive region</json:string>
<json:string>initial pattern</json:string>
<json:string>hyaluronic acid</json:string>
<json:string>cell metabolism</json:string>
<json:string>phase contrast image</json:string>
<json:string>different cell population</json:string>
<json:string>various exposure time</json:string>
<json:string>patterning technique</json:string>
<json:string>rgds peptide</json:string>
<json:string>adhesion</json:string>
<json:string>mater</json:string>
<json:string>adhesive</json:string>
<json:string>dynamic hydrogel cell pattern original article figure</json:string>
<json:string>fluorescence micrographs</json:string>
<json:string>great interest</json:string>
<json:string>light source</json:string>
<json:string>error bar</json:string>
<json:string>standard deviation</json:string>
<json:string>impact cell adhesion</json:string>
<json:string>hydrogel sample</json:string>
<json:string>wiley periodical</json:string>
<json:string>celltracker green</json:string>
<json:string>guide cell growth</json:string>
<json:string>cell growth</json:string>
<json:string>control cell adhesion</json:string>
<json:string>island pattern</json:string>
<json:string>cell type</json:string>
<json:string>rges peptide</json:string>
<json:string>room temperature</json:string>
<json:string>dead cell</json:string>
<json:string>stock solution</json:string>
<json:string>adherent cell</json:string>
<json:string>dynamic cell patterning</json:string>
<json:string>rgds sequence</json:string>
<json:string>second cell pattern</json:string>
<json:string>diaphragm opening size</json:string>
<json:string>smallest opening</json:string>
<json:string>hydrogel volume</json:string>
<json:string>same size</json:string>
<json:string>phase contrast micrographs</json:string>
<json:string>photocaged rgds peptide</json:string>
<json:string>second seeding</json:string>
<json:string>initial seeding</json:string>
<json:string>broblast cell</json:string>
<json:string>surface chemistry</json:string>
<json:string>hydrogel surface</json:string>
<json:string>fluorescence micrograph</json:string>
<json:string>original pattern</json:string>
<json:string>subsequent light exposure step</json:string>
<json:string>cell patterning technique</json:string>
<json:string>green color</json:string>
<json:string>biomedical application</json:string>
<json:string>hyaluronic acid hydrogel</json:string>
<json:string>pattern cell</json:string>
<json:string>initial cell pattern</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Catherine A. Goubko</name>
<affiliations>
<json:string>Department of Chemical and Biological Engineering, University of Ottawa, Ontario, K1N 6N5, Ottawa, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ajoy Basak</name>
<affiliations>
<json:string>Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program, The Ottawa Hospital, University of Ottawa, 725 Parkdale Avenue, Ontario, K1Y 4Y9, Ottawa, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Swapan Majumdar</name>
<affiliations>
<json:string>Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program, The Ottawa Hospital, University of Ottawa, 725 Parkdale Avenue, Ontario, K1Y 4Y9, Ottawa, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Xudong Cao</name>
<affiliations>
<json:string>Department of Chemical and Biological Engineering, University of Ottawa, K1N 6N5, Ottawa, Ontario, Canada</json:string>
<json:string>Ottawa‐Carleton Institute for Biomedical Engineering, University of Ottawa, Ontario, K1N 6N5, Ottawa, Canada</json:string>
<json:string>E-mail: xcao@eng.uottawa.ca</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dynamic</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>co‐culture</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cell patterning</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hyaluronic acid</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>photocaged peptides</value>
</json:item>
</subject>
<articleId>
<json:string>JBMA34712</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-JCVVQ53Z-R</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Techniques to pattern cells on biocompatible hydrogels allow for the creation of highly controlled cell microenvironments within materials that mimic the physicochemical properties of native tissues. Such technology has the potential to further enhance our knowledge of cell biology and to play a role in the development of novel tissue engineering devices. Light is an ideal stimulus to catalyze pattern formation since it can be controlled spatially as well as temporally. Herein, we have developed and enhanced a hydrogel cell patterning strategy. It is based on photoactive caged RGDS peptides incorporated into a hyaluronic acid (HA) hydrogel, which can be subsequently activated with near‐UV light to create cell‐adhesive regions within an otherwise non‐adhesive hydrogel. With this strategy, we have been able to pattern multiple cell populations—either in contact with one another or held apart—on an underlying chemically patterned HA hydrogel. Furthermore, the hydrogel cell pattern could be altered with time, even 2 weeks after initial seeding, to create additional adhesive regions to regulate the direction of cell growth and migration. These dynamic hydrogel cell patterns, created with a standard fluorescence microscope, were shown to be robust and lasted at least 3 weeks in vitro. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 381–391, 2014.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>208</abstractWordCount>
<abstractCharCount>1378</abstractCharCount>
<keywordCount>5</keywordCount>
<score>9.496</score>
<pdfWordCount>6334</pdfWordCount>
<pdfCharCount>38957</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>612 x 809.972 pts</pdfPageSize>
<pdfWordsPerPage>576</pdfWordsPerPage>
<pdfText>true</pdfText>
</qualityIndicators>
<title>Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Biomedical Materials Research Part A</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1552-4965</json:string>
</doi>
<issn>
<json:string>1549-3296</json:string>
</issn>
<eissn>
<json:string>1552-4965</json:string>
</eissn>
<publisherId>
<json:string>JBM</json:string>
</publisherId>
<volume>102</volume>
<issue>2</issue>
<pages>
<first>381</first>
<last>391</last>
<total>11</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Original Article</value>
</json:item>
<json:item>
<value>Original Articles</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/WNG-JCVVQ53Z-R</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - materials science, biomaterials</json:string>
<json:string>2 - engineering, biomedical</json:string>
</wos>
<scienceMetrix></scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Metals and Alloys</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Biomedical Engineering</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Biomaterials</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Ceramics and Composites</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2014</publicationDate>
<copyrightDate>2014</copyrightDate>
<doi>
<json:string>10.1002/jbm.a.34712</json:string>
</doi>
<id>E655C4EFDAFDA71A2944805784B27A8FAA75D475</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-JCVVQ53Z-R/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-JCVVQ53Z-R/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/WNG-JCVVQ53Z-R/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels</title>
<title level="a" type="short">Dynamic Hydrogel Cell Patterns</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher ref="https://scientific-publisher.data.istex.fr/ark:/67375/H02-QW5Q88H5-V">Wiley Publishing Ltd</publisher>
