Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences

Identifieur interne : 000710 ( Istex/Corpus ); précédent : 000709; suivant : 000711

Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences

Auteurs : M. Elizabeth Graichen ; John G. Dent

Source :

RBID : ISTEX:C4D7642A7EC54BEC6FCFD43D17C98FA7B55C0C8C

Abstract

Hepatocarcinogens have been shown to cause marked elevation of hepatic microsomal epoxide hydrobase activity in the rat at short intervals after administration. The present studies were designed to characterize 2-acetylaminofluorene (AAF) mediated epoxide hydrolase elevation and to investigate the relationship between epoxide hydrolase increases, AAF metabolism, and hepatocarcinogenicity. Oral or i.p. administration of AAF to F-344 rats produced log-linear doseresponse curves for epoxide hydrolase elevation, measured with either benzo[a]pyrene-4, 5-oxide or styrene oxide substrate. Following a single dose of AAF (35 mg/kg), epoxide hydrolase activity was maximally increased (560% of control) within 48 h, and the activity declined slowly, with a halflife of 17.5 days. Co-treatment with actinomycin D effectively blocked the AAF dependent increase in epoxide hydrolase, suggesblng that de novo protein synthesis is associated with the increase in enzyme activity. Dose-response curves for epoxide hydrolase induction by AAF, N-hydroxy-2-acetylaminofluorene (N-OH-AAF), and aminofluorene were compared, and the potencies for increasing epoxide hydrolase activity reflected the relative hepatocarcinogenic potentials of these agents. In mice, which are resistant to the hepatocarcinogenic action of AAF and deficient in AAF-N-hydroxylase activity, AAF caused no significant increase in hepatic microsomal epoxide hydrolase activity. Similarly, in Cotton rats and guinea pigs, which are lacking in ability to form the sulfate conjugate of N-OH-AAF, neither i.p. nor dietary administration of AAF elicited increases in epoxide hydrolase activity at doses which were maximally effective in F-344 rats. These results support the hypothesis that the ability of compounds to increase epoxide hydrolase activity is related to their carcinogenic potency. Furthermore, the results suggest that increases in epoxide hydrolase activity are associated with metabolism of AAF to the putative proximate carcinogen N-OH-AAF, and the subsequent conversion of this compound to the N-O-sulfate conjugate.

Url:
DOI: 10.1093/carcin/5.1.23

Links to Exploration step

ISTEX:C4D7642A7EC54BEC6FCFD43D17C98FA7B55C0C8C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences</title>
<author>
<name sortKey="Graichen, M Elizabeth" sort="Graichen, M Elizabeth" uniqKey="Graichen M" first="M. Elizabeth" last="Graichen">M. Elizabeth Graichen</name>
<affiliation>
<mods:affiliation>Department of Biochemical Toxicology, Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dent, John G" sort="Dent, John G" uniqKey="Dent J" first="John G." last="Dent">John G. Dent</name>
<affiliation>
<mods:affiliation>Department of Biochemical Toxicology, Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>2To whom reprint requests should be sent</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C4D7642A7EC54BEC6FCFD43D17C98FA7B55C0C8C</idno>
<date when="1984" year="1984">1984</date>
<idno type="doi">10.1093/carcin/5.1.23</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HXZ-QHK1WPD9-J/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000710</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000710</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences</title>
<author>
<name sortKey="Graichen, M Elizabeth" sort="Graichen, M Elizabeth" uniqKey="Graichen M" first="M. Elizabeth" last="Graichen">M. Elizabeth Graichen</name>
<affiliation>
<mods:affiliation>Department of Biochemical Toxicology, Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dent, John G" sort="Dent, John G" uniqKey="Dent J" first="John G." last="Dent">John G. Dent</name>
<affiliation>
<mods:affiliation>Department of Biochemical Toxicology, Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>2To whom reprint requests should be sent</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Carcinogenesis</title>
<idno type="eISSN">1460-2180</idno>
<idno type="ISSN">0143-3334</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date when="1984-01">1984</date>
<biblScope unit="vol">5</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="23">23</biblScope>
<biblScope unit="page" to="28">28</biblScope>
</imprint>
<idno type="ISSN">0143-3334</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0143-3334</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Hepatocarcinogens have been shown to cause marked elevation of hepatic microsomal epoxide hydrobase activity in the rat at short intervals after administration. The present studies were designed to characterize 2-acetylaminofluorene (AAF) mediated epoxide hydrolase elevation and to investigate the relationship between epoxide hydrolase increases, AAF metabolism, and hepatocarcinogenicity. Oral or i.p. administration of AAF to F-344 rats produced log-linear doseresponse curves for epoxide hydrolase elevation, measured with either benzo[a]pyrene-4, 5-oxide or styrene oxide substrate. Following a single dose of AAF (35 mg/kg), epoxide hydrolase activity was maximally increased (560% of control) within 48 h, and the activity declined slowly, with a halflife of 17.5 days. Co-treatment with actinomycin D effectively blocked the AAF dependent increase in epoxide hydrolase, suggesblng that de novo protein synthesis is associated with the increase in enzyme activity. Dose-response curves for epoxide hydrolase induction by AAF, N-hydroxy-2-acetylaminofluorene (N-OH-AAF), and aminofluorene were compared, and the potencies for increasing epoxide hydrolase activity reflected the relative hepatocarcinogenic potentials of these agents. In mice, which are resistant to the hepatocarcinogenic action of AAF and deficient in AAF-N-hydroxylase activity, AAF caused no significant increase in hepatic microsomal epoxide hydrolase activity. Similarly, in Cotton rats and guinea pigs, which are lacking in ability to form the sulfate conjugate of N-OH-AAF, neither i.p. nor dietary administration of AAF elicited increases in epoxide hydrolase activity at doses which were maximally effective in F-344 rats. These results support the hypothesis that the ability of compounds to increase epoxide hydrolase activity is related to their carcinogenic potency. Furthermore, the results suggest that increases in epoxide hydrolase activity are associated with metabolism of AAF to the putative proximate carcinogen N-OH-AAF, and the subsequent conversion of this compound to the N-O-sulfate conjugate.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<keywords>
<teeft>
<json:string>epoxide</json:string>
<json:string>hydrolase</json:string>
<json:string>epoxide hydrolase activity</json:string>
<json:string>hepatic</json:string>
<json:string>epoxide hydrolase</json:string>
<json:string>epoxide hydrolase elevation</json:string>
<json:string>guinea pig</json:string>
<json:string>cotton rat</json:string>
<json:string>microsomal</json:string>
<json:string>carcinogenic</json:string>
<json:string>hyperplastic</json:string>
<json:string>nodule</json:string>
<json:string>dmso</json:string>
<json:string>hepatocarcinogens</json:string>
<json:string>hepatocarcinogenic</json:string>
<json:string>carcinogen</json:string>
<json:string>dos</json:string>
<json:string>male rat</json:string>
<json:string>metabolic activation</json:string>
<json:string>single dose</json:string>
<json:string>daily dos</json:string>
<json:string>dietary administration</json:string>
<json:string>hyperplastic nodule</json:string>
<json:string>hepatocarcinogenic potency</json:string>
<json:string>hepatic microsomal epoxide hydrolase activity</json:string>
<json:string>single oral dose</json:string>
<json:string>enzyme activity</json:string>
<json:string>strain difference</json:string>
<json:string>control animal</json:string>
<json:string>datum</json:string>
<json:string>elevation</json:string>
<json:string>assay</json:string>
<json:string>microsomal epoxide hydrolase</json:string>
<json:string>pneumonia virus</json:string>
<json:string>chemical carcinogen</json:string>
<json:string>dependent increase</json:string>
<json:string>single injection</json:string>
<json:string>lymphocytic choriomeningitis</json:string>
<json:string>last dose</json:string>
<json:string>epoxide hydrolase increase</json:string>
<json:string>significant change</json:string>
<json:string>preneoplastic antigen</json:string>
<json:string>rat</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>M. Elizabeth Graichen</name>
<affiliations>
<json:string>Department of Biochemical Toxicology, Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.</json:string>
<json:null></json:null>
</affiliations>
</json:item>
<json:item>
<name>John G. Dent</name>
<affiliations>
<json:string>Department of Biochemical Toxicology, Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.</json:string>
<json:string>2To whom reprint requests should be sent</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>5.1.23</json:string>
</articleId>
<arkIstex>ark:/67375/HXZ-QHK1WPD9-J</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Hepatocarcinogens have been shown to cause marked elevation of hepatic microsomal epoxide hydrobase activity in the rat at short intervals after administration. The present studies were designed to characterize 2-acetylaminofluorene (AAF) mediated epoxide hydrolase elevation and to investigate the relationship between epoxide hydrolase increases, AAF metabolism, and hepatocarcinogenicity. Oral or i.p. administration of AAF to F-344 rats produced log-linear doseresponse curves for epoxide hydrolase elevation, measured with either benzo[a]pyrene-4, 5-oxide or styrene oxide substrate. Following a single dose of AAF (35 mg/kg), epoxide hydrolase activity was maximally increased (560% of control) within 48 h, and the activity declined slowly, with a halflife of 17.5 days. Co-treatment with actinomycin D effectively blocked the AAF dependent increase in epoxide hydrolase, suggesblng that de novo protein synthesis is associated with the increase in enzyme activity. Dose-response curves for epoxide hydrolase induction by AAF, N-hydroxy-2-acetylaminofluorene (N-OH-AAF), and aminofluorene were compared, and the potencies for increasing epoxide hydrolase activity reflected the relative hepatocarcinogenic potentials of these agents. In mice, which are resistant to the hepatocarcinogenic action of AAF and deficient in AAF-N-hydroxylase activity, AAF caused no significant increase in hepatic microsomal epoxide hydrolase activity. Similarly, in Cotton rats and guinea pigs, which are lacking in ability to form the sulfate conjugate of N-OH-AAF, neither i.p. nor dietary administration of AAF elicited increases in epoxide hydrolase activity at doses which were maximally effective in F-344 rats. These results support the hypothesis that the ability of compounds to increase epoxide hydrolase activity is related to their carcinogenic potency. Furthermore, the results suggest that increases in epoxide hydrolase activity are associated with metabolism of AAF to the putative proximate carcinogen N-OH-AAF, and the subsequent conversion of this compound to the N-O-sulfate conjugate.</abstract>
<qualityIndicators>
<score>7.119</score>
<pdfWordCount>4119</pdfWordCount>
<pdfCharCount>27446</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>6</pdfPageCount>
<pdfPageSize>606 x 802 pts</pdfPageSize>
<pdfWordsPerPage>687</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>false</refBibsNative>
<abstractWordCount>284</abstractWordCount>
<abstractCharCount>2093</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences</title>
<pmid>
<json:string>6690083</json:string>
</pmid>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Carcinogenesis</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0143-3334</json:string>
</issn>
<eissn>
<json:string>1460-2180</json:string>
</eissn>
<publisherId>
<json:string>carcin</json:string>
</publisherId>
<volume>5</volume>
<issue>1</issue>
<pages>
<first>23</first>
<last>28</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>ORIGINAL ARTICLES</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1984</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Ralston Purina Co.</json:string>
<json:string>Sigma Chemical Company</json:string>
<json:string>Aldrich Chemical Company, Milwaukee</json:string>
<json:string>Calbiochem-Behring Corporation</json:string>
<json:string>IRL Press Ltd., Oxford, England</json:string>
<json:string>PitmanMoore, Inc.</json:string>
<json:string>Charles River Breeding Laboratories, Inc., Kingston</json:string>
<json:string>Midwest Research Institute, Kansas City, MO</json:string>
<json:string>National Center for Toxicologkal Research, Jefferson, AR</json:string>
<json:string>American Monitor Co</json:string>
<json:string>Bio-Serve, Inc.</json:string>
<json:string>Department of Drug Metabolism, Smith Kline</json:string>
<json:string>Institute of Pharmacology, Mainz, FRG</json:string>
<json:string>National Institutes of Health, Bethesda, MD</json:string>
<json:string>French Laboratories</json:string>
<json:string>American Monitors Total</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J.G.Dent</json:string>
<json:string>E.Grakhen</json:string>
<json:string>James Popp</json:string>
<json:string>Okita</json:string>
<json:string>Stephanie Schnell</json:string>
<json:string>I. Effect</json:string>
<json:string>F.A.Beland</json:string>
<json:string>U. Effect</json:string>
<json:string>John G.Dent</json:string>
<json:string>Doug Neptun</json:string>
<json:string>E.Graichen</json:string>
<json:string>Thomas Leonard</json:string>
<json:string>La Jolla</json:string>
<json:string>F.Oesch</json:string>
</persName>
<placeName>
<json:string>NJ.</json:string>
<json:string>Frenchtown</json:string>
<json:string>IN</json:string>
<json:string>Sendai</json:string>
<json:string>Washington Crossing</json:string>
<json:string>Indianapolis</json:string>
<json:string>PA</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[50]</json:string>
<json:string>Gonzalez et al.</json:string>
<json:string>Lin et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/HXZ-QHK1WPD9-J</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - oncology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - clinical medicine</json:string>
<json:string>3 - oncology & carcinogenesis</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Cancer Research</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - General Medicine</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>1984</publicationDate>
<copyrightDate>1984</copyrightDate>
<doi>
<json:string>10.1093/carcin/5.1.23</json:string>
</doi>
<id>C4D7642A7EC54BEC6FCFD43D17C98FA7B55C0C8C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-QHK1WPD9-J/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-QHK1WPD9-J/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HXZ-QHK1WPD9-J/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<licence>© IRL Press Ltd.</licence>
</availability>
<date type="Copyright" when="1984">1984</date>
<date when="1984-01">1984</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences</title>
<author xml:id="author-0000">
<persName>
<surname>Graichen</surname>
<forename type="first">M. Elizabeth</forename>
</persName>
<affiliation>
<orgName type="department">Department of Biochemical Toxicology</orgName>
<orgName type="institution">Chemical Industry Institute of Toxicology</orgName>
<address>
<addrLine>Research Triangle Park, NC 27709, USA.</addrLine>
</address>
</affiliation>
<note place="foot" n="fn1">
<p>
<hi rend="superscript">1</hi>
Present address: Department of Drug Metabolism, Smith Kline & French Laboratories PO Box 7929, Philadelphia, PA 19101, USA.</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Dent</surname>
<forename type="first">John G.</forename>
</persName>
<affiliation>
<orgName type="department">Department of Biochemical Toxicology</orgName>
<orgName type="institution">Chemical Industry Institute of Toxicology</orgName>
<address>
<addrLine>Research Triangle Park, NC 27709, USA.</addrLine>
</address>
</affiliation>
<note place="foot" n="fn1">
<p>
<hi rend="superscript">1</hi>
Present address: Department of Drug Metabolism, Smith Kline & French Laboratories PO Box 7929, Philadelphia, PA 19101, USA.</p>
</note>
<affiliation role="corresp">2To whom reprint requests should be sent</affiliation>
</author>
<idno type="istex">C4D7642A7EC54BEC6FCFD43D17C98FA7B55C0C8C</idno>
<idno type="ark">ark:/67375/HXZ-QHK1WPD9-J</idno>
<idno type="DOI">10.1093/carcin/5.1.23</idno>
<idno type="publisher-id">5.1.23</idno>
</analytic>
<monogr>
<title level="j" type="main">Carcinogenesis</title>
<idno type="hwp">carcin</idno>
<idno type="publisher-id">carcin</idno>
<idno type="pmc">carcin</idno>
<idno type="eISSN">1460-2180</idno>
<idno type="pISSN">0143-3334</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date when="1984-01">1984</date>
<biblScope unit="vol">5</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="23">23</biblScope>
<biblScope unit="page" to="28">28</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-09">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>Hepatocarcinogens have been shown to cause marked elevation of hepatic microsomal epoxide hydrobase activity in the rat at short intervals after administration. The present studies were designed to characterize 2-acetylaminofluorene (AAF) mediated epoxide hydrolase elevation and to investigate the relationship between epoxide hydrolase increases, AAF metabolism, and hepatocarcinogenicity. Oral or i.p. administration of AAF to F-344 rats produced log-linear doseresponse curves for epoxide hydrolase elevation, measured with either benzo[a]pyrene-4, 5-oxide or styrene oxide substrate. Following a single dose of AAF (35 mg/kg), epoxide hydrolase activity was maximally increased (560% of control) within 48 h, and the activity declined slowly, with a halflife of 17.5 days. Co-treatment with actinomycin D effectively blocked the AAF dependent increase in epoxide hydrolase, suggesblng that de novo protein synthesis is associated with the increase in enzyme activity. Dose-response curves for epoxide hydrolase induction by AAF, N-hydroxy-2-acetylaminofluorene (N-OH-AAF), and aminofluorene were compared, and the potencies for increasing epoxide hydrolase activity reflected the relative hepatocarcinogenic potentials of these agents. In mice, which are resistant to the hepatocarcinogenic action of AAF and deficient in AAF-N-hydroxylase activity, AAF caused no significant increase in hepatic microsomal epoxide hydrolase activity. Similarly, in Cotton rats and guinea pigs, which are lacking in ability to form the sulfate conjugate of N-OH-AAF, neither i.p. nor dietary administration of AAF elicited increases in epoxide hydrolase activity at doses which were maximally effective in F-344 rats. These results support the hypothesis that the ability of compounds to increase epoxide hydrolase activity is related to their carcinogenic potency. Furthermore, the results suggest that increases in epoxide hydrolase activity are associated with metabolism of AAF to the putative proximate carcinogen N-OH-AAF, and the subsequent conversion of this compound to the N-O-sulfate conjugate.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="subject">
<term>ORIGINAL ARTICLES</term>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-09" who="#istex" xml:id="pub2tei">formatting</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2019-12-11">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-QHK1WPD9-J/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">carcin</journal-id>
<journal-id journal-id-type="publisher-id">carcin</journal-id>
<journal-id journal-id-type="pmc">carcin</journal-id>
<journal-title>Carcinogenesis</journal-title>
<issn pub-type="epub">1460-2180</issn>
<issn pub-type="ppub">0143-3334</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1093/carcin/5.1.23</article-id>
<article-id pub-id-type="publisher-id">5.1.23</article-id>
<article-categories>
<subj-group>
<subject>ORIGINAL ARTICLES</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Graichen</surname>
<given-names>M. Elizabeth</given-names>
</name>
<xref ref-type="fn" rid="fn1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dent</surname>
<given-names>John G.</given-names>
</name>
<xref ref-type="fn" rid="fn1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>2</sup>
</xref>
</contrib>
<aff>
<institution>Department of Biochemical Toxicology, Chemical Industry Institute of Toxicology</institution>
<addr-line>Research Triangle Park, NC 27709, USA.</addr-line>
</aff>
</contrib-group>
<author-notes>
<fn id="fn1">
<p>
<sup>1</sup>
Present address: Department of Drug Metabolism, Smith Kline & French Laboratories PO Box 7929, Philadelphia, PA 19101, USA.</p>
</fn>
<corresp id="cor1">
<sup>2</sup>
To whom reprint requests should be sent</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>1</month>
<year>1984</year>
</pub-date>
<volume>5</volume>
<issue>1</issue>
<fpage>23</fpage>
<lpage>28</lpage>
<history>
<date date-type="received">
<day>10</day>
<month>6</month>
<year>1983</year>
</date>
<date date-type="accepted">
<day>01</day>
<month>10</month>
<year>1983</year>
</date>
</history>
<copyright-statement>© IRL Press Ltd.</copyright-statement>
<copyright-year>1984</copyright-year>
<abstract>
<p>Hepatocarcinogens have been shown to cause marked elevation of hepatic microsomal epoxide hydrobase activity in the rat at short intervals after administration. The present studies were designed to characterize 2-acetylaminofluorene (AAF) mediated epoxide hydrolase elevation and to investigate the relationship between epoxide hydrolase increases, AAF metabolism, and hepatocarcinogenicity. Oral or i.p. administration of AAF to F-344 rats produced log-linear doseresponse curves for epoxide hydrolase elevation, measured with either benzo[a]pyrene-4, 5-oxide or styrene oxide substrate. Following a single dose of AAF (35 mg/kg), epoxide hydrolase activity was maximally increased (560% of control) within 48 h, and the activity declined slowly, with a halflife of 17.5 days. Co-treatment with actinomycin D effectively blocked the AAF dependent increase in epoxide hydrolase, suggesblng that de novo protein synthesis is associated with the increase in enzyme activity. Dose-response curves for epoxide hydrolase induction by AAF, N-hydroxy-2-acetylaminofluorene (N-OH-AAF), and aminofluorene were compared, and the potencies for increasing epoxide hydrolase activity reflected the relative hepatocarcinogenic potentials of these agents. In mice, which are resistant to the hepatocarcinogenic action of AAF and deficient in AAF-N-hydroxylase activity, AAF caused no significant increase in hepatic microsomal epoxide hydrolase activity. Similarly, in Cotton rats and guinea pigs, which are lacking in ability to form the sulfate conjugate of N-OH-AAF, neither i.p. nor dietary administration of AAF elicited increases in epoxide hydrolase activity at doses which were maximally effective in F-344 rats. These results support the hypothesis that the ability of compounds to increase epoxide hydrolase activity is related to their carcinogenic potency. Furthermore, the results suggest that increases in epoxide hydrolase activity are associated with metabolism of AAF to the putative proximate carcinogen N-OH-AAF, and the subsequent conversion of this compound to the N-O-sulfate conjugate.</p>
</abstract>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences</title>
</titleInfo>
<name type="personal">
<namePart type="given">M. Elizabeth</namePart>
<namePart type="family">Graichen</namePart>
<affiliation>Department of Biochemical Toxicology, Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.</affiliation>
<affiliation></affiliation>
<description>1Present address: Department of Drug Metabolism, Smith Kline & French Laboratories PO Box 7929, Philadelphia, PA 19101, USA.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John G.</namePart>
<namePart type="family">Dent</namePart>
<affiliation>Department of Biochemical Toxicology, Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.</affiliation>
<affiliation>2To whom reprint requests should be sent</affiliation>
<description>1Present address: Department of Drug Metabolism, Smith Kline & French Laboratories PO Box 7929, Philadelphia, PA 19101, USA.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">1984-01</dateIssued>
<dateCreated encoding="w3cdtf">1983-10-01</dateCreated>
<copyrightDate encoding="w3cdtf">1984</copyrightDate>
</originInfo>
<abstract>Hepatocarcinogens have been shown to cause marked elevation of hepatic microsomal epoxide hydrobase activity in the rat at short intervals after administration. The present studies were designed to characterize 2-acetylaminofluorene (AAF) mediated epoxide hydrolase elevation and to investigate the relationship between epoxide hydrolase increases, AAF metabolism, and hepatocarcinogenicity. Oral or i.p. administration of AAF to F-344 rats produced log-linear doseresponse curves for epoxide hydrolase elevation, measured with either benzo[a]pyrene-4, 5-oxide or styrene oxide substrate. Following a single dose of AAF (35 mg/kg), epoxide hydrolase activity was maximally increased (560% of control) within 48 h, and the activity declined slowly, with a halflife of 17.5 days. Co-treatment with actinomycin D effectively blocked the AAF dependent increase in epoxide hydrolase, suggesblng that de novo protein synthesis is associated with the increase in enzyme activity. Dose-response curves for epoxide hydrolase induction by AAF, N-hydroxy-2-acetylaminofluorene (N-OH-AAF), and aminofluorene were compared, and the potencies for increasing epoxide hydrolase activity reflected the relative hepatocarcinogenic potentials of these agents. In mice, which are resistant to the hepatocarcinogenic action of AAF and deficient in AAF-N-hydroxylase activity, AAF caused no significant increase in hepatic microsomal epoxide hydrolase activity. Similarly, in Cotton rats and guinea pigs, which are lacking in ability to form the sulfate conjugate of N-OH-AAF, neither i.p. nor dietary administration of AAF elicited increases in epoxide hydrolase activity at doses which were maximally effective in F-344 rats. These results support the hypothesis that the ability of compounds to increase epoxide hydrolase activity is related to their carcinogenic potency. Furthermore, the results suggest that increases in epoxide hydrolase activity are associated with metabolism of AAF to the putative proximate carcinogen N-OH-AAF, and the subsequent conversion of this compound to the N-O-sulfate conjugate.</abstract>
<note type="footnotes">1Present address: Department of Drug Metabolism, Smith Kline & French Laboratories PO Box 7929, Philadelphia, PA 19101, USA.</note>
<note type="author-notes">2To whom reprint requests should be sent</note>
<relatedItem type="host">
<titleInfo>
<title>Carcinogenesis</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<topic>ORIGINAL ARTICLES</topic>
</subject>
<identifier type="ISSN">0143-3334</identifier>
<identifier type="eISSN">1460-2180</identifier>
<identifier type="PublisherID">carcin</identifier>
<identifier type="PublisherID-hwp">carcin</identifier>
<part>
<date>1984</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>23</start>
<end>28</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">C4D7642A7EC54BEC6FCFD43D17C98FA7B55C0C8C</identifier>
<identifier type="ark">ark:/67375/HXZ-QHK1WPD9-J</identifier>
<identifier type="DOI">10.1093/carcin/5.1.23</identifier>
<identifier type="ArticleID">5.1.23</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© IRL Press Ltd.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>Converted from (version 1.2.0) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-12-09</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-QHK1WPD9-J/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-QHK1WPD9-J/annexes.pdf</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000710 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000710 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C4D7642A7EC54BEC6FCFD43D17C98FA7B55C0C8C
   |texte=   Elevation of hepatic microsomal epoxide hydrolase activity by 2-acetylaminofluorene: strain and species differences
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021