Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques

Identifieur interne : 000626 ( Istex/Corpus ); précédent : 000625; suivant : 000627

Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques

Auteurs : Shobha Gangodkar ; Preksha Jain ; Nishikant Dixit ; Kanjaksha Ghosh ; Atanu Basu

Source :

RBID : ISTEX:935978052B3A8551F2036D32EBA6CEC090F03BB2

Abstract

The biogenesis events and formation of dengue virus (DENV) in the infected host cells remain incompletely understood. In the present study, we examined the ultrastructural changes associated with DENV-2 replication in three susceptible host cells, C6/36, Vero and SK Hep1, a cell line of human endothelial origin, using transmission electron microscopy, whole-mount grid-cell culture techniques and electron tomography (ET). The prominent feature in C6/36 cells was the formation of large perinuclear vacuoles with mature DENV particles, and on-grid whole-mount examination of the infected Vero cells showed different forms of DENV core structures associated with cellular membranes within 48 h after infection. Distinct multivesicular structures and prominent autophagic vesicles were seen in the infected SK Hep1 cells when compared with the other two cell lines. ET showed the three-dimensional organization of these vesicles as a continuous system. This is the first report of ET-based analysis of DENV-2 replication in a human endothelial cell line. These results further emphasizes the strong role played by intracellular host membranes–virus interactions in the biogenesis of DENV and strongly argues for the possibility of targeting compounds to block such structure formation as key anti-dengue agents.

Url:
DOI: 10.1093/jmicro/dfq063

Links to Exploration step

ISTEX:935978052B3A8551F2036D32EBA6CEC090F03BB2

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques</title>
<author>
<name sortKey="Gangodkar, Shobha" sort="Gangodkar, Shobha" uniqKey="Gangodkar S" first="Shobha" last="Gangodkar">Shobha Gangodkar</name>
<affiliation>
<mods:affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jain, Preksha" sort="Jain, Preksha" uniqKey="Jain P" first="Preksha" last="Jain">Preksha Jain</name>
<affiliation>
<mods:affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dixit, Nishikant" sort="Dixit, Nishikant" uniqKey="Dixit N" first="Nishikant" last="Dixit">Nishikant Dixit</name>
<affiliation>
<mods:affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Kanjaksha" sort="Ghosh, Kanjaksha" uniqKey="Ghosh K" first="Kanjaksha" last="Ghosh">Kanjaksha Ghosh</name>
<affiliation>
<mods:affiliation>National Institute of Immunohematology (ICMR), 13th Floor KEM Hospital, Parel, Mumbai, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Basu, Atanu" sort="Basu, Atanu" uniqKey="Basu A" first="Atanu" last="Basu">Atanu Basu</name>
<affiliation>
<mods:affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: basua@icmr.org.in</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>To whom correspondence should be addressed. E-mail: basua@icmr.org.in</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:935978052B3A8551F2036D32EBA6CEC090F03BB2</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1093/jmicro/dfq063</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HXZ-FWGV50K4-7/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000626</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000626</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques</title>
<author>
<name sortKey="Gangodkar, Shobha" sort="Gangodkar, Shobha" uniqKey="Gangodkar S" first="Shobha" last="Gangodkar">Shobha Gangodkar</name>
<affiliation>
<mods:affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jain, Preksha" sort="Jain, Preksha" uniqKey="Jain P" first="Preksha" last="Jain">Preksha Jain</name>
<affiliation>
<mods:affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dixit, Nishikant" sort="Dixit, Nishikant" uniqKey="Dixit N" first="Nishikant" last="Dixit">Nishikant Dixit</name>
<affiliation>
<mods:affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Kanjaksha" sort="Ghosh, Kanjaksha" uniqKey="Ghosh K" first="Kanjaksha" last="Ghosh">Kanjaksha Ghosh</name>
<affiliation>
<mods:affiliation>National Institute of Immunohematology (ICMR), 13th Floor KEM Hospital, Parel, Mumbai, India</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Basu, Atanu" sort="Basu, Atanu" uniqKey="Basu A" first="Atanu" last="Basu">Atanu Basu</name>
<affiliation>
<mods:affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: basua@icmr.org.in</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>To whom correspondence should be addressed. E-mail: basua@icmr.org.in</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Electron Microscopy</title>
<title level="j" type="abbrev">J Electron Microsc</title>
<idno type="ISSN">0022-0744</idno>
<idno type="eISSN">1477-9986</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date when="2010-12">2010</date>
<date type="e-published" when="2010-08-12">2010</date>
<biblScope unit="vol">59</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="503">503</biblScope>
<biblScope unit="page" to="511">511</biblScope>
</imprint>
<idno type="ISSN">0022-0744</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-0744</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The biogenesis events and formation of dengue virus (DENV) in the infected host cells remain incompletely understood. In the present study, we examined the ultrastructural changes associated with DENV-2 replication in three susceptible host cells, C6/36, Vero and SK Hep1, a cell line of human endothelial origin, using transmission electron microscopy, whole-mount grid-cell culture techniques and electron tomography (ET). The prominent feature in C6/36 cells was the formation of large perinuclear vacuoles with mature DENV particles, and on-grid whole-mount examination of the infected Vero cells showed different forms of DENV core structures associated with cellular membranes within 48 h after infection. Distinct multivesicular structures and prominent autophagic vesicles were seen in the infected SK Hep1 cells when compared with the other two cell lines. ET showed the three-dimensional organization of these vesicles as a continuous system. This is the first report of ET-based analysis of DENV-2 replication in a human endothelial cell line. These results further emphasizes the strong role played by intracellular host membranes–virus interactions in the biogenesis of DENV and strongly argues for the possibility of targeting compounds to block such structure formation as key anti-dengue agents.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<keywords>
<teeft>
<json:string>dengue</json:string>
<json:string>hep1</json:string>
<json:string>denv</json:string>
<json:string>tomography</json:string>
<json:string>grid</json:string>
<json:string>cytoplasmic</json:string>
<json:string>ultrastructural</json:string>
<json:string>hep1 cell</json:string>
<json:string>electron tomography</json:string>
<json:string>replication</json:string>
<json:string>dengue virus</json:string>
<json:string>cell line</json:string>
<json:string>vacuole</json:string>
<json:string>endomembrane</json:string>
<json:string>host cell</json:string>
<json:string>ultrastructural change</json:string>
<json:string>dengue virus replication</json:string>
<json:string>endothelial</json:string>
<json:string>human endothelial cell line</json:string>
<json:string>denv replication</json:string>
<json:string>membrane structure</json:string>
<json:string>electron microscopy</json:string>
<json:string>present study</json:string>
<json:string>vero</json:string>
<json:string>representative image</json:string>
<json:string>national institute</json:string>
<json:string>cytoplasmic membrane alteration</json:string>
<json:string>cell culture</json:string>
<json:string>formvar support</json:string>
<json:string>sigma chemical</json:string>
<json:string>viral antigen</json:string>
<json:string>imaging</json:string>
<json:string>microscopy</json:string>
<json:string>foetal bovine serum</json:string>
<json:string>nikon corp</json:string>
<json:string>complete medium</json:string>
<json:string>culturing cell</json:string>
<json:string>biogenesis event</json:string>
<json:string>large perinuclear vacuole</json:string>
<json:string>cell adhesion</json:string>
<json:string>membrane alteration</json:string>
<json:string>distinct pore</json:string>
<json:string>human endothelial origin</json:string>
<json:string>uranyl acetate</json:string>
<json:string>copper grid</json:string>
<json:string>nickel grid</json:string>
<json:string>propidium iodide staining</json:string>
<json:string>transmission electron microscopy</json:string>
<json:string>scale bar</json:string>
<json:string>adjacent vacuole</json:string>
<json:string>reticular meshwork</json:string>
<json:string>virus particle</json:string>
<json:string>endoplasmic reticulum</json:string>
<json:string>large number</json:string>
<json:string>white arrow</json:string>
<json:string>striking observation</json:string>
<json:string>endomembrane change</json:string>
<json:string>uorescence microscopy</json:string>
<json:string>morphology</json:string>
<json:string>membrane</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Shobha Gangodkar</name>
<affiliations>
<json:string>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</json:string>
</affiliations>
</json:item>