<availability>
<licence>© 2013 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2014-02"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels</title>
<title level="a" type="short">Dynamic Hydrogel Cell Patterns</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Catherine A.</forename>
<surname>Goubko</surname>
</persName>
<affiliation>
<orgName type="division">Department of Chemical and Biological Engineering</orgName>
<orgName type="institution">University of Ottawa</orgName>
<address>
<settlement>Ottawa</settlement>
<region>Ontario</region>
<postCode>K1N 6N5</postCode>
<country key="CA" xml:lang="en">CANADA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Ajoy</forename>
<surname>Basak</surname>
</persName>
<affiliation>
<orgName type="division">Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program</orgName>
<orgName type="institution">The Ottawa Hospital, University of Ottawa</orgName>
<address>
<street>725 Parkdale Avenue</street>
<settlement>Ottawa</settlement>
<region>Ontario</region>
<postCode>K1Y 4Y9</postCode>
<country key="CA" xml:lang="en">CANADA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Swapan</forename>
<surname>Majumdar</surname>
</persName>
<affiliation>
<orgName type="division">Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program</orgName>
<orgName type="institution">The Ottawa Hospital, University of Ottawa</orgName>
<address>
<street>725 Parkdale Avenue</street>
<settlement>Ottawa</settlement>
<region>Ontario</region>
<postCode>K1Y 4Y9</postCode>
<country key="CA" xml:lang="en">CANADA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<forename type="first">Xudong</forename>
<surname>Cao</surname>
</persName>
<affiliation>
<orgName type="division">Department of Chemical and Biological Engineering</orgName>
<orgName type="institution">University of Ottawa</orgName>
<address>
<settlement>Ottawa</settlement>
<region>Ontario</region>
<postCode>K1N 6N5</postCode>
<country key="CA" xml:lang="en">CANADA</country>
</address>
</affiliation>
<affiliation>
<orgName type="division">Ottawa‐Carleton Institute for Biomedical Engineering</orgName>
<orgName type="institution">University of Ottawa</orgName>
<address>
<settlement>Ottawa</settlement>
<region>Ontario</region>
<postCode>K1N 6N5</postCode>
<country key="CA" xml:lang="en">CANADA</country>
</address>
</affiliation>
</author>
<idno type="istex">E655C4EFDAFDA71A2944805784B27A8FAA75D475</idno>
<idno type="ark">ark:/67375/WNG-JCVVQ53Z-R</idno>
<idno type="DOI">10.1002/jbm.a.34712</idno>
<idno type="unit">JBMA34712</idno>
<idno type="toTypesetVersion">file:JBM.JBMA34712.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="pISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<idno type="book-DOI">10.1002/(ISSN)1552-4965</idno>
<idno type="book-part-DOI">10.1002/jbm.a.v102.2</idno>
<idno type="product">JBM</idno>
<imprint>
<biblScope unit="vol">102</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="381">381</biblScope>
<biblScope unit="page" to="391">391</biblScope>
<biblScope unit="page-count">11</biblScope>
<date type="published" when="2014-02"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-20">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract style="main">
<head>Abstract</head>
<p>Techniques to pattern cells on biocompatible hydrogels allow for the creation of highly controlled cell microenvironments within materials that mimic the physicochemical properties of native tissues. Such technology has the potential to further enhance our knowledge of cell biology and to play a role in the development of novel tissue engineering devices. Light is an ideal stimulus to catalyze pattern formation since it can be controlled spatially as well as temporally. Herein, we have developed and enhanced a hydrogel cell patterning strategy. It is based on photoactive caged RGDS peptides incorporated into a hyaluronic acid (HA) hydrogel, which can be subsequently activated with near‐UV light to create cell‐adhesive regions within an otherwise non‐adhesive hydrogel. With this strategy, we have been able to pattern multiple cell populations—either in contact with one another or held apart—on an underlying chemically patterned HA hydrogel. Furthermore, the hydrogel cell pattern could be altered with time, even 2 weeks after initial seeding, to create additional adhesive regions to regulate the direction of cell growth and migration. These dynamic hydrogel cell patterns, created with a standard fluorescence microscope, were shown to be robust and lasted at least 3 weeks
<hi rend="italic">in vitro</hi>
. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 381–391, 2014.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jbma34712-kwd-0001">dynamic</term>
<term xml:id="jbma34712-kwd-0002">co‐culture</term>
<term xml:id="jbma34712-kwd-0003">cell patterning</term>
<term xml:id="jbma34712-kwd-0004">hyaluronic acid</term>
<term xml:id="jbma34712-kwd-0005">photocaged peptides</term>
</keywords>
<keywords rend="articleCategory">
<term>Original Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Original Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-20" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-JCVVQ53Z-R/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en" xml:id="jbma34712">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1002/(ISSN)1552-4965</doi>
<issn type="print">1549-3296</issn>
<issn type="electronic">1552-4965</issn>
<idGroup>
<id type="product" value="JBM"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A">Journal of Biomedical Materials Research Part A</title>
<title type="subtitle">An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials</title>
<title type="short">J. Biomed. Mater. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi>10.1002/jbm.a.v102.2</doi>
<copyright ownership="publisher">© 2013 Wiley Periodicals, Inc.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="102">102</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2014-02">February 2014</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="100" type="article" status="forIssue">
<doi>10.1002/jbm.a.34712</doi>
<idGroup>
<id type="unit" value="JBMA34712"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright ownership="publisher">© 2013 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2012-12-11"></event>
<event type="manuscriptRevised" date="2013-02-19"></event>
<event type="manuscriptAccepted" date="2013-03-13"></event>
<event type="xmlCreated" agent="Cenveo Publisher Services" date="2013-04-03"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.2.7 mode:FullText" date="2013-12-14"></event>
<event type="publishedOnlineAccepted" date="2013-03-21"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-05-14"></event>
<event type="firstOnline" date="2013-05-14"></event>
<event type="publishedOnlineFinalForm" date="2013-12-14"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-09"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">381</numbering>
<numbering type="pageLast">391</numbering>
</numberingGroup>
<correspondenceTo>
<b>Correspondence to</b>
: X. Cao; e‐mail:
<email>xcao@eng.uottawa.ca</email>
</correspondenceTo>
<selfCitationGroup>
<citation xml:id="jbma34712-cit-0142" type="self">
<b>How to cite this article:</b>
<author>
<familyName>Goubko</familyName>
<givenNames>CA</givenNames>
</author>
,
<author>
<familyName>Basak</familyName>
<givenNames>A</givenNames>
</author>
,
<author>
<familyName>Majumdar</familyName>
<givenNames>S</givenNames>
</author>
,
<author>
<familyName>Cao</familyName>
<givenNames>X</givenNames>
</author>
. 2014.
