Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glycosylation and processing of prepro-α-factor through the yeast secretory pathway

Identifieur interne : 000693 ( Istex/Corpus ); précédent : 000692; suivant : 000694

Glycosylation and processing of prepro-α-factor through the yeast secretory pathway

Auteurs : David Julius ; Randy Schekman ; Jeremy Thorner

Source :

RBID : ISTEX:A51AA3F9D0779712D69A07B6CED82E83D75856B0

English descriptors

Abstract

Abstract: Events in the synthesis and processing of prepro-α-factor have been assessed with the aid of mutants blocked at various stages in the yeast secretory pathway. In normal cells treated with tunicamycin, a precursor accumulates which is identical in molecular weight to the primary translation product synthesized in vitro. At the restrictive temperature in a mutant blocked early in the pathway (sec53), a molecule of similar molecular weight accumulates. In mutants affecting translocation into (sec59) and passage from (sec18) the endoplasmic reticulum, a glycosylated form of the precursor containing three N-linked core oligosaccharides accumulates; however, it appears that the signal peptide is not removed. The glycosylated precursor first experiences proteolytic processing when accumulated in a mutant (sec7) blocked at the stage of the Golgi apparatus. Substantially greater amounts of the mature pheromone are seen in mutants that accumulate secretory vesicles (sec1, sec2, sec3, sec5).

Url:
DOI: 10.1016/0092-8674(84)90224-1

Links to Exploration step

ISTEX:A51AA3F9D0779712D69A07B6CED82E83D75856B0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Glycosylation and processing of prepro-α-factor through the yeast secretory pathway</title>
<author>
<name sortKey="Julius, David" sort="Julius, David" uniqKey="Julius D" first="David" last="Julius">David Julius</name>
<affiliation>
<mods:affiliation>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biochemistry University of California Berkeley, California 94720 USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schekman, Randy" sort="Schekman, Randy" uniqKey="Schekman R" first="Randy" last="Schekman">Randy Schekman</name>
<affiliation>
<mods:affiliation>Department of Biochemistry University of California Berkeley, California 94720 USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
<affiliation>
<mods:affiliation>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A51AA3F9D0779712D69A07B6CED82E83D75856B0</idno>
<date when="1984" year="1984">1984</date>
<idno type="doi">10.1016/0092-8674(84)90224-1</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-N183QWFH-4/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000693</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000693</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Glycosylation and processing of prepro-α-factor through the yeast secretory pathway</title>
<author>
<name sortKey="Julius, David" sort="Julius, David" uniqKey="Julius D" first="David" last="Julius">David Julius</name>
<affiliation>
<mods:affiliation>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biochemistry University of California Berkeley, California 94720 USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schekman, Randy" sort="Schekman, Randy" uniqKey="Schekman R" first="Randy" last="Schekman">Randy Schekman</name>
<affiliation>
<mods:affiliation>Department of Biochemistry University of California Berkeley, California 94720 USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
<affiliation>
<mods:affiliation>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Cell</title>
<title level="j" type="abbrev">CELL</title>
<idno type="ISSN">0092-8674</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1984">1984</date>
<biblScope unit="volume">36</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="309">309</biblScope>
<biblScope unit="page" to="318">318</biblScope>
</imprint>
<idno type="ISSN">0092-8674</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0092-8674</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Animal cells</term>
<term>Biol</term>
<term>Biosynthesis</term>
<term>Brake</term>
<term>Carbohydrate</term>
<term>Carbohydrate chains</term>
<term>Cell lysates</term>
<term>Centrifugation</term>
<term>Cerevisiae</term>
<term>Chem</term>
<term>Cleavage</term>
<term>Core oligosaccharides</term>
<term>Endo</term>
<term>Endoplasmic reticulum</term>
<term>Entire secretory pathway</term>
<term>Equal portions</term>
<term>Equal volume</term>
<term>Esmon</term>
<term>Experimental procedures</term>
<term>Field mata</term>
<term>Glycoprotein</term>
<term>Glycosyl chains</term>
<term>Glycosylated</term>
<term>Glycosylated form</term>
<term>Glycosylated precursor</term>
<term>Glycosylation</term>
<term>Golgi</term>
<term>Golgi apparatus</term>
<term>Granule</term>
<term>Immunoprecipitated</term>
<term>Invertase</term>
<term>Lysates</term>
<term>Mata</term>
<term>Mata cells</term>
<term>Mata secl8</term>
<term>Mature pheromone</term>
<term>Mature secretory granules</term>
<term>Microsome</term>
<term>Minimal medium</term>
<term>Molecular weight</term>
<term>Mutant</term>
<term>Mutation</term>
<term>Novick</term>
<term>Oligosaccharide</term>
<term>Oligosaccharide chains</term>
<term>Pancreas</term>
<term>Pancreas microsomes</term>
<term>Pathway</term>
<term>Peptide</term>
<term>Pheromone</term>
<term>Polypeptide</term>
<term>Precursor</term>
<term>Proteolytic</term>
<term>Proteolytic processing</term>
<term>Restrictive temperature</term>
<term>Saccharomyces</term>
<term>Saccharomyces cerevisiae</term>
<term>Same medium</term>
<term>Schekman</term>
<term>Secl</term>
<term>Secl8</term>
<term>Secl8 cells</term>
<term>Secretion</term>
<term>Secretory</term>
<term>Secretory granules</term>
<term>Secretory pathway</term>
<term>Secretory vesicles</term>
<term>Signal sequence</term>
<term>Thorner</term>
<term>Translation product</term>
<term>Tunicamycin</term>
<term>Tunicamycin treatment</term>
<term>Vesicle</term>
<term>Water bath</term>
<term>Wheat germ</term>
<term>Yeast</term>
<term>Yeast secretory pathway</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Events in the synthesis and processing of prepro-α-factor have been assessed with the aid of mutants blocked at various stages in the yeast secretory pathway. In normal cells treated with tunicamycin, a precursor accumulates which is identical in molecular weight to the primary translation product synthesized in vitro. At the restrictive temperature in a mutant blocked early in the pathway (sec53), a molecule of similar molecular weight accumulates. In mutants affecting translocation into (sec59) and passage from (sec18) the endoplasmic reticulum, a glycosylated form of the precursor containing three N-linked core oligosaccharides accumulates; however, it appears that the signal peptide is not removed. The glycosylated precursor first experiences proteolytic processing when accumulated in a mutant (sec7) blocked at the stage of the Golgi apparatus. Substantially greater amounts of the mature pheromone are seen in mutants that accumulate secretory vesicles (sec1, sec2, sec3, sec5).</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>precursor</json:string>
<json:string>secretory</json:string>
<json:string>mutant</json:string>
<json:string>pheromone</json:string>
<json:string>glycosylated</json:string>
<json:string>tunicamycin</json:string>
<json:string>mata</json:string>
<json:string>secl8</json:string>
<json:string>endo</json:string>
<json:string>pathway</json:string>
<json:string>oligosaccharide</json:string>
<json:string>invertase</json:string>
<json:string>biol</json:string>
<json:string>microsome</json:string>
<json:string>glycosylation</json:string>
<json:string>mutation</json:string>
<json:string>granule</json:string>
<json:string>polypeptide</json:string>
<json:string>golgi</json:string>
<json:string>glycoprotein</json:string>
<json:string>vesicle</json:string>
<json:string>schekman</json:string>
<json:string>molecular weight</json:string>
<json:string>pancreas</json:string>
<json:string>chem</json:string>
<json:string>restrictive temperature</json:string>
<json:string>signal sequence</json:string>
<json:string>cerevisiae</json:string>
<json:string>peptide</json:string>
<json:string>saccharomyces</json:string>
<json:string>experimental procedures</json:string>
<json:string>secretory pathway</json:string>
<json:string>biosynthesis</json:string>
<json:string>mature pheromone</json:string>
<json:string>lysates</json:string>
<json:string>secl</json:string>
<json:string>translation product</json:string>
<json:string>immunoprecipitated</json:string>
<json:string>novick</json:string>
<json:string>thorner</json:string>
<json:string>esmon</json:string>
<json:string>field mata</json:string>
<json:string>core oligosaccharides</json:string>
<json:string>secretory vesicles</json:string>
<json:string>pancreas microsomes</json:string>
<json:string>secl8 cells</json:string>
<json:string>yeast</json:string>
<json:string>secretory granules</json:string>
<json:string>yeast secretory pathway</json:string>
<json:string>equal portions</json:string>
<json:string>carbohydrate</json:string>
<json:string>proteolytic</json:string>
<json:string>golgi apparatus</json:string>
<json:string>water bath</json:string>
<json:string>glycosyl chains</json:string>
<json:string>cell lysates</json:string>
<json:string>tunicamycin treatment</json:string>
<json:string>proteolytic processing</json:string>
<json:string>glycosylated form</json:string>
<json:string>endoplasmic reticulum</json:string>
<json:string>mata cells</json:string>
<json:string>mata secl8</json:string>
<json:string>cleavage</json:string>
<json:string>oligosaccharide chains</json:string>
<json:string>carbohydrate chains</json:string>
<json:string>same medium</json:string>
<json:string>minimal medium</json:string>
<json:string>animal cells</json:string>
<json:string>equal volume</json:string>
<json:string>saccharomyces cerevisiae</json:string>
<json:string>wheat germ</json:string>
<json:string>mature secretory granules</json:string>
<json:string>glycosylated precursor</json:string>
<json:string>entire secretory pathway</json:string>
<json:string>centrifugation</json:string>
<json:string>brake</json:string>
<json:string>secretion</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>David Julius</name>
<affiliations>
<json:string>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</json:string>
<json:string>Department of Biochemistry University of California Berkeley, California 94720 USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Randy Schekman</name>
<affiliations>
<json:string>Department of Biochemistry University of California Berkeley, California 94720 USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jeremy Thorner</name>
<affiliations>
<json:string>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-N183QWFH-4</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Events in the synthesis and processing of prepro-α-factor have been assessed with the aid of mutants blocked at various stages in the yeast secretory pathway. In normal cells treated with tunicamycin, a precursor accumulates which is identical in molecular weight to the primary translation product synthesized in vitro. At the restrictive temperature in a mutant blocked early in the pathway (sec53), a molecule of similar molecular weight accumulates. In mutants affecting translocation into (sec59) and passage from (sec18) the endoplasmic reticulum, a glycosylated form of the precursor containing three N-linked core oligosaccharides accumulates; however, it appears that the signal peptide is not removed. The glycosylated precursor first experiences proteolytic processing when accumulated in a mutant (sec7) blocked at the stage of the Golgi apparatus. Substantially greater amounts of the mature pheromone are seen in mutants that accumulate secretory vesicles (sec1, sec2, sec3, sec5).</abstract>
<qualityIndicators>
<score>8.728</score>
<pdfWordCount>7317</pdfWordCount>
<pdfCharCount>47927</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>612.28 x 828 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>144</abstractWordCount>
<abstractCharCount>1005</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Glycosylation and processing of prepro-α-factor through the yeast secretory pathway</title>
<pmid>
<json:string>6420074</json:string>
</pmid>
<pii>
<json:string>0092-8674(84)90224-1</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>Proc. Nat. Acad. Sci. USA</title>
<language>
<json:string>unknown</json:string>
</language>
<volume>80</volume>
<pages>
<first>7080</first>
<last>7084</last>
</pages>
</serie>
<host>
<title>Cell</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1984</publicationDate>
<issn>
<json:string>0092-8674</json:string>
</issn>
<pii>
<json:string>S0092-8674(00)X0513-2</json:string>
</pii>
<volume>36</volume>
<issue>2</issue>
<pages>
<first>309</first>
<last>318</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>36S</json:string>
<json:string>1984</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Dormer Laboratory, Untversity of Calrfornra, Berkeley, California</json:string>
<json:string>Enzyme Center, Boston</json:string>
<json:string>Biochem</json:string>
<json:string>Yeast Genetic Stock Center</json:string>
<json:string>Sigma Chemical Co.</json:string>
<json:string>University of California</json:string>
<json:string>Department of Biochemistry University of California Berkeley, California</json:string>
<json:string>National Institute of General Medical Sciences</json:string>
</orgName>
<orgName_funder>
<json:string>National Institute of General Medical Sciences</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J. Biol</json:string>
<json:string>B. E. Esmon</json:string>
<json:string>Hiroshi Nikaido</json:string>
<json:string>D. Shields</json:string>
<json:string>J. Thorner</json:string>
<json:string>J. Cell</json:string>
<json:string>A. Brake</json:string>
<json:string>Randy Schekman</json:string>
<json:string>J. Rubenstein</json:string>
<json:string>John Rubenstein</json:string>
<json:string>U.S.C. Section</json:string>
<json:string>Speed-Vat</json:string>
<json:string>Jeremy Nathans</json:string>
<json:string>I. Presence</json:string>
<json:string>Irene Schauer</json:string>
<json:string>Miles Biochemicals</json:string>
<json:string>Robert K. Mortimer</json:string>
<json:string>P. Robbins</json:string>
<json:string>C. Field</json:string>
<json:string>J. Nathans</json:string>
<json:string>L. Blair</json:string>
<json:string>Jeremy Thorner</json:string>
<json:string>D. Julius</json:string>
<json:string>Anthony Brake</json:string>
<json:string>Tom Stevens</json:string>
</persName>
<placeName>
<json:string>Hanover</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Ferro-Novick et al., 1984a</json:string>
<json:string>Novick et al., 1981</json:string>
<json:string>Singh et al., 1983</json:string>
<json:string>Yfactor respectively (for review see Thorner, 1981</json:string>
<json:string>Hanover et al., 1982</json:string>
<json:string>Emr et al., 1983</json:string>
<json:string>Gibson et al. (1982)</json:string>
<json:string>Novick et al., 1980</json:string>
<json:string>Gumbiner and Kelly, 1982</json:string>
<json:string>Machida and Kabat, 1982</json:string>
<json:string>Steiner, 1976</json:string>
<json:string>Huffaker and Robbins, 1982</json:string>
<json:string>Ferro-Novick et al. (1984a, 1984b)</json:string>
<json:string>Penman et al., 1982</json:string>
<json:string>Julius et al., 1983</json:string>
<json:string>Mollay et al., 1980</json:string>
<json:string>for review see Schekman, 1982</json:string>
<json:string>Carlson et al., 1983</json:string>
<json:string>Gumbiner and Kelly, 1981</json:string>
<json:string>Herbert and Uhler, 1982</json:string>
<json:string>Esmon et al., 1981</json:string>
<json:string>Prakash et al., 1983</json:string>
<json:string>Zhang et al., 1982</json:string>
<json:string>Fields et al., 1981</json:string>
<json:string>Perlman et al., 1982</json:string>
<json:string>Bostian et al., 1983</json:string>
<json:string>Y. Jones-Brown et al.</json:string>
<json:string>Kreil, 1973</json:string>
<json:string>Julius et al.. 1963</json:string>
<json:string>Cieiek and Thorner, 1979</json:string>
<json:string>Bussey et al., 1983</json:string>
<json:string>Sherman et al., 1979</json:string>
<json:string>Rubenstein and Chappell, 1983</json:string>
<json:string>Goldstern and Lampen, 1975</json:string>
<json:string>Brownstein et al., 1980</json:string>
<json:string>Tarentino et al., 1974</json:string>
<json:string>Laemmli, 1970</json:string>
<json:string>Kurjan and Herskowitz, 1982</json:string>
<json:string>Hasilik and Tanner, 1978</json:string>
<json:string>Ferro-Novick et al., 1984b</json:string>
<json:string>Robbins, 1982</json:string>
<json:string>Shields and Blobel, 1978</json:string>
<json:string>Neimann et al., 1982</json:string>
<json:string>Brake et al., 1983</json:string>
<json:string>Mahoney and Duskin, 1979</json:string>
<json:string>Julius et al., 1963</json:string>
<json:string>Blobel and Dobberstein, 1975</json:string>
<json:string>Ravazzola et al., 1983</json:string>
<json:string>Byrd et al., 1982</json:string>
<json:string>Struck et al., 1978</json:string>
<json:string>Esmon et al., 1961</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-N183QWFH-4</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - cell biology</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - developmental biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - General Biochemistry, Genetics and Molecular Biology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1984</publicationDate>
<copyrightDate>1984</copyrightDate>
<doi>
<json:string>10.1016/0092-8674(84)90224-1</json:string>
</doi>
<id>A51AA3F9D0779712D69A07B6CED82E83D75856B0</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-N183QWFH-4/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-N183QWFH-4/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-N183QWFH-4/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Glycosylation and processing of prepro-α-factor through the yeast secretory pathway</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>elsevier</p>
</licence>
</availability>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M"></p>
<date>1984</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Section title: Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Glycosylation and processing of prepro-α-factor through the yeast secretory pathway</title>
<author xml:id="author-0000">
<persName>
<forename type="first">David</forename>
<surname>Julius</surname>
</persName>
<affiliation>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</affiliation>
<affiliation>Department of Biochemistry University of California Berkeley, California 94720 USA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Randy</forename>
<surname>Schekman</surname>
</persName>
<affiliation>Department of Biochemistry University of California Berkeley, California 94720 USA</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Jeremy</forename>
<surname>Thorner</surname>
</persName>
<affiliation>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</affiliation>
</author>
<idno type="istex">A51AA3F9D0779712D69A07B6CED82E83D75856B0</idno>
<idno type="ark">ark:/67375/6H6-N183QWFH-4</idno>
<idno type="DOI">10.1016/0092-8674(84)90224-1</idno>
<idno type="PII">0092-8674(84)90224-1</idno>
</analytic>
<monogr>
<title level="j">Cell</title>
<title level="j" type="abbrev">CELL</title>
<idno type="pISSN">0092-8674</idno>
<idno type="PII">S0092-8674(00)X0513-2</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1984"></date>
<biblScope unit="volume">36</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="309">309</biblScope>
<biblScope unit="page" to="318">318</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1984</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Events in the synthesis and processing of prepro-α-factor have been assessed with the aid of mutants blocked at various stages in the yeast secretory pathway. In normal cells treated with tunicamycin, a precursor accumulates which is identical in molecular weight to the primary translation product synthesized in vitro. At the restrictive temperature in a mutant blocked early in the pathway (sec53), a molecule of similar molecular weight accumulates. In mutants affecting translocation into (sec59) and passage from (sec18) the endoplasmic reticulum, a glycosylated form of the precursor containing three N-linked core oligosaccharides accumulates; however, it appears that the signal peptide is not removed. The glycosylated precursor first experiences proteolytic processing when accumulated in a mutant (sec7) blocked at the stage of the Golgi apparatus. Substantially greater amounts of the mature pheromone are seen in mutants that accumulate secretory vesicles (sec1, sec2, sec3, sec5).</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1983-12-01">Modified</change>
<change when="1984">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-N183QWFH-4/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>CELL</jid>
<aid>84902241</aid>
<ce:pii>0092-8674(84)90224-1</ce:pii>
<ce:doi>10.1016/0092-8674(84)90224-1</ce:doi>
<ce:copyright type="unknown" year="1984"></ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Article</ce:textfn>
</ce:dochead>
<ce:title>Glycosylation and processing of prepro-α-factor through the yeast secretory pathway</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>David</ce:given-name>
<ce:surname>Julius</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup></ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Randy</ce:given-name>
<ce:surname>Schekman</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jeremy</ce:given-name>
<ce:surname>Thorner</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Department of Biochemistry University of California Berkeley, California 94720 USA</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="11" month="10" year="1983"></ce:date-received>
<ce:date-revised day="1" month="12" year="1983"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Events in the synthesis and processing of prepro-α-factor have been assessed with the aid of mutants blocked at various stages in the yeast secretory pathway. In normal cells treated with tunicamycin, a precursor accumulates which is identical in molecular weight to the primary translation product synthesized in vitro. At the restrictive temperature in a mutant blocked early in the pathway (sec53), a molecule of similar molecular weight accumulates. In mutants affecting translocation into (sec59) and passage from (sec18) the endoplasmic reticulum, a glycosylated form of the precursor containing three N-linked core oligosaccharides accumulates; however, it appears that the signal peptide is not removed. The glycosylated precursor first experiences proteolytic processing when accumulated in a mutant (sec7) blocked at the stage of the Golgi apparatus. Substantially greater amounts of the mature pheromone are seen in mutants that accumulate secretory vesicles (sec1, sec2, sec3, sec5).</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Glycosylation and processing of prepro-α-factor through the yeast secretory pathway</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Glycosylation and processing of prepro-α-factor through the yeast secretory pathway</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Julius</namePart>
<affiliation>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</affiliation>
<affiliation>Department of Biochemistry University of California Berkeley, California 94720 USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Randy</namePart>
<namePart type="family">Schekman</namePart>
<affiliation>Department of Biochemistry University of California Berkeley, California 94720 USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Thorner</namePart>
<affiliation>Department of Microbiology and Immunology University of California Berkeley, California 94720 USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1984</dateIssued>
<dateModified encoding="w3cdtf">1983-12-01</dateModified>
<copyrightDate encoding="w3cdtf">1984</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Events in the synthesis and processing of prepro-α-factor have been assessed with the aid of mutants blocked at various stages in the yeast secretory pathway. In normal cells treated with tunicamycin, a precursor accumulates which is identical in molecular weight to the primary translation product synthesized in vitro. At the restrictive temperature in a mutant blocked early in the pathway (sec53), a molecule of similar molecular weight accumulates. In mutants affecting translocation into (sec59) and passage from (sec18) the endoplasmic reticulum, a glycosylated form of the precursor containing three N-linked core oligosaccharides accumulates; however, it appears that the signal peptide is not removed. The glycosylated precursor first experiences proteolytic processing when accumulated in a mutant (sec7) blocked at the stage of the Golgi apparatus. Substantially greater amounts of the mature pheromone are seen in mutants that accumulate secretory vesicles (sec1, sec2, sec3, sec5).</abstract>
<note type="content">Section title: Article</note>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CELL</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1984</dateIssued>
</originInfo>
<identifier type="ISSN">0092-8674</identifier>
<identifier type="PII">S0092-8674(00)X0513-2</identifier>
<part>
<date>1984</date>
<detail type="volume">
<number>36</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>235</start>
<end>566</end>
</extent>
<extent unit="pages">
<start>309</start>
<end>318</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">A51AA3F9D0779712D69A07B6CED82E83D75856B0</identifier>
<identifier type="ark">ark:/67375/6H6-N183QWFH-4</identifier>
<identifier type="DOI">10.1016/0092-8674(84)90224-1</identifier>
<identifier type="PII">0092-8674(84)90224-1</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-N183QWFH-4/record.json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000693 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000693 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A51AA3F9D0779712D69A07B6CED82E83D75856B0
   |texte=   Glycosylation and processing of prepro-α-factor through the yeast secretory pathway
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021