<json:item>
<name>Preksha Jain</name>
<affiliations>
<json:string>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</json:string>
</affiliations>
</json:item>
<json:item>
<name>Nishikant Dixit</name>
<affiliations>
<json:string>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kanjaksha Ghosh</name>
<affiliations>
<json:string>National Institute of Immunohematology (ICMR), 13th Floor KEM Hospital, Parel, Mumbai, India</json:string>
</affiliations>
</json:item>
<json:item>
<name>Atanu Basu</name>
<affiliations>
<json:string>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</json:string>
<json:string>E-mail: basua@icmr.org.in</json:string>
<json:string>To whom correspondence should be addressed. E-mail: basua@icmr.org.in</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<value>electron microscopy</value>
</json:item>
<json:item>
<value>dengue</value>
</json:item>
<json:item>
<value>electron tomography</value>
</json:item>
<json:item>
<value>on-grid cell culture</value>
</json:item>
</subject>
<articleId>
<json:string>dfq063</json:string>
</articleId>
<arkIstex>ark:/67375/HXZ-FWGV50K4-7</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The biogenesis events and formation of dengue virus (DENV) in the infected host cells remain incompletely understood. In the present study, we examined the ultrastructural changes associated with DENV-2 replication in three susceptible host cells, C6/36, Vero and SK Hep1, a cell line of human endothelial origin, using transmission electron microscopy, whole-mount grid-cell culture techniques and electron tomography (ET). The prominent feature in C6/36 cells was the formation of large perinuclear vacuoles with mature DENV particles, and on-grid whole-mount examination of the infected Vero cells showed different forms of DENV core structures associated with cellular membranes within 48 h after infection. Distinct multivesicular structures and prominent autophagic vesicles were seen in the infected SK Hep1 cells when compared with the other two cell lines. ET showed the three-dimensional organization of these vesicles as a continuous system. This is the first report of ET-based analysis of DENV-2 replication in a human endothelial cell line. These results further emphasizes the strong role played by intracellular host membranes–virus interactions in the biogenesis of DENV and strongly argues for the possibility of targeting compounds to block such structure formation as key anti-dengue agents.</abstract>
<qualityIndicators>
<score>6.79</score>
<pdfWordCount>3855</pdfWordCount>
<pdfCharCount>27625</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>612.283 x 790.866 pts</pdfPageSize>
<pdfWordsPerPage>428</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>189</abstractWordCount>
<abstractCharCount>1311</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques</title>
<pmid>
<json:string>20705752</json:string>
</pmid>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Electron Microscopy</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0022-0744</json:string>
</issn>
<eissn>
<json:string>1477-9986</json:string>
</eissn>
<publisherId>
<json:string>jmicro</json:string>
</publisherId>
<volume>59</volume>
<issue>6</issue>
<pages>
<first>503</first>
<last>511</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2010-08-12</json:string>
<json:string>1954</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>ICMR</json:string>
<json:string>National Center for Cell Sciences</json:string>
<json:string>HiMedia Ltd, India</json:string>
<json:string>FEI Co., Netherlands</json:string>
<json:string>National Institute of Virology</json:string>
<json:string>Nikon Corp., Japan</json:string>
<json:string>FEI Co., Eindhoven, Netherlands</json:string>
<json:string>KEM Hospital, Parel, Mumbai, India</json:string>
<json:string>NIV</json:string>
<json:string>National Institute of Immunohematology</json:string>
<json:string>Oxford University</json:string>
<json:string>National Institute of Virology, Pune</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Amit Mandal</json:string>
<json:string>Ted Pella</json:string>
</persName>
<placeName>
<json:string>Berlin</json:string>
<json:string>Switzerland</json:string>
<json:string>Germany</json:string>
<json:string>India</json:string>
<json:string>Pune</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>S. Gangodkar et al.</json:string>
<json:string>[18]</json:string>
<json:string>[6]</json:string>
<json:string>Welsch et al. [18]</json:string>
<json:string>[2,3]</json:string>
<json:string>[22]</json:string>
<json:string>[8]</json:string>
<json:string>[1]</json:string>
<json:string>[21]</json:string>
<json:string>Murray et al. [23]</json:string>
<json:string>[3]</json:string>
<json:string>[20]</json:string>
<json:string>Welsch et al.</json:string>
<json:string>Takasaki et al.</json:string>
<json:string>[7]</json:string>
<json:string>[17,18]</json:string>
<json:string>[11,12]</json:string>
<json:string>[13]</json:string>
<json:string>[4,5]</json:string>
<json:string>Hyatt et al. [7]</json:string>
<json:string>[19]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/HXZ-FWGV50K4-7</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - microscopy</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - microscopy</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Instrumentation</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1093/jmicro/dfq063</json:string>
</doi>
<id>935978052B3A8551F2036D32EBA6CEC090F03BB2</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-FWGV50K4-7/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-FWGV50K4-7/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HXZ-FWGV50K4-7/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<licence>© The Author 2010. Published by Oxford University Press on behalf of Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</licence>
<p>Oxford University Press</p>
</availability>
<date when="2010-12">2010</date>
<date type="e-published" when="2010-08-12">2010</date>
<date type="Copyright" when="2010">2010</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques</title>
<title level="a" type="right-running">Dengue virus replication imaged by electron tomography</title>
<author xml:id="author-0000">
<persName>
<surname>Gangodkar</surname>
<forename type="first">Shobha</forename>
</persName>
<affiliation>
<orgName type="institution">National Institute of Virology (ICMR)</orgName>
<address>
<addrLine>Electron Microscopy Group</addrLine>
<addrLine>20A Dr Ambedkar Road, Pune 411001,</addrLine>
<country key="IN" xml:lang="en">INDIA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<surname>Jain</surname>
<forename type="first">Preksha</forename>
</persName>
<affiliation>
<orgName type="institution">National Institute of Virology (ICMR)</orgName>
<address>
<addrLine>Electron Microscopy Group</addrLine>
<addrLine>20A Dr Ambedkar Road, Pune 411001,</addrLine>
<country key="IN" xml:lang="en">INDIA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<surname>Dixit</surname>
<forename type="first">Nishikant</forename>
</persName>
<affiliation>
<orgName type="institution">National Institute of Virology (ICMR)</orgName>
<address>
<addrLine>Electron Microscopy Group</addrLine>
<addrLine>20A Dr Ambedkar Road, Pune 411001,</addrLine>
<country key="IN" xml:lang="en">INDIA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<surname>Ghosh</surname>
<forename type="first">Kanjaksha</forename>
</persName>
<affiliation>
<orgName type="institution">National Institute of Immunohematology (ICMR)</orgName>
<orgName type="institution">13th Floor KEM Hospital</orgName>
<address>
<addrLine>Parel, Mumbai</addrLine>
<country key="IN" xml:lang="en">INDIA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<surname>Basu</surname>
<forename type="first">Atanu</forename>
</persName>
<affiliation>
<orgName type="institution">National Institute of Virology (ICMR)</orgName>
<address>
<addrLine>Electron Microscopy Group</addrLine>
<addrLine>20A Dr Ambedkar Road, Pune 411001,</addrLine>
<country key="IN" xml:lang="en">INDIA</country>
</address>
</affiliation>
<email>basua@icmr.org.in</email>
</author>
<idno type="istex">935978052B3A8551F2036D32EBA6CEC090F03BB2</idno>
<idno type="ark">ark:/67375/HXZ-FWGV50K4-7</idno>
<idno type="DOI">10.1093/jmicro/dfq063</idno>
<idno type="publisher-id">dfq063</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Electron Microscopy</title>
<title level="j" type="abbrev">J Electron Microsc</title>
<idno type="publisher-id">jmicro</idno>
<idno type="hwp">jmicro</idno>
<idno type="pISSN">0022-0744</idno>
<idno type="eISSN">1477-9986</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date when="2010-12">2010</date>
<date type="e-published" when="2010-08-12">2010</date>
<biblScope unit="vol">59</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="503">503</biblScope>