<articleTitle>Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels</articleTitle>
.
<journalTitle>J Biomed Mater Res Part A</journalTitle>
<pubYear year="2014">2014</pubYear>
:
<vol>102A</vol>
:
<pageFirst>381</pageFirst>
<pageLast>391</pageLast>
. </citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JBM.JBMA34712.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels</title>
<title type="short">Dynamic Hydrogel Cell Patterns</title>
<title type="shortAuthors">Goubko et al.</title>
</titleGroup>
<creators>
<creator affiliationRef="#jbma34712-aff-0001" creatorRole="author" xml:id="jbma34712-cr-0001">
<personName>
<givenNames>Catherine A.</givenNames>
<familyName>Goubko</familyName>
</personName>
</creator>
<creator affiliationRef="#jbma34712-aff-0002" creatorRole="author" xml:id="jbma34712-cr-0002">
<personName>
<givenNames>Ajoy</givenNames>
<familyName>Basak</familyName>
</personName>
</creator>
<creator affiliationRef="#jbma34712-aff-0002" creatorRole="author" xml:id="jbma34712-cr-0003">
<personName>
<givenNames>Swapan</givenNames>
<familyName>Majumdar</familyName>
</personName>
</creator>
<creator affiliationRef="#jbma34712-aff-0001 #jbma34712-aff-0003" corresponding="yes" creatorRole="author" xml:id="jbma34712-cr-0004">
<personName>
<givenNames>Xudong</givenNames>
<familyName>Cao</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="CA" type="organization" xml:id="jbma34712-aff-0001">
<orgDiv>Department of Chemical and Biological Engineering</orgDiv>
<orgName>University of Ottawa</orgName>
<address>
<city>Ottawa</city>
<countryPart>Ontario</countryPart>
<postCode>K1N 6N5</postCode>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="jbma34712-aff-0002">
<orgDiv>Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program</orgDiv>
<orgName>The Ottawa Hospital, University of Ottawa</orgName>
<address>
<street>725 Parkdale Avenue</street>
<city>Ottawa</city>
<countryPart>Ontario</countryPart>
<postCode>K1Y 4Y9</postCode>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="jbma34712-aff-0003">
<orgDiv>Ottawa‐Carleton Institute for Biomedical Engineering</orgDiv>
<orgName>University of Ottawa</orgName>
<address>
<city>Ottawa</city>
<countryPart>Ontario</countryPart>
<postCode>K1N 6N5</postCode>
<country>Canada</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jbma34712-kwd-0001">dynamic</keyword>
<keyword xml:id="jbma34712-kwd-0002">co‐culture</keyword>
<keyword xml:id="jbma34712-kwd-0003">cell patterning</keyword>
<keyword xml:id="jbma34712-kwd-0004">hyaluronic acid</keyword>
<keyword xml:id="jbma34712-kwd-0005">photocaged peptides</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>NSERC Discovery </fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Heart & Stroke Foundation </fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>CIHR‐HOPE </fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main">
<title type="main">Abstract</title>
<p>Techniques to pattern cells on biocompatible hydrogels allow for the creation of highly controlled cell microenvironments within materials that mimic the physicochemical properties of native tissues. Such technology has the potential to further enhance our knowledge of cell biology and to play a role in the development of novel tissue engineering devices. Light is an ideal stimulus to catalyze pattern formation since it can be controlled spatially as well as temporally. Herein, we have developed and enhanced a hydrogel cell patterning strategy. It is based on photoactive caged RGDS peptides incorporated into a hyaluronic acid (HA) hydrogel, which can be subsequently activated with near‐UV light to create cell‐adhesive regions within an otherwise non‐adhesive hydrogel. With this strategy, we have been able to pattern multiple cell populations—either in contact with one another or held apart—on an underlying chemically patterned HA hydrogel. Furthermore, the hydrogel cell pattern could be altered with time, even 2 weeks after initial seeding, to create additional adhesive regions to regulate the direction of cell growth and migration. These dynamic hydrogel cell patterns, created with a standard fluorescence microscope, were shown to be robust and lasted at least 3 weeks
<i>in vitro</i>
. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 381–391, 2014.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Dynamic Hydrogel Cell Patterns</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels</title>
</titleInfo>
<name type="personal">
<namePart type="given">Catherine A.</namePart>
<namePart type="family">Goubko</namePart>
<affiliation>Department of Chemical and Biological Engineering, University of Ottawa, Ontario, K1N 6N5, Ottawa, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ajoy</namePart>
<namePart type="family">Basak</namePart>
<affiliation>Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program, The Ottawa Hospital, University of Ottawa, 725 Parkdale Avenue, Ontario, K1Y 4Y9, Ottawa, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapan</namePart>
<namePart type="family">Majumdar</namePart>
<affiliation>Ottawa Hospital Research Institute, Loeb Building, Chronic Disease Program, The Ottawa Hospital, University of Ottawa, 725 Parkdale Avenue, Ontario, K1Y 4Y9, Ottawa, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xudong</namePart>
<namePart type="family">Cao</namePart>
<affiliation>Department of Chemical and Biological Engineering, University of Ottawa, K1N 6N5, Ottawa, Ontario, Canada</affiliation>
<affiliation>Ottawa‐Carleton Institute for Biomedical Engineering, University of Ottawa, Ontario, K1N 6N5, Ottawa, Canada</affiliation>
<affiliation>E-mail: xcao@eng.uottawa.ca</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2014-02</dateIssued>
<dateCreated encoding="w3cdtf">2013-04-03</dateCreated>
<dateCaptured encoding="w3cdtf">2012-12-11</dateCaptured>
<dateValid encoding="w3cdtf">2013-03-13</dateValid>
<edition>How to cite this article: Goubko CA, Basak A, Majumdar S, Cao X. 2014. Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels. J Biomed Mater Res Part A 2014:102A:381–391.</edition>
<copyrightDate encoding="w3cdtf">2014</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract>Techniques to pattern cells on biocompatible hydrogels allow for the creation of highly controlled cell microenvironments within materials that mimic the physicochemical properties of native tissues. Such technology has the potential to further enhance our knowledge of cell biology and to play a role in the development of novel tissue engineering devices. Light is an ideal stimulus to catalyze pattern formation since it can be controlled spatially as well as temporally. Herein, we have developed and enhanced a hydrogel cell patterning strategy. It is based on photoactive caged RGDS peptides incorporated into a hyaluronic acid (HA) hydrogel, which can be subsequently activated with near‐UV light to create cell‐adhesive regions within an otherwise non‐adhesive hydrogel. With this strategy, we have been able to pattern multiple cell populations—either in contact with one another or held apart—on an underlying chemically patterned HA hydrogel. Furthermore, the hydrogel cell pattern could be altered with time, even 2 weeks after initial seeding, to create additional adhesive regions to regulate the direction of cell growth and migration. These dynamic hydrogel cell patterns, created with a standard fluorescence microscope, were shown to be robust and lasted at least 3 weeks in vitro. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 381–391, 2014.</abstract>
<note type="funding">NSERC Discovery</note>
<note type="funding">Heart & Stroke Foundation</note>
<note type="funding">CIHR‐HOPE</note>
<subject>
<genre>keywords</genre>
<topic>dynamic</topic>
<topic>co‐culture</topic>
<topic>cell patterning</topic>
<topic>hyaluronic acid</topic>
<topic>photocaged peptides</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Biomedical Materials Research Part A</title>
<subTitle>An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Biomed. Mater. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Original Article</topic>
<topic>Original Articles</topic>
</subject>
<identifier type="ISSN">1549-3296</identifier>
<identifier type="eISSN">1552-4965</identifier>
<identifier type="DOI">10.1002/(ISSN)1552-4965</identifier>
<identifier type="PublisherID">JBM</identifier>
<part>
<date>2014</date>
<detail type="volume">
<caption>vol.</caption>
<number>102</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>381</start>
<end>391</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0001">
<titleInfo>
<title>Tissue assembly and organization: Developmental mechanisms in microfabricated tissues</title>
</titleInfo>
<name type="personal">
<namePart type="given">NC</namePart>
<namePart type="family">Rivron</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Rouwkema</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Truckenmüller</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Karperien</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">De Boer</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CA</namePart>
<namePart type="family">Van Blitterswijk</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Rivron NC, Rouwkema J, Truckenmüller R, Karperien M, De Boer J, Van Blitterswijk CA. Tissue assembly and organization: Developmental mechanisms in microfabricated tissues. Biomaterials 2009;30:4851–4858.</note>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>4851</start>
<end>4858</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biomaterials</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>4851</start>
<end>4858</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0002">
<titleInfo>
<title>Photoresponsive hydrogels for biomedical applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Tomatsu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Kros</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 2011;63:1257–1266.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<extent unit="pages">
<start>1257</start>
<end>1266</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Adv Drug Deliv Rev</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<extent unit="pages">
<start>1257</start>
<end>1266</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0003">
<titleInfo>
<title>Hyaluronic acid hydrogels for biomedical applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">JA</namePart>
<namePart type="family">Burdick</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GD</namePart>
<namePart type="family">Prestwich</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater 2011;23:H41–H56.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>23</number>
</detail>
<extent unit="pages">
<start>H41</start>
<end>H56</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Adv Mater</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>23</number>
</detail>
<extent unit="pages">
<start>H41</start>
<end>H56</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0004">
<titleInfo>
<title>Microbial hyaluronic acid production</title>
</titleInfo>
<name type="personal">
<namePart type="given">BF</namePart>
<namePart type="family">Chong</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LM</namePart>
<namePart type="family">Blank</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">McLaughlin</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LK</namePart>
<namePart type="family">Nielsen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Chong BF, Blank LM, McLaughlin R, Nielsen LK. Microbial hyaluronic acid production. Appl Microbiol Biotechnol 2005;66:341–351.</note>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>66</number>
</detail>
<extent unit="pages">
<start>341</start>
<end>351</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Appl Microbiol Biotechnol</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>66</number>
</detail>
<extent unit="pages">
<start>341</start>
<end>351</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0005">
<titleInfo>
<title>Microfluidic contact printing: A versatile printing platform for patterning biomolecules on hydrogel substrates</title>
</titleInfo>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JN</namePart>
<namePart type="family">Hanson Shepherd</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">RG</namePart>
<namePart type="family">Nuzzo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Zhang H, Hanson Shepherd JN, Nuzzo RG. Microfluidic contact printing: A versatile printing platform for patterning biomolecules on hydrogel substrates. Soft Matter 2010;6(10):2238–2245.</note>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>2238</start>
<end>2245</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Soft Matter</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>2238</start>
<end>2245</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0006">
<titleInfo>
<title>Molding of three‐dimensional microstructures of gels</title>
</titleInfo>
<name type="personal">
<namePart type="given">MD</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">AP</namePart>
<namePart type="family">Golden</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Tien</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Tang MD, Golden AP, Tien J. Molding of three‐dimensional microstructures of gels. J Am Chem Soc 2003;125:12988–12989.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>125</number>
</detail>
<extent unit="pages">
<start>12988</start>
<end>12989</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Am Chem Soc</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>125</number>
</detail>
<extent unit="pages">
<start>12988</start>
<end>12989</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0007">
<titleInfo>
<title>Directed cell growth on protein‐functionalized hydrogel surfaces</title>
</titleInfo>
<name type="personal">
<namePart type="given">MR</namePart>
<namePart type="family">Hynd</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JP</namePart>
<namePart type="family">Frampton</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Dowell‐Mesfin</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JN</namePart>
<namePart type="family">Turner</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Shain</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Hynd MR, Frampton JP, Dowell‐Mesfin N, Turner JN, Shain W. Directed cell growth on protein‐functionalized hydrogel surfaces. J Neurosci Methods 2007;162:255–263.</note>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>162</number>
</detail>
<extent unit="pages">
<start>255</start>
<end>263</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Neurosci Methods</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>162</number>
</detail>
<extent unit="pages">
<start>255</start>
<end>263</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0008">
<titleInfo>
<title>Micropatterning of hydrogels by soft embossing</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Kobel</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Limacher</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Gobaa</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Laroche</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MP</namePart>
<namePart type="family">Lutolf</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Kobel S, Limacher M, Gobaa S, Laroche T, Lutolf MP. Micropatterning of hydrogels by soft embossing. Langmuir 2009;25:8774–8779.</note>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>25</number>
</detail>
<extent unit="pages">
<start>8774</start>
<end>8779</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Langmuir</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>25</number>
</detail>
<extent unit="pages">
<start>8774</start>
<end>8779</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0009">
<titleInfo>
<title>Microfluidic hydrogel layers with multiple gradients to stimulate and perfuse three‐dimensional neuronal cell cultures</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Kunze</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Bertsch</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Giugliano</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Renaud</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Kunze A, Bertsch A, Giugliano M, Renaud P. Microfluidic hydrogel layers with multiple gradients to stimulate and perfuse three‐dimensional neuronal cell cultures. Procedia Chem 2009;1:369–372.</note>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>369</start>
<end>372</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Procedia Chem</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>369</start>
<end>372</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0010">
<titleInfo>
<title>Long‐term spatially defined coculture within three‐dimensional photopatterned hydrogels</title>
</titleInfo>
<name type="personal">
<namePart type="given">TM</namePart>
<namePart type="family">Hammoudi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JS</namePart>
<namePart type="family">Temenoff</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Hammoudi TM, Lu H, Temenoff JS. Long‐term spatially defined coculture within three‐dimensional photopatterned hydrogels. Tissue Eng—Part C: Methods 2010;16:1621–1628.</note>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>1621</start>
<end>1628</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Tissue Eng—Part C: Methods</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>1621</start>
<end>1628</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0011">
<titleInfo>
<title>Fabrication of a modular tissue construct in a microfluidic chip</title>
</titleInfo>
<name type="personal">
<namePart type="given">DA</namePart>
<namePart type="family">Bruzewicz</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">AP</namePart>
<namePart type="family">McGuigan</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GM</namePart>
<namePart type="family">Whitesides</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Bruzewicz DA, McGuigan AP, Whitesides GM. Fabrication of a modular tissue construct in a microfluidic chip. Lab Chip 2008;8:663–671.</note>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>663</start>
<end>671</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Lab Chip</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>663</start>
<end>671</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0012">
<titleInfo>
<title>Micropatterned three‐dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Trkov</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Eng</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Di Liddo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">PP</namePart>
<namePart type="family">Parnigotto</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Vunjak‐Novakovic</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Trkov S, Eng G, Di Liddo R, Parnigotto PP, Vunjak‐Novakovic G. Micropatterned three‐dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions. J Tissue Eng Regen Med 2010;4:205–215.</note>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>205</start>
<end>215</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Tissue Eng Regen Med</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>205</start>
<end>215</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0013">
<titleInfo>
<title>Cell patterning without chemical surface modification: Cell–cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell‐adherent hydrogel</title>
</titleInfo>
<name type="personal">
<namePart type="given">CY</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JA</namePart>
<namePart type="family">Barron</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">BR</namePart>
<namePart type="family">Ringeisen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Chen CY, Barron JA, Ringeisen BR. Cell patterning without chemical surface modification: Cell–cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell‐adherent hydrogel. Appl Surf Sci 2006;252:8641–8645.</note>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>252</number>
</detail>
<extent unit="pages">
<start>8641</start>
<end>8645</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Appl Surf Sci</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>252</number>
</detail>
<extent unit="pages">
<start>8641</start>
<end>8645</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0014">
<titleInfo>
<title>Viability and electrophysiology of neural cell structures generated by the inkjet printing method</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CA</namePart>
<namePart type="family">Gregory</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Molnar</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">X</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Jalota</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SB</namePart>
<namePart type="family">Bhaduri</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Boland</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 2006;27:3580–3588.</note>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<extent unit="pages">
<start>3580</start>
<end>3588</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biomaterials</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<extent unit="pages">
<start>3580</start>
<end>3588</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0015">
<titleInfo>
<title>Three‐dimensional photopatterning of hydrogels containing living cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">VA</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SN</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Liu VA, Bhatia SN. Three‐dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices 2002;4:257–266.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>257</start>
<end>266</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biomed Microdevices</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>257</start>
<end>266</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0016">
<titleInfo>
<title>Photolithographic patterning of polyethylene glycol hydrogels</title>
</titleInfo>
<name type="personal">
<namePart type="given">MS</namePart>
<namePart type="family">Hahn</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LJ</namePart>
<namePart type="family">Taite</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JJ</namePart>
<namePart type="family">Moon</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MC</namePart>
<namePart type="family">Rowland</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">KA</namePart>
<namePart type="family">Ruffino</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JL</namePart>
<namePart type="family">West</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Hahn MS, Taite LJ, Moon JJ, Rowland MC, Ruffino KA, West JL. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 2006;27:2519–2524.</note>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<extent unit="pages">
<start>2519</start>
<end>2524</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biomaterials</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<extent unit="pages">
<start>2519</start>
<end>2524</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0017">
<titleInfo>
<title>Engineering 3D cell instructive microenvironments by rational assembly of artificial extracellular matrices and cell patterning</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Sala</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Hänseler</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Ranga</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MP</namePart>
<namePart type="family">Lutolf</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Vörös</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Ehrbar</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">FE</namePart>
<namePart type="family">Weber</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Sala A, Hänseler P, Ranga A, Lutolf MP, Vörös J, Ehrbar M, Weber FE. Engineering 3D cell instructive microenvironments by rational assembly of artificial extracellular matrices and cell patterning. Integr Biol 2011;3:1102–1111.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1102</start>
<end>1111</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Integr Biol</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1102</start>
<end>1111</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0018">
<titleInfo>
<title>Three‐dimensional photopatterning of hydrogels using stereolithography for long‐term cell encapsulation</title>
</titleInfo>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Chan</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Zorlutuna</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JH</namePart>
<namePart type="family">Jeong</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Bashir</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R. Three‐dimensional photopatterning of hydrogels using stereolithography for long‐term cell encapsulation. Lab Chip 2010;10:2062–2070.</note>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>2062</start>
<end>2070</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Lab Chip</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>2062</start>
<end>2070</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0019">
<titleInfo>
<title>Stereolithography‐based hydrogel microenvironments to examine cellular interactions</title>
</titleInfo>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Zorlutuna</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JH</namePart>
<namePart type="family">Jeong</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Bashir</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Zorlutuna P, Jeong JH, Kong H, Bashir R. Stereolithography‐based hydrogel microenvironments to examine cellular interactions. Adv Funct Mater 2011;21:3642–3651.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>3642</start>
<end>3651</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Adv Funct Mater</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>3642</start>
<end>3651</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0020">
<titleInfo>
<title>Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co‐cultures</title>
</titleInfo>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Fukuda</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Khademhosseini</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Yeo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">X</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Yeh</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Eng</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Blumling</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C‐F</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">DS</namePart>
<namePart type="family">Kohane</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Langer</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Fukuda J, Khademhosseini A, Yeo Y, Yang X, Yeh J, Eng G, Blumling J, Wang C‐F, Kohane DS, Langer R. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co‐cultures. Biomaterials 2006;27:5259–5267.</note>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<extent unit="pages">
<start>5259</start>
<end>5267</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biomaterials</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<extent unit="pages">
<start>5259</start>
<end>5267</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0021">
<titleInfo>
<title>High‐density, multiplexed patterning of cells at single‐cell resolution for tissue engineering and other applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">U</namePart>
<namePart type="family">Vermesh</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">O</namePart>
<namePart type="family">Vermesh</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GA</namePart>
<namePart type="family">Kwong</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JR</namePart>
<namePart type="family">Heath</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Vermesh U, Vermesh O, Wang J, Kwong GA, Ma C, Hwang K, Heath JR. High‐density, multiplexed patterning of cells at single‐cell resolution for tissue engineering and other applications. Angew Chem Int Ed 2011;50:7378–7380.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>50</number>
</detail>
<extent unit="pages">
<start>7378</start>
<end>7380</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Angew Chem Int Ed</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>50</number>
</detail>
<extent unit="pages">
<start>7378</start>
<end>7380</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0022">
<titleInfo>
<title>Multiphase electropatterning of cells and biomaterials</title>
</titleInfo>
<name type="personal">
<namePart type="given">DR</namePart>
<namePart type="family">Albrecht</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GH</namePart>
<namePart type="family">Underhill</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Mendelson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SN</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Albrecht DR, Underhill GH, Mendelson A, Bhatia SN. Multiphase electropatterning of cells and biomaterials. Lab Chip 2007;7:702–709.</note>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>702</start>
<end>709</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Lab Chip</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>702</start>
<end>709</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0023">
<titleInfo>
<title>responsive micromolds for sequential patterning of hydrogel microstructures</title>
</titleInfo>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Tekin</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Tsinman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JG</namePart>
<namePart type="family">Sanchez</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">BJ</namePart>
<namePart type="family">Jones</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Camci‐Unal</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JW</namePart>
<namePart type="family">Nichol</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Langer</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Khademhosseini</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Tekin H, Tsinman T, Sanchez JG, Jones BJ, Camci‐Unal G, Nichol JW, Langer R, Khademhosseini A. responsive micromolds for sequential patterning of hydrogel microstructures. J Am Chem Soc 2011;133:12944–12947.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>133</number>
</detail>
<extent unit="pages">
<start>12944</start>
<end>12947</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Am Chem Soc</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>133</number>
</detail>
<extent unit="pages">
<start>12944</start>
<end>12947</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0024">
<titleInfo>
<title>Three‐dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior</title>
</titleInfo>
<name type="personal">
<namePart type="given">MS</namePart>
<namePart type="family">Hahn</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JS</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JL</namePart>
<namePart type="family">West</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Hahn MS, Miller JS, West JL. Three‐dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater 2006;18:2679–2684.</note>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>2679</start>
<end>2684</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Adv Mater</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>2679</start>
<end>2684</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0025">
<titleInfo>
<title>Anisotropic three‐dimensional peptide channels guide neurite outgrowth within a biodegradable hydrogel matrix</title>
</titleInfo>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Musoke‐Zawedde</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MS</namePart>
<namePart type="family">Shoichet</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Musoke‐Zawedde P, Shoichet MS. Anisotropic three‐dimensional peptide channels guide neurite outgrowth within a biodegradable hydrogel matrix. Biomed Mater 2006;1:162–169.</note>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>162</start>
<end>169</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biomed Mater</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>162</start>
<end>169</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0026">
<titleInfo>
<title>Endothelial cell guidance in 3D patterned scaffolds</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Aizawa</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Wylie</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Shoichet</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Aizawa Y, Wylie R, Shoichet M. Endothelial cell guidance in 3D patterned scaffolds. Adv Mater 2010;22:4831–4835.</note>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<extent unit="pages">
<start>4831</start>
<end>4835</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Adv Mater</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<extent unit="pages">
<start>4831</start>
<end>4835</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0027">
<titleInfo>
<title>Enzyme‐assisted photolithography for spatial functionalization of hydrogels</title>
</titleInfo>
<name type="personal">
<namePart type="given">Z</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Gu Z, Tang Y. Enzyme‐assisted photolithography for spatial functionalization of hydrogels. Lab Chip 2010;10:1946–1951.</note>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1946</start>
<end>1951</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Lab Chip</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1946</start>
<end>1951</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0028">
<titleInfo>
<title>High‐resolution patterning of hydrogels in three dimensions using direct‐write photofabrication for cell guidance</title>
</titleInfo>
<name type="personal">
<namePart type="given">SK</namePart>
<namePart type="family">Seidlits</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CE</namePart>
<namePart type="family">Schmidt</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JB</namePart>
<namePart type="family">Shear</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Seidlits SK, Schmidt CE, Shear JB. High‐resolution patterning of hydrogels in three dimensions using direct‐write photofabrication for cell guidance. Adv Funct Mater 2009;19:3543–3551.</note>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<extent unit="pages">
<start>3543</start>
<end>3551</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Adv Funct Mater</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<extent unit="pages">
<start>3543</start>
<end>3551</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0029">
<titleInfo>
<title>Photoreversible patterning of biomolecules within click-based hydrogels</title>
</titleInfo>
<name type="personal">
<namePart type="given">CA</namePart>
<namePart type="family">DeForest</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">KS</namePart>
<namePart type="family">Anseth</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">DeForest CA, Anseth KS. Photoreversible patterning of biomolecules within click-based hydrogels. Angew Chem Int Ed 2012;51:1816–1819.</note>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>51</number>
</detail>
<extent unit="pages">
<start>1816</start>
<end>1819</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Angew Chem Int Ed</title>
</titleInfo>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>51</number>
</detail>
<extent unit="pages">
<start>1816</start>
<end>1819</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0030">
<titleInfo>
<title>Photochemical control of biological processes</title>
</titleInfo>
<name type="personal">
<namePart type="given">DD</namePart>
<namePart type="family">Young</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Deiters</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Young DD, Deiters A. Photochemical control of biological processes. Org Biomol Chem 2007;5:999–1005.</note>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>999</start>
<end>1005</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Org Biomol Chem</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>999</start>
<end>1005</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0031">
<titleInfo>
<title>Phototriggering of cell adhesion by caged cyclic RGD peptides</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Petersen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JM</namePart>
<namePart type="family">Alonso</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Specht</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Duodu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Goeldner</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">del Campo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Petersen S, Alonso JM, Specht A, Duodu P, Goeldner M, del Campo A. Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew Chem Int Ed 2008;47:3192–3195.</note>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>47</number>
</detail>
<extent unit="pages">
<start>3192</start>
<end>3195</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Angew Chem Int Ed</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>47</number>
</detail>
<extent unit="pages">
<start>3192</start>
<end>3195</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0032">
<titleInfo>
<title>Photocontrolled cell adhesion on a surface functionalized with a caged arginine‐glycine‐aspartate peptide</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Ohmuro‐Matsuyama</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Tatsu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Ohmuro‐Matsuyama Y, Tatsu Y. Photocontrolled cell adhesion on a surface functionalized with a caged arginine‐glycine‐aspartate peptide. Angew Chem Int Ed 2008;47:7527–7529.</note>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>47</number>
</detail>
<extent unit="pages">
<start>7527</start>
<end>7529</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Angew Chem Int Ed</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>47</number>
</detail>
<extent unit="pages">
<start>7527</start>
<end>7529</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0033">
<titleInfo>
<title>Hydrogel cell patterning incorporating photocaged RGDS peptides</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Goubko</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Majumdar</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Basak</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">X</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Goubko C, Majumdar S, Basak A, Cao X. Hydrogel cell patterning incorporating photocaged RGDS peptides. Biomed Microdevices 2010;12:555–568.</note>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>555</start>
<end>568</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biomed Microdevices</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>555</start>
<end>568</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0034">
<titleInfo>
<title>Comparative analysis of photocaged RGDS peptides for cell patterning</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Goubko</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Basak</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Majumdar</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Jarrell</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">NH</namePart>
<namePart type="family">Khieu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">X</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Goubko C, Basak A, Majumdar S, Jarrell H, Khieu NH, Cao X. Comparative analysis of photocaged RGDS peptides for cell patterning. J Biomed Mater Res A. 2013;101:787–796.</note>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>101</number>
</detail>
<extent unit="pages">
<start>787</start>
<end>796</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Biomed Mater Res A.</title>
</titleInfo>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>101</number>
</detail>
<extent unit="pages">
<start>787</start>
<end>796</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0035">
<titleInfo>
<title>A fluorogenic peptide containing the processing site of human SARS corona virus S‐protein: Kinetic evaluation and NMR structure elucidation</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Basak</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Mitra</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Basak</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Pasko</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Chrétien</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Seaton</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Basak A, Mitra A, Basak S, Pasko C, Chrétien M, Seaton P. A fluorogenic peptide containing the processing site of human SARS corona virus S‐protein: Kinetic evaluation and NMR structure elucidation. ChemBioChem 2007;8:1029–1037.</note>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1029</start>
<end>1037</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>ChemBioChem</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1029</start>
<end>1037</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0036">
<titleInfo>
<title>Site‐directed mutagenesis of the arginine‐glycine‐aspartic acid in vitronectin abolishes cell adhesion</title>
</titleInfo>
<name type="personal">
<namePart type="given">RC</namePart>
<namePart type="family">Cherny</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MA</namePart>
<namePart type="family">Honan</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Thiagarajan</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Cherny RC, Honan MA, Thiagarajan P. Site‐directed mutagenesis of the arginine‐glycine‐aspartic acid in vitronectin abolishes cell adhesion. J Biol Chem 1993;268:9725–9729.</note>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>268</number>
</detail>
<extent unit="pages">
<start>9725</start>
<end>9729</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Biol Chem</title>
</titleInfo>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>268</number>
</detail>
<extent unit="pages">
<start>9725</start>
<end>9729</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0037">
<titleInfo>
<title>RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond</title>
</titleInfo>
<name type="personal">
<namePart type="given">U</namePart>
<namePart type="family">Hersel</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Dahmen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Kessler</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Hersel U, Dahmen C, Kessler H. RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003;24:4385–4415.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>24</number>
</detail>
<extent unit="pages">
<start>4385</start>
<end>4415</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biomaterials</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>24</number>
</detail>
<extent unit="pages">
<start>4385</start>
<end>4415</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0038">
<titleInfo>
<title>Tissue cells feel and respond to the stiffness of their substrate</title>
</titleInfo>
<name type="personal">
<namePart type="given">DE</namePart>
<namePart type="family">Discher</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Janmey</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y‐l</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Discher DE, Janmey P, Wang Y‐l. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310:1139–1143.</note>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>310</number>
</detail>
<extent unit="pages">
<start>1139</start>
<end>1143</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Science</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>310</number>
</detail>
<extent unit="pages">
<start>1139</start>
<end>1143</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0039">
<titleInfo>
<title>Design of biomimetic cell‐interactive substrates using hyaluronic acid hydrogels with tunable mechanical properties</title>
</titleInfo>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Hachet</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Van Den Berghe</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Bayma</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MR</namePart>
<namePart type="family">Block</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Auzély‐Velty</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Hachet E, Van Den Berghe H, Bayma E, Block MR, Auzély‐Velty R. Design of biomimetic cell‐interactive substrates using hyaluronic acid hydrogels with tunable mechanical properties. Biomacromolecules 2012;13:1818–1827.</note>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>1818</start>
<end>1827</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biomacromolecules</title>
</titleInfo>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>1818</start>
<end>1827</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0040">
<titleInfo>
<title>Controlling cellular systems with Bhc‐caged compounds</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Furuta</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Noguchi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Furuta T, Noguchi K. Controlling cellular systems with Bhc‐caged compounds. TrAC Trends Anal Chem 2004;23:511–519.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>23</number>
</detail>
<extent unit="pages">
<start>511</start>
<end>519</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>TrAC Trends Anal Chem</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>23</number>
</detail>
<extent unit="pages">
<start>511</start>
<end>519</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0041">
<titleInfo>
<title>Surface immobilization of biomolecules by light</title>
</titleInfo>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Sigrist</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Collioud</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J‐F</namePart>
<namePart type="family">Clemence</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Luginbuehl</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Saenger</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Sundarababu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Sigrist H, Collioud A, Clemence J‐F, Gao H, Luginbuehl R, Saenger M, Sundarababu G. Surface immobilization of biomolecules by light. Opt Eng 1995;34:2339–2348.</note>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>2339</start>
<end>2348</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Opt Eng</title>
</titleInfo>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>2339</start>
<end>2348</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="jbma34712-cit-0042">
<titleInfo>
<title>Arraying heterotypic single cells on photoactivatable cell‐culturing substrates</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Kikuchi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Nakanishi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Shimizu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Nakayama</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Yamaguchi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Iwai</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Yoshida</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Horiike</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Takarada</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Maeda</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Kikuchi Y, Nakanishi J, Shimizu T, Nakayama H, Inoue S, Yamaguchi K, Iwai H, Yoshida Y, Horiike Y, Takarada T, Maeda M. Arraying heterotypic single cells on photoactivatable cell‐culturing substrates. Langmuir 2008;24:13084–13095.</note>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>24</number>
</detail>
<extent unit="pages">
<start>13084</start>
<end>13095</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Langmuir</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>24</number>
</detail>
<extent unit="pages">
<start>13084</start>
<end>13095</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">E655C4EFDAFDA71A2944805784B27A8FAA75D475</identifier>
<identifier type="ark">ark:/67375/WNG-JCVVQ53Z-R</identifier>
<identifier type="DOI">10.1002/jbm.a.34712</identifier>
<identifier type="ArticleID">JBMA34712</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2013 Wiley Periodicals, Inc.© 2013 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Converted from (version ) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-11-15</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-JCVVQ53Z-R/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000770 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000770 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E655C4EFDAFDA71A2944805784B27A8FAA75D475
   |texte=   Dynamic cell patterning of photoresponsive hyaluronic acid hydrogels
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021