<biblScope unit="page" to="511">511</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-09">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>The biogenesis events and formation of dengue virus (DENV) in the infected host cells remain incompletely understood. In the present study, we examined the ultrastructural changes associated with DENV-2 replication in three susceptible host cells, C6/36, Vero and SK Hep1, a cell line of human endothelial origin, using transmission electron microscopy, whole-mount grid-cell culture techniques and electron tomography (ET). The prominent feature in C6/36 cells was the formation of large perinuclear vacuoles with mature DENV particles, and on-grid whole-mount examination of the infected Vero cells showed different forms of DENV core structures associated with cellular membranes within 48 h after infection. Distinct multivesicular structures and prominent autophagic vesicles were seen in the infected SK Hep1 cells when compared with the other two cell lines. ET showed the three-dimensional organization of these vesicles as a continuous system. This is the first report of ET-based analysis of DENV-2 replication in a human endothelial cell line. These results further emphasizes the strong role played by intracellular host membranes–virus interactions in the biogenesis of DENV and strongly argues for the possibility of targeting compounds to block such structure formation as key anti-dengue agents.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="heading">
<term>Biological: Full-length</term>
</keywords>
</textClass>
<textClass ana="keyword">
<keywords>
<term>electron microscopy</term>
<term>dengue</term>
<term>electron tomography</term>
<term>on-grid cell culture</term>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-09" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-FWGV50K4-7/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">jmicro</journal-id>
<journal-id journal-id-type="hwp">jmicro</journal-id>
<journal-title>Journal of Electron Microscopy</journal-title>
<abbrev-journal-title abbrev-type="pubmed">J Electron Microsc</abbrev-journal-title>
<issn pub-type="ppub">0022-0744</issn>
<issn pub-type="epub">1477-9986</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1093/jmicro/dfq063</article-id>
<article-id pub-id-type="publisher-id">dfq063</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Biological: Full-length</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques</article-title>
<alt-title alt-title-type="right-running">Dengue virus replication imaged by electron tomography</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Gangodkar</surname>
<given-names>Shobha</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jain</surname>
<given-names>Preksha</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dixit</surname>
<given-names>Nishikant</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ghosh</surname>
<given-names>Kanjaksha</given-names>
</name>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Basu</surname>
<given-names>Atanu</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="cor1" ref-type="corresp">*</xref>
</contrib>
<aff id="aff1">
<label>1</label>
<addr-line>Electron Microscopy Group</addr-line>
,
<institution>National Institute of Virology (ICMR)</institution>
,
<addr-line>20A Dr Ambedkar Road, Pune 411001,</addr-line>
<country>India</country>
</aff>
<aff id="aff2">
<label>2</label>
<institution>National Institute of Immunohematology (ICMR), 13th Floor KEM Hospital</institution>
,
<addr-line>Parel, Mumbai</addr-line>
,
<country>India</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
To whom correspondence should be addressed. E-mail:
<email>basua@icmr.org.in</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>12</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>8</month>
<year>2010</year>
</pub-date>
<volume>59</volume>
<issue>6</issue>
<fpage>503</fpage>
<lpage>511</lpage>
<history>
<date date-type="received">
<day>28</day>
<month>01</month>
<year>2010</year>
</date>
<date date-type="rev-recd">
<day>06</day>
<month>07</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>14</day>
<month>07</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author 2010. Published by Oxford University Press on behalf of Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder>Oxford University Press</copyright-holder>
</permissions>
<abstract>
<p>The biogenesis events and formation of dengue virus (DENV) in the infected host cells remain incompletely understood. In the present study, we examined the ultrastructural changes associated with DENV-2 replication in three susceptible host cells, C6/36, Vero and SK Hep1, a cell line of human endothelial origin, using transmission electron microscopy, whole-mount grid-cell culture techniques and electron tomography (ET). The prominent feature in C6/36 cells was the formation of large perinuclear vacuoles with mature DENV particles, and on-grid whole-mount examination of the infected Vero cells showed different forms of DENV core structures associated with cellular membranes within 48 h after infection. Distinct multivesicular structures and prominent autophagic vesicles were seen in the infected SK Hep1 cells when compared with the other two cell lines. ET showed the three-dimensional organization of these vesicles as a continuous system. This is the first report of ET-based analysis of DENV-2 replication in a human endothelial cell line. These results further emphasizes the strong role played by intracellular host membranes–virus interactions in the biogenesis of DENV and strongly argues for the possibility of targeting compounds to block such structure formation as key anti-dengue agents.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>electron microscopy</kwd>
<kwd>dengue</kwd>
<kwd>electron tomography</kwd>
<kwd>on-grid cell culture</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1" sec-type="intro">
<title>Introduction</title>
<p>The earliest electron microscopic observation of dengue viruses (DENV) probably dates back to 1948 by Sabin and Schleisinger on mouse brain-derived virus particles and later in 1954 by Reagan and Brueckner in cell culture [
<xref rid="ref1" ref-type="bibr">1</xref>
]. These studies, although limited by many technical hurdles like specimen processing and imaging artefacts, pioneered the use of electron microscopy (EM) in DENV research. Subsequently, over the last five decades, the ultrastructure and morphogenesis of DENV have been studied extensively and many facets of DENV replication in host cell and particle organization of the virion have begun to emerge [
<xref rid="ref2 ref3" ref-type="bibr">2,3</xref>
]. Despite much research on DENV morphology, a review of the present knowledge on morphogenesis events of DENV replication and assembly in the host cell remain, to a great extent, incompletely understood. The backbone of these lacunae resides with the fact that synchronized time-lapse imaging of DENV-infected cells to monitor the progress of the virus replication events using EM-based techniques have been compromised by methodology limitations, although molecular and analytical cell biology tools and fluorescence microscopy have given insights into virus replication biology [
<xref rid="ref3" ref-type="bibr">3</xref>
]. However, several novel techniques of EM like electron tomography (ET) and cryoelectron microscopy have recently emerged to visualize virus–host interactions in 3D, giving better insights into replication events [
<xref rid="ref4 ref5" ref-type="bibr">4,5</xref>
].</p>
<p>In the present study, we used a combination of conventional transmission electron microscopy (TEM) methods along with on-grid cell culture and ET to study the nature of cytoplasmic membrane alterations seen in DENV-2-infected cell lines from different origins – including a human endothelial cell line, SK Hep1 [
<xref rid="ref6" ref-type="bibr">6</xref>
].</p>
</sec>
<sec id="sec2" sec-type="methods">
<title>Materials and methods</title>
<sec id="sec3">
<title>Cells and virus</title>
<p>Vero E6 cells were grown in minimum essential medium (MEM; HiMedia Ltd, India) supplemented with 10% foetal bovine serum (GIBCO, USA), 1%
<sc>l</sc>
-glutamine, penicillin and streptomycin (HiMedia Ltd, India). Cells were grown in six-well tissue culture plates (Nunc, USA) in a culture volume of 1 ml and under 5% CO
<sub>2</sub>
at 37°C. The C6/36 cells were taken from the cell repository of the National Institute of Virology (NIV) in Pune and grown in Mitsuhasi and Maraorosch insect cell growth medium (HiMedia Ltd, India) supplemented with penicillin G, streptomycin, yeastolate and 10% tryptose phosphate broth at 29°C. The third cell line we used in this study was the SK Hep1, a cell line of human endothelial origin [
<xref rid="ref6" ref-type="bibr">6</xref>
] and susceptible to DENV (unpublished data). The SK Hep1 cells were obtained from the National Center for Cell Sciences in Pune and grown in MEM supplemented with 10% foetal bovine serum, 1%
<sc>l</sc>
-glutamine, streptomycin and penicillin solution (HiMedia Ltd, India). The virus used in the present study was the Tr1751 strain of DENV-2 virus obtained from the NIV virus repository.</p>
</sec>
<sec id="sec4">
<title>Virus infection</title>
<p>Vero E6, C6/36 and SK Hep1 cells were grown to a confluency of > 80% as observed by inverted phase-contrast microscopy (Eclipse T2000, Nikon Corp., Japan) and exposed to 1 × 10
<sup>3</sup>
LD
<sub>50</sub>
dose of DENV-2 for 1 h with gentle shaking at 37°C and under 5% CO
<sub>2</sub>
. The virus-containing media was washed off with two changes of media and the cells were grown in complete media at 37°C and 5% CO
<sub>2</sub>
.</p>
</sec>
<sec id="sec5">
<title>Culturing cells on EM grids</title>
<p>Vero E6 and C6/36 cells were cultured directly on EM grids using the earlier method of Hyatt
<italic>et al</italic>
. [
<xref rid="ref7" ref-type="bibr">7</xref>
] with modifications. Briefly, 400-mesh nickel EM grids (Ted Pella, Switzerland) were provided with formvar support, carbon coated and sterilized by floatation (coated side down) over 3% glutaraldehyde under ultraviolet light. The grids were then removed, rinsed thoroughly with sterile deionized water and used for culturing cells. The surface of the formvar support was further conditioned for cell adhesion by treatment with poly-
<sc>l</sc>
-lysine (Sigma Chemicals, USA) or alcian blue (Sigma Chemicals, USA). Cells grown to more than 80% confluency were made into a single-cell suspension, seeded directly on the coated grids and cultured with complete media under 5% CO
<sub>2</sub>
and at 37°C. Cells were stained with propidium iodide to image the nuclei and layered-growth morphology on the grid-support film. The SK Hep1 cells were not cultured on-grid but in conventional six-well plastic culture plates (Nunc, USA) using the growth conditions described earlier [
<xref rid="ref8" ref-type="bibr">8</xref>
]. The grid-cell cultures were processed for TEM as described earlier [
<xref rid="ref7" ref-type="bibr">7</xref>
].</p>
</sec>
<sec id="sec6">
<title>Immunofluorescence microscopy for detection of viral antigens</title>
<p>To detect DENV replication in the infected cells, an indirect immunolabelling method for fluorescence microscopy (IFA) was used. Briefly, cells were fixed in chilled methanol:acetone (1:1) followed by rehydration with 0.05 M Tris/NaCl (wash buffer) and blocking buffer (0.05 M Tris/NaCl + 5% normal human serum) incubation for 20 min each. Cells were then incubated with mice anti-dengue hyperimmune serum (1:50 dilution), washed and probed with a goat anti-mouse IgG-FITC (Sigma Chemicals, USA) for 30 min. The cells were then washed with wash buffer and counterstained with Evans blue stain. All incubations were carried out at room temperature. Slides were mounted with standard mountant and examined under epifluorescence imaging with ultraviolet illumination in an inverted microscope (Nikon Eclipse 2000, Nikon Corp., Japan). DENV-2 virus infected and uninfected C6/36 cells were used as positive and negative controls.</p>
</sec>
<sec id="sec7">
<title>Electron microscopy</title>
<sec id="sec8">
<title>Whole-mount specimen processing</title>
<p>The on-grid whole-mount cultures were fixed with 3% glutaraldehyde in 0.2 M sodium cacodylate buffer pH 7.2 by floating the grids on a drop of fixative, cell side down. Grids were then washed with two changes of 0.2 M sodium cacodylate buffer, dehydrated through a graded ethanol series, air dried and negative stained with 1% uranyl acetate or phosphotungstic acid as described earlier [
<xref rid="ref7 ref9" ref-type="bibr">7,9</xref>
].</p>
</sec>
<sec id="sec9">
<title>Plastic embedding and ultramicrotomy</title>
<p>Infected and control cells were harvested using a cell scrapper, pelleted by centrifugation and processed for embedding in EPON 812 as described earlier [
<xref rid="ref10" ref-type="bibr">10</xref>
]. Ultrathin sections were cut using glass knife in an ultramicrotome (Ultracut R, Leica, Austria) and the 70- to 100-nm thin sections collected on 400-mesh copper grids. Staining was done using uranyl acetate and contrasted by Reynold's lead citrate.</p>
</sec>
<sec id="sec10">
<title>Imaging</title>
<p>The cells were imaged under 120 KeV operating voltage and low beam current conditions in a goniometer stage of a transmission electron microscope (Tecnai 12 BIOTWIN™, FEI Co., Netherlands). Images were recorded using a side-mounted CCD camera (Megaview III, Olympus Imaging, Germany).</p>
</sec>
<sec id="sec11">
<title>Electron tomography</title>
<p>Plastic sections (100–110 nm) were obtained by ultramicrotomy and placed in a high-tilt tomography holder (FEI Co., Eindhoven, Netherlands) that was optimized as per the software calibration protocols (Automated Electron Tomography Software, FEI Co., Eindhoven, Netherlands). Digital images were recorded using the automated tomography acquisition software, XPLOR 3D™ (FEI Co., Eindhoven, Netherlands). Single-axis tilt series was recorded between ± 60.0° at 1° interval. The camera binning factor was 2. The raw data were stored in an integrated media storage platform (Terastation, Buffalo Co., USA) and subsequently processed for analysis. The tomograms were aligned using the INSPECT 3D™ software (FEI Co., Eindhoven, Netherlands) as per the software data analysis flow and 20 iteration cycles of SIRT volume reconstruction done. The reconstructed volume data file was subsequently visualized in 3D using the AMIRA™ Visualization Package (Version 5.2.0, Visage Imaging, GmBH, Berlin, Germany) by manually selecting areas of interests and 3D volume rendering was done at different slices in
<italic>x</italic>
,
<italic>y</italic>
and
<italic>z</italic>
planes.</p>
</sec>
</sec>
</sec>
<sec id="sec12" sec-type="results">
<title>Results</title>
<sec id="sec13">
<title>Optimization of the EM grid support for cell growth</title>
<p>The use of alcian blue treatment of the carbon-coated formvar support significantly enhanced cell adhesion and growth densities when compared with the poly-l-lysine treatment and examined as cells per grid square by light microscopy (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
a). The viability of cells was also not affected in the presence of nickel grids, but copper grids did not yield suitable cell seed monolayers on the support film. Adequate density of cells grown on the formvar support could also be imaged with propidium iodide staining (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
b).</p>
<fig position="float" id="fig1">
<label>Fig. 1</label>
<caption>
<p>Vero E6 cells grown on support film of nickel grids as whole-mount cultures. (a) A representative low-power image of Vero E6 cells showing confluent growth and no cytotoxic effect. (b) Propidium iodide staining of the cells showing optimum growth density on the support film. (c) Representative phase-contrast image showing rounding and aggregation of the cells after DENV-2 virus exposure (shown in circles). (d) Representative images of DENV-2 antigen-positive cells imaged by immunofluorescence. Magnification scale bars are embedded into each figure.</p>
</caption>
<graphic xlink:href="dfq063fig1.tif"></graphic>
</fig>
</sec>
<sec id="sec14">
<title>Cytopathic effect after virus infection and expression of viral antigens</title>
<p>DENV-2 infected changes in C6/36 cells included moderate round and progressive clumping of the cells with increasing post-exposure time (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
c). The earliest detectable morphological changes (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
d) and presence of viral antigens in the cells (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
d) could be observed within 48 h post-infection day (p.i.d.) and maximum after 72 h. In the Vero E6 cells grown in conventional plastic wells, cytopathic effect (CPE) appeared initially in the form of microplaques after 48 h and rapidly merged, leading to degeneration of the cell sheet by 72 h p.i.d. In the SK Hep1 cells, the CPE was not acute but showed moderate rounding of cells and long ‘spindle-like’ elongated structures on the adherent cells by 48 h. p.i.d. DENV-2 antigens could be detected by IFA in all cell lines (data not shown).</p>
</sec>
<sec id="sec15">
<title>Electron microscopy imaging</title>
<sec id="sec16">
<title>Ultrastructural changes</title>
<p>A variable spectrum of ultrastructural changes was observed after DENV-2 infection in the different cell lines. Prominent, large perinuclear vacuoles containing amorphous electron-dense material and mature 40- to 45-nm mature flavivirus particles could be observed in the C6/36 cells within 48 h after infection (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
a–c). In some fields, these vacuolar structures were seen to have communications with an adjacent vacuole filled with a reticular meshwork (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
c). Negative stained imaging of cell-free culture supernatants also showed the presence of mature enveloped flaviviruses, suggesting the release of virus particles from infected cells (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
d). The CPE seen in Vero E6 cells was more abrupt, with degenerative changes prominent within 72 h. Ultrastructural examination of the cells also showed extensive injury in the form of cytoplasmic degeneration (data not shown). The DENV-2-infected SK Hep1 cells showed ultrastructural changes as chromatolysis, degenerative necrosis (
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
a), morphologically distinct autophagosomes and cytoplasmic membrane alterations (
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
b) and dilated endoplasmic reticulum (ER) (
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
c).</p>
<fig position="float" id="fig2">
<label>Fig. 2</label>
<caption>
<p>Representative transmission electron micrographs showing ultrastructural changes in DENV-2-infected C6/36 cells. (a) A low-power image showing a large number of cells in the field with cytoplasmic vacuolation. (b) Profile of single DENV-2-infected C6/36 cell showing reticular meshwork in a cytoplasmic vacuole (vac) and an adjacent vacuole with electron-dense material (arrow). (c) Higher magnification of the same showing the presence of virus particles marked v (shown in red rectangular boxes and indicated with white arrows). M indicates the junction between the vacuoles. N denotes the nucleus of the cells in (b) and (c). D denotes electron-dense granules. (d) Negative stained image of a group of DENV-2 (arrows) detected in supernatant of infected C6/36 cells. The red circle marks a single virus particle showing complete envelope projections. Magnification scale bars are embedded in all micrographs.</p>
</caption>
<graphic xlink:href="dfq063fig2.tif"></graphic>
</fig>
<fig position="float" id="fig3">
<label>Fig. 3</label>
<caption>
<p>Representative ultrastructural changes in SK Hep1 cells infected with DENV-2. (a) Areas of typical cytoplasmic degeneration D are shown within the rectangle, and chromatolysis C are indicated by arrows. N denotes the nucleus. (b) A typical early autophagosome formation with endomembrane changes (arrow) shown within the rectangle. (c) A field showing dilated ER. (d) A representative profile of an uninfected SK Hep1 cell. All magnification bars are embedded into the micrographs.</p>
</caption>
<graphic xlink:href="dfq063fig3.tif"></graphic>
</fig>
</sec>
<sec id="sec17">
<title>Whole-mount imaging</title>
<p>Examination of the whole mount and negative stained Vero E6 cells infected with DENV-2 virus revealed abundant virus particles associated with cell membrane-derived structures (
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
Panel A). Interestingly, the structure of these DENV-2 particles imaged in the 48-h post-infection cells were not enveloped but showed a capsid morphology that was icosahedral and a size range of 30–40 nm. Importantly, from a single field where a large number of particles could be imaged (
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
Panel A), individual particles revealed different core morphologies of the nucleoprotein structures (
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
Panel B).</p>
<fig position="float" id="fig4">
<label>Fig. 4</label>
<caption>
<p>Membrane-associated DENV-2 particles released from whole-mount Vero E6 cells. Panel A shows a membrane structure associated with 40-nm DENV-2 core-like particles in random distribution (arrows). None of these particles have detectable envelope projections. Panel B (a–f) shows higher-magnification images of the single virions from the same field showing the presence of core structures (arrows) having varied organizations (magnification scale bar = 200 nm in Panel A and 10 nm in Panel B).</p>
</caption>
<graphic xlink:href="dfq063fig4.tif"></graphic>
</fig>
</sec>
<sec id="sec18">
<title>Electron tomography</title>
<p>The 3D reconstructions of the areas showing typical autophagosomal structures and flavivirus-associated vesicular proliferations are shown in
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
. The autophagosomes and vesicular membrane structures were seen to be continuous after 3D reconstructions. Importantly, similar to the recent report of Welsch
<italic>et al</italic>
. [
<xref rid="ref18" ref-type="bibr">18</xref>
], these vesicles had pores with the opening towards the nucleus (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
a). Complete isosurface volume rendering in 3D showed the autophagosome structures continuous with the virus-derived vesicular membrane structures when imaged at different sectional planes (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
a).</p>
<fig position="float" id="fig5">
<label>Fig. 5</label>
<caption>
<p>Isosurface volume reconstruction of a representative cytoplasmic area by ET showing autophagy and endomembrane changes in a DENV-2-infected SK Hep1 cell. (a) 3D rendering of the endomembrane structures showing distinct pores in endomembrane vesicles (v) (white arrows) in the scaffold of membrane structures. The red rectangle highlights the representative area of interest and the smaller blue rectangle within it shows the continuity of the endomembrane system with the nuclear envelope (arrow). (b) An inset of the conventional transmission electron micrograph of the same field from where the tomograms were acquired. N denotes the nucleus. Magnification bars are embedded in both micrographs = 0.5 μm.</p>
</caption>
<graphic xlink:href="dfq063fig5.tif"></graphic>
</fig>
</sec>
</sec>
</sec>
<sec id="sec19" sec-type="discussion">
<title>Discussion</title>
<p>Early studies on DENV antigens in infected cells had documented evidence of a characteristic, intense, perinuclear staining that faded as a gradient into the background cytoplasm [
<xref rid="ref11 ref12" ref-type="bibr">11,12</xref>
]. This pattern was not only for DENV but also seen with other Group B arboviruses [
<xref rid="ref13" ref-type="bibr">13</xref>
] and laid the foundation towards conceptually understanding the alterations in host cell membrane architecture that forms a crucial framework in the biogenesis events of DENV and other flaviviruses – an area that has come under intense scrutiny in the recent years.</p>
<p>Using different EM techniques studying DENV replication in infected cells, a striking observation was the formation of distinct membrane structures in these cells [
<xref rid="ref11 ref14 ref15 ref16 ref17 ref18" ref-type="bibr">11,14–18</xref>
] in the form of convoluted membrane, double membrane-bound vesicles and occasional membrane tubules. Immunolabelling and antigen localization studies further showed the presence of both viral RNA and non-structural proteins (NS1, NS3 and NS4) co-localizing in these structures formed in insect and Vero cells [
<xref rid="ref17 ref18" ref-type="bibr">17,18</xref>
].</p>
<p>Findings from our present study further strengthen these earlier observations that unique cytoplasmic membrane alterations constitute a key host feature in DENV-infected cells. Interestingly, with the DENV-2 Tr1751 strain studied by us, the cytoplasmic vacuolar morphology was rather large and similar to the earlier morphology described by Cardiff
<italic>et al</italic>
. [
<xref rid="ref11" ref-type="bibr">11</xref>
] and consistent with other reports of DENV-2-associated ultrastructural changes in C6/36 cells [
<xref rid="ref19" ref-type="bibr">19</xref>
]. Although we did not use immunolabelling, distinct 40 to 50-nm mature virions could be seen along with reticular electron-dense material in these vacuoles of DENV-2-infected C6/36 cells by 24 h post-infection presumably representing viral replisome complexes, an important point that needs emphasis on the ultrastructural changes observed in Vero E6 cells after DENV-2 infection. The grid-cell culture studies showed evidence of 40-nm flavivirus core-like structures associated with cell-free membrane detected by negative staining within 48 h post-infection and corresponding ultrathin sections showed drastic degenerative changes. This needs further study in conjunction with analytical cellular fractionation studies to establish the origin of these entities and differentiate them from possible artefacts. Takasaki
<italic>et al</italic>
. had earlier reported the rapid degenerative morphology in Raji cells infected with DENV-2 [
<xref rid="ref20" ref-type="bibr">20</xref>
], but to the best of our knowledge, direct on-grid whole-mount cell culture studies on DENV-infected cells by TEM has not been published and can provide information on the fine structure of both assembly and cytoskeletal alterations in the host, as shown earlier with the Akabane virus [
<xref rid="ref7" ref-type="bibr">7</xref>
].</p>
<p>The most striking observations came from the SK Hep1 cells, a human endothelial cell line presumably of hepatic endothelial origin [
<xref rid="ref6" ref-type="bibr">6</xref>
]. These cells were susceptible to DENV-2 infection and showed formation of distinct autophagosome-like structures near virus-induced membrane alterations. Interestingly, DENV-2-induced autophagy has been recently reported in Huh7 cells [
<xref rid="ref21" ref-type="bibr">21</xref>
] (which interestingly is a human hepatoma cell line). Importantly, although conventional TEM imaging showed these structures as isolated entities, ET reconstructions and 3D imaging of a typical field in a thick section volume dramatically showed continuity within these membrane systems. Importantly, distinct pores within these structures opening towards the nuclear side also argue in favour of the autophagosomes being a part of the virus-derived membrane structures. The detailed 3D organization of DENV-2-induced cytoplasmic membrane alterations have been recently worked out by Welsch
<italic>et al</italic>
. using ET [
<xref rid="ref18" ref-type="bibr">18</xref>
]. This study clearly demonstrated that the DENV-2-induced membrane structures are part of the modified ER network.</p>
<p>Similar studies using ET as a major tool have also showed the close association of virus replisomes with cyto-organelle membranes. The SARS corona virus replication Factor A and RNA was shown to associate with the outer mitochondrial membrane and ER-derived networks [
<xref rid="ref22" ref-type="bibr">22</xref>
], thus re-shifting the targets of understanding intracellular flavivirus assembly sites as suggested earlier by Murray
<italic>et al</italic>
. [
<xref rid="ref23" ref-type="bibr">23</xref>
].</p>
<p>In summary, our study shows that DENV-2-associated alterations in cytoplasmic membrane compartment of host cells varies in presentation but is a consistent feature. The important observation of the same in the endothelial cell line SK Hep1 and its reconstruction in 3D with electron tomography for the first time suggest that autophagosome vesicles could also be a continued network of DENV-2-mediated membrane alterations. This provides credible platform for the possibility of developing new-generation compounds to target destabilization of these structures as a potential blocker of DENV replication in host cells and, therefore, a possible therapeutic agent in dengue disease.</p>
</sec>
<sec id="sec20">
<title>Concluding remarks</title>
<p>This is the first report of ET-based analysis of DENV-2 replication in a human endothelial cell line. The findings of the present study strongly argue in favour of the development of characteristic and unique DENV-induced cytoplasmic membrane bodies in infected host cells. The observation of autophagosome structures in DENV-2-infected human endothelial cell line SK Hep1 being continuous with the virus-altered membrane system is a novel feature. Further molecular analysis on the biogenesis of such structures could define potential and novel antiviral targets for drug development.</p>
</sec>
<sec id="sec21">
<title>Supplementary material</title>
<p>A supplementary movie S1 showing the endomembrane reconstruction in 3D with open pores in DENV-2 infected SK Hep1 cells is available at
<italic>Journal of Electron Microscopy</italic>
online.</p>
</sec>
</body>
<back>
<ack>
<p>This study was supported through intramural funds from ICMR New Delhi and from the Department of Biotechnology Grant BT/PR/6032/Med/14/732/2005.</p>
<p>We would like to sincerely thank our colleagues at the Repository of National Institute of Virology, Pune for kindly supplying us with the DENV-2 Tr1751 strain and Mr Amit Mandal of ICON Analytical Company and FEI for the software support.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ref1">
<label>1</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Regan</surname>
<given-names>R L</given-names>
</name>
<name>
<surname>Brueckner</surname>
<given-names>A L</given-names>
</name>
</person-group>
<article-title>Studies of dengue virus by electron microscopy</article-title>
<source>Am. J. Trop. Med. Hyg.</source>
<year>1956</year>
<volume>5</volume>
<fpage>809</fpage>
<lpage>811</lpage>
</nlm-citation>
</ref>
<ref id="ref2">
<label>2</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pokydisheva</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Battisi</surname>
<given-names>A J</given-names>
</name>
<name>
<surname>Battor-Kelly</surname>
<given-names>C M</given-names>
</name>
<name>
<surname>Chipman</surname>
<given-names>P R</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gregorio</surname>
<given-names>G G</given-names>
</name>
<name>
<surname>Hendrickson</surname>
<given-names>W A</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>R J</given-names>
</name>
<name>
<surname>Rossman</surname>
<given-names>M G</given-names>
</name>
</person-group>
<article-title>CryoEM reconstruction of dengue virus in complex with carbohydrate recognition domain of DC-SIGN</article-title>
<source>Cell</source>
<year>2006</year>
<volume>3</volume>
<fpage>485</fpage>
<lpage>493</lpage>
</nlm-citation>
</ref>
<ref id="ref3">
<label>3</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartenschlager</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Molecular aspects of dengue virus replication</article-title>
<source>Future Microbiol.</source>
<year>2008</year>
<volume>3</volume>
<fpage>155</fpage>
<lpage>165</lpage>
</nlm-citation>
</ref>
<ref id="ref4">
<label>4</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baumister</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>A voyage to the inner space of cells</article-title>
<source>Protein Sci.</source>
<year>2005</year>
<volume>14</volume>
<fpage>257</fpage>
<lpage>269</lpage>
</nlm-citation>
</ref>
<ref id="ref5">
<label>5</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frey</surname>
<given-names>T G</given-names>
</name>
<name>
<surname>Perkins</surname>
<given-names>G A</given-names>
</name>
<name>
<surname>Ellisman</surname>
<given-names>M H</given-names>
</name>
</person-group>
<article-title>Electron tomography of membrane-bound cellular organelles</article-title>
<source>Annu. Rev. Biophys. Biomol. Struct.</source>
<year>2006</year>
<volume>35</volume>
<fpage>199</fpage>
<lpage>224</lpage>
</nlm-citation>
</ref>
<ref id="ref6">
<label>6</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heffelfinger</surname>
<given-names>S C</given-names>
</name>
<name>
<surname>Hawkins</surname>
<given-names>H H</given-names>
</name>
<name>
<surname>Barrish</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Darlington</surname>
<given-names>G J</given-names>
</name>
</person-group>
<article-title>SK Hep1: a human cell line of endothelial origin</article-title>
<source>In Vitro Cell. Dev. Biol.</source>
<year>1992</year>
<volume>28A</volume>
<fpage>136</fpage>
<lpage>142</lpage>
</nlm-citation>
</ref>
<ref id="ref7">
<label>7</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hyatt</surname>
<given-names>A D</given-names>
</name>
<name>
<surname>Eaton</surname>
<given-names>B T</given-names>
</name>
</person-group>
<article-title>Virological applications of the grid-cell-culture technique</article-title>
<source>Electron Microsc. Rev.</source>
<year>1990</year>
<volume>3</volume>
<fpage>1</fpage>
<lpage>27</lpage>
</nlm-citation>
</ref>
<ref id="ref8">
<label>8</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cogger</surname>
<given-names>V C</given-names>
</name>
<name>
<surname>Arias</surname>
<given-names>I M</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McMohan</surname>
<given-names>A C</given-names>
</name>
<name>
<surname>Kiss</surname>
<given-names>D L</given-names>
</name>
<name>
<surname>Avery</surname>
<given-names>V M</given-names>
</name>
<name>
<surname>Le Coutier</surname>
<given-names>D G</given-names>
</name>
</person-group>
<article-title>The response of fenestrations, actin and caveolin 1 to vascular endothelial growth factor in SK Hep1 cells</article-title>
<source>Am. J. Physiol. Gastrointest. Liver Physiol.</source>
<year>2008</year>
<volume>295</volume>
<fpage>G137</fpage>
<lpage>G145</lpage>
</nlm-citation>
</ref>
<ref id="ref9">
<label>9</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brenner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Horne</surname>
<given-names>R W</given-names>
</name>
</person-group>
<article-title>A negative staining method for high-resolution electron microscopy of viruses</article-title>
<source>Biochim. Biophys. Acta</source>
<year>1959</year>
<volume>34</volume>
<fpage>103</fpage>
</nlm-citation>
</ref>
<ref id="ref10">
<label>10</label>
<nlm-citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Bozolla</surname>
<given-names>J J</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>L D</given-names>
</name>
</person-group>
<article-title>Specimen preparation for transmission electron microscopy</article-title>
<source>Electron Microscopy, Principles and Techniques for Biologists</source>
<year>1992</year>
<publisher-loc>Boston USA</publisher-loc>
<publisher-name>Jones and Bartlett Publishers</publisher-name>
<fpage>16</fpage>
<lpage>37</lpage>
</nlm-citation>
</ref>
<ref id="ref11">
<label>11</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardiff</surname>
<given-names>R D</given-names>
</name>
<name>
<surname>Lund</surname>
<given-names>J K</given-names>
</name>
</person-group>
<article-title>Cytological localization of dengue 2 antigens: an immunological study with ultrastructural correlation</article-title>
<source>Infect. Immun.</source>
<year>1976</year>
<volume>7</volume>
<fpage>809</fpage>
<lpage>816</lpage>
</nlm-citation>
</ref>
<ref id="ref12">
<label>12</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardiff</surname>
<given-names>R D</given-names>
</name>
<name>
<surname>Lund</surname>
<given-names>J K</given-names>
</name>
</person-group>
<article-title>Distribution of dengue 2 antigens by electron immunocytochemistry</article-title>
<source>Infect. Immun.</source>
<year>1976</year>
<volume>3</volume>
<fpage>1699</fpage>
<lpage>1709</lpage>
</nlm-citation>
</ref>
<ref id="ref13">
<label>13</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Atchison</surname>
<given-names>R W</given-names>
</name>
<name>
<surname>Ordonez</surname>
<given-names>J V</given-names>
</name>
<name>
<surname>Sather</surname>
<given-names>G E</given-names>
</name>
<name>
<surname>Hammon</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Fluorescent antibody complement fixation method for detection of dengue viruses in mice</article-title>
<source>J. Immunol.</source>
<year>1964</year>
<volume>94</volume>
<fpage>936</fpage>
<lpage>943</lpage>
</nlm-citation>
</ref>
<ref id="ref14">
<label>14</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barth</surname>
<given-names>O M</given-names>
</name>
</person-group>
<article-title>Replication of dengue viruses in mosquito cell cultures – a model from ultrastructural observations</article-title>
<source>Mem. Inst. Oswaldo Cruz</source>
<year>1982</year>
<volume>87</volume>
<fpage>565</fpage>
<lpage>574</lpage>
</nlm-citation>
</ref>
<ref id="ref15">
<label>15</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barth</surname>
<given-names>O M</given-names>
</name>
</person-group>
<article-title>Ultrastructural aspects of the dengue virus (flavivirus) particle morphogenesis</article-title>
<source>J. Submicrosc. Cytol. Pathol.</source>
<year>1999</year>
<volume>31</volume>
<fpage>407</fpage>
<lpage>412</lpage>
</nlm-citation>
</ref>
<ref id="ref16">
<label>16</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>M L</given-names>
</name>
<name>
<surname>Yeong</surname>
<given-names>F M</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S H</given-names>
</name>
</person-group>
<article-title>Cryosubstitution technique reveals new morphology of flavivirus-induced structures</article-title>
<source>J. Virol. Methods</source>
<year>1994</year>
<volume>49</volume>
<fpage>305</fpage>
<lpage>314</lpage>
</nlm-citation>
</ref>
<ref id="ref17">
<label>17</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mackenzie</surname>
<given-names>J M</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>M K</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>P R</given-names>
</name>
</person-group>
<article-title>Immunolocalization of the dengue virus nonstructural protein NS1 suggests a role in viral RNA replication</article-title>
<source>Virology</source>
<year>1996</year>
<volume>220</volume>
<fpage>232</fpage>
<lpage>240</lpage>
</nlm-citation>
</ref>
<ref id="ref18">
<label>18</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>welsh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Romero-brey</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Merz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bleck</surname>
<given-names>C K E</given-names>
</name>
<name>
<surname>Walther</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Fuller</surname>
<given-names>S D</given-names>
</name>
<name>
<surname>Antony</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Krijnse-Locker</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bartenschalger</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Composition and three dimensional architecture of the dengue virus replication and assembly sites</article-title>
<source>Cell Host Microbe</source>
<year>2009</year>
<volume>5</volume>
<fpage>365</fpage>
<lpage>375</lpage>
</nlm-citation>
</ref>
<ref id="ref19">
<label>19</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pandey</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ichinose</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Igarashi</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Electron microscopic examination of
<italic>Aedes albopictus</italic>
clone C6/36 cells infected with dengue virus 2 at elevated incubation temperature</article-title>
<source>Acta Virol.</source>
<year>1998</year>
<volume>42</volume>
<fpage>35</fpage>
<lpage>39</lpage>
</nlm-citation>
</ref>
<ref id="ref20">
<label>20</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takasaki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kurane</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Electron microscopic study of persistent dengue virus infection: analysis of a cell line persistently infected with dengue 2 virus</article-title>
<source>Intervirology</source>
<year>2001</year>
<volume>44</volume>
<fpage>48</fpage>
<lpage>54</lpage>
</nlm-citation>
</ref>
<ref id="ref21">
<label>21</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>H-Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M-T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J-R</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S-H</given-names>
</name>
<name>
<surname>Jiang-Shieh</surname>
<given-names>Y-F</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y S</given-names>
</name>
<name>
<surname>Yeh</surname>
<given-names>R M</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H-S</given-names>
</name>
</person-group>
<article-title>Autophagic machinery activated by dengue virus enhances virus replication</article-title>
<source>Virology</source>
<year>2008</year>
<volume>374</volume>
<fpage>240</fpage>
<lpage>248</lpage>
</nlm-citation>
</ref>
<ref id="ref22">
<label>22</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knoops</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kikert</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Van den Wom</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zevenhoven-Dobbe</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Van der Meer</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Koster</surname>
<given-names>A J</given-names>
</name>
<name>
<surname>Mommas</surname>
<given-names>A M</given-names>
</name>
<name>
<surname>Snijder</surname>
<given-names>E J</given-names>
</name>
</person-group>
<article-title>SARS coronavirus replication is supported by a tubulovesicular network of modified endoplasmic reticulum</article-title>
<source>PLoS Biol.</source>
<year>2008</year>
<volume>6</volume>
<fpage>1957</fpage>
<lpage>1974</lpage>
</nlm-citation>
</ref>
<ref id="ref23">
<label>23</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murray</surname>
<given-names>C L</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>C T</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>C M</given-names>
</name>
</person-group>
<article-title>Architects of assembly: roles of flaviviridae nonstructural proteins in virion morphogenesis</article-title>
<source>Nat. Rev. Microbiol.</source>
<year>2008</year>
<volume>6</volume>
<fpage>699</fpage>
<lpage>708</lpage>
</nlm-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shobha</namePart>
<namePart type="family">Gangodkar</namePart>
<affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preksha</namePart>
<namePart type="family">Jain</namePart>
<affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nishikant</namePart>
<namePart type="family">Dixit</namePart>
<affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kanjaksha</namePart>
<namePart type="family">Ghosh</namePart>
<affiliation>National Institute of Immunohematology (ICMR), 13th Floor KEM Hospital, Parel, Mumbai, India</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atanu</namePart>
<namePart type="family">Basu</namePart>
<affiliation>Electron Microscopy Group, National Institute of Virology (ICMR), 20A Dr Ambedkar Road, Pune 411001, India</affiliation>
<affiliation>E-mail: basua@icmr.org.in</affiliation>
<affiliation>To whom correspondence should be addressed. E-mail: basua@icmr.org.in</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2010-12</dateIssued>
<dateCreated encoding="w3cdtf">2010-07-14</dateCreated>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<abstract>The biogenesis events and formation of dengue virus (DENV) in the infected host cells remain incompletely understood. In the present study, we examined the ultrastructural changes associated with DENV-2 replication in three susceptible host cells, C6/36, Vero and SK Hep1, a cell line of human endothelial origin, using transmission electron microscopy, whole-mount grid-cell culture techniques and electron tomography (ET). The prominent feature in C6/36 cells was the formation of large perinuclear vacuoles with mature DENV particles, and on-grid whole-mount examination of the infected Vero cells showed different forms of DENV core structures associated with cellular membranes within 48 h after infection. Distinct multivesicular structures and prominent autophagic vesicles were seen in the infected SK Hep1 cells when compared with the other two cell lines. ET showed the three-dimensional organization of these vesicles as a continuous system. This is the first report of ET-based analysis of DENV-2 replication in a human endothelial cell line. These results further emphasizes the strong role played by intracellular host membranes–virus interactions in the biogenesis of DENV and strongly argues for the possibility of targeting compounds to block such structure formation as key anti-dengue agents.</abstract>
<subject>
<genre>Keywords</genre>
<topic>electron microscopy</topic>
<topic>dengue</topic>
<topic>electron tomography</topic>
<topic>on-grid cell culture</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Electron Microscopy</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J Electron Microsc</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0022-0744</identifier>
<identifier type="eISSN">1477-9986</identifier>
<identifier type="PublisherID">jmicro</identifier>
<identifier type="PublisherID-hwp">jmicro</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>59</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>503</start>
<end>511</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="b1">
<titleInfo>
<title>Studies of dengue virus by electron microscopy</title>
</titleInfo>
<name type="personal">
<namePart type="given">R L</namePart>
<namePart type="family">Regan</namePart>
</name>
<name type="personal">
<namePart type="given">A L</namePart>
<namePart type="family">Brueckner</namePart>
</name>
<genre>journal</genre>
<note>ReganR L BruecknerA L Studies of dengue virus by electron microscopy Am. J. Trop. Med. Hyg. 1956 5 809 811</note>
<relatedItem type="host">
<titleInfo>
<title>Am. J. Trop. Med. Hyg.</title>
</titleInfo>
<part>
<date>1956</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>809</start>
<end>811</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b2">
<titleInfo>
<title>CryoEM reconstruction of dengue virus in complex with carbohydrate recognition domain of DC-SIGN</title>
</titleInfo>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Pokydisheva</namePart>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Zhang</namePart>
</name>
<name type="personal">
<namePart type="given">A J</namePart>
<namePart type="family">Battisi</namePart>
</name>
<name type="personal">
<namePart type="given">C M</namePart>
<namePart type="family">Battor-Kelly</namePart>
</name>
<name type="personal">
<namePart type="given">P R</namePart>
<namePart type="family">Chipman</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Xiao</namePart>
</name>
<name type="personal">
<namePart type="given">G G</namePart>
<namePart type="family">Gregorio</namePart>
</name>
<name type="personal">
<namePart type="given">W A</namePart>
<namePart type="family">Hendrickson</namePart>
</name>
<name type="personal">
<namePart type="given">R J</namePart>
<namePart type="family">Kuhn</namePart>
</name>
<name type="personal">
<namePart type="given">M G</namePart>
<namePart type="family">Rossman</namePart>
</name>
<genre>journal</genre>
<note>PokydishevaE ZhangY BattisiA J Battor-KellyC M ChipmanP R XiaoC GregorioG G HendricksonW A KuhnR J RossmanM G CryoEM reconstruction of dengue virus in complex with carbohydrate recognition domain of DC-SIGN Cell 2006 3 485 493</note>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>485</start>
<end>493</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b3">
<titleInfo>
<title>Molecular aspects of dengue virus replication</title>
</titleInfo>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Bartenschlager</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Miller</namePart>
</name>
<genre>journal</genre>
<note>BartenschlagerR MillerS Molecular aspects of dengue virus replication Future Microbiol. 2008 3 155 165</note>
<relatedItem type="host">
<titleInfo>
<title>Future Microbiol.</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>155</start>
<end>165</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b4">
<titleInfo>
<title>A voyage to the inner space of cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Baumister</namePart>
</name>
<genre>journal</genre>
<note>BaumisterW A voyage to the inner space of cells Protein Sci. 2005 14 257 269</note>
<relatedItem type="host">
<titleInfo>
<title>Protein Sci.</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>257</start>
<end>269</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b5">
<titleInfo>
<title>Electron tomography of membrane-bound cellular organelles</title>
</titleInfo>
<name type="personal">
<namePart type="given">T G</namePart>
<namePart type="family">Frey</namePart>
</name>
<name type="personal">
<namePart type="given">G A</namePart>
<namePart type="family">Perkins</namePart>
</name>
<name type="personal">
<namePart type="given">M H</namePart>
<namePart type="family">Ellisman</namePart>
</name>
<genre>journal</genre>
<note>FreyT G PerkinsG A EllismanM H Electron tomography of membrane-bound cellular organelles Annu. Rev. Biophys. Biomol. Struct. 2006 35 199 224</note>
<relatedItem type="host">
<titleInfo>
<title>Annu. Rev. Biophys. Biomol. Struct.</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<extent unit="pages">
<start>199</start>
<end>224</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b6">
<titleInfo>
<title>SK Hep1: a human cell line of endothelial origin</title>
</titleInfo>
<name type="personal">
<namePart type="given">S C</namePart>
<namePart type="family">Heffelfinger</namePart>
</name>
<name type="personal">
<namePart type="given">H H</namePart>
<namePart type="family">Hawkins</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Barrish</namePart>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Taylor</namePart>
</name>
<name type="personal">
<namePart type="given">G J</namePart>
<namePart type="family">Darlington</namePart>
</name>
<genre>journal</genre>
<note>HeffelfingerS C HawkinsH H BarrishJ TaylorL DarlingtonG J SK Hep1: a human cell line of endothelial origin In Vitro Cell. Dev. Biol. 1992 28A 136 142</note>
<relatedItem type="host">
<titleInfo>
<title>In Vitro Cell. Dev. Biol.</title>
</titleInfo>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>28A</number>
</detail>
<extent unit="pages">
<start>136</start>
<end>142</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b7">
<titleInfo>
<title>Virological applications of the grid-cell-culture technique</title>
</titleInfo>
<name type="personal">
<namePart type="given">A D</namePart>
<namePart type="family">Hyatt</namePart>
</name>
<name type="personal">
<namePart type="given">B T</namePart>
<namePart type="family">Eaton</namePart>
</name>
<genre>journal</genre>
<note>HyattA D EatonB T Virological applications of the grid-cell-culture technique Electron Microsc. Rev. 1990 3 1 27</note>
<relatedItem type="host">
<titleInfo>
<title>Electron Microsc. Rev.</title>
</titleInfo>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>27</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b8">
<titleInfo>
<title>The response of fenestrations, actin and caveolin 1 to vascular endothelial growth factor in SK Hep1 cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">V C</namePart>
<namePart type="family">Cogger</namePart>
</name>
<name type="personal">
<namePart type="given">I M</namePart>
<namePart type="family">Arias</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Warren</namePart>
</name>
<name type="personal">
<namePart type="given">A C</namePart>
<namePart type="family">McMohan</namePart>
</name>
<name type="personal">
<namePart type="given">D L</namePart>
<namePart type="family">Kiss</namePart>
</name>
<name type="personal">
<namePart type="given">V M</namePart>
<namePart type="family">Avery</namePart>
</name>
<name type="personal">
<namePart type="given">D G</namePart>
<namePart type="family">Le Coutier</namePart>
</name>
<genre>journal</genre>
<note>CoggerV C AriasI M WarrenA McMohanA C KissD L AveryV M Le CoutierD G The response of fenestrations, actin and caveolin 1 to vascular endothelial growth factor in SK Hep1 cells Am. J. Physiol. Gastrointest. Liver Physiol. 2008 295 G137 G145</note>
<relatedItem type="host">
<titleInfo>
<title>Am. J. Physiol. Gastrointest. Liver Physiol.</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>295</number>
</detail>
<extent unit="pages">
<start>G137</start>
<end>G145</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b9">
<titleInfo>
<title>A negative staining method for high-resolution electron microscopy of viruses</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Brenner</namePart>
</name>
<name type="personal">
<namePart type="given">R W</namePart>
<namePart type="family">Horne</namePart>
</name>
<genre>journal</genre>
<note>BrennerS HorneR W A negative staining method for high-resolution electron microscopy of viruses Biochim. Biophys. Acta 1959 34 103</note>
<relatedItem type="host">
<titleInfo>
<title>Biochim. Biophys. Acta</title>
</titleInfo>
<part>
<date>1959</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>103</start>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b10">
<titleInfo>
<title>Specimen preparation for transmission electron microscopy</title>
</titleInfo>
<name type="personal">
<namePart type="given">J J</namePart>
<namePart type="family">Bozolla</namePart>
</name>
<name type="personal">
<namePart type="given">L D</namePart>
<namePart type="family">Russell</namePart>
</name>
<genre>book</genre>
<note>BozollaJ J RussellL D Specimen preparation for transmission electron microscopy Electron Microscopy, Principles and Techniques for Biologists 1992 Boston USA Jones and Bartlett Publishers 16 37</note>
<relatedItem type="host">
<titleInfo>
<title>Electron Microscopy, Principles and Techniques for Biologists</title>
</titleInfo>
<originInfo>
<publisher>Jones and Bartlett Publishers. </publisher>
<place>
<placeTerm type="text">Boston USA</placeTerm>
</place>
</originInfo>
<part>
<date>1992</date>
<extent unit="pages">
<start>16</start>
<end>37</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b11">
<titleInfo>
<title>Cytological localization of dengue 2 antigens: an immunological study with ultrastructural correlation</title>
</titleInfo>
<name type="personal">
<namePart type="given">R D</namePart>
<namePart type="family">Cardiff</namePart>
</name>
<name type="personal">
<namePart type="given">J K</namePart>
<namePart type="family">Lund</namePart>
</name>
<genre>journal</genre>
<note>CardiffR D LundJ K Cytological localization of dengue 2 antigens: an immunological study with ultrastructural correlation Infect. Immun. 1976 7 809 816</note>
<relatedItem type="host">
<titleInfo>
<title>Infect. Immun.</title>
</titleInfo>
<part>
<date>1976</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>809</start>
<end>816</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b12">
<titleInfo>
<title>Distribution of dengue 2 antigens by electron immunocytochemistry</title>
</titleInfo>
<name type="personal">
<namePart type="given">R D</namePart>
<namePart type="family">Cardiff</namePart>
</name>
<name type="personal">
<namePart type="given">J K</namePart>
<namePart type="family">Lund</namePart>
</name>
<genre>journal</genre>
<note>CardiffR D LundJ K Distribution of dengue 2 antigens by electron immunocytochemistry Infect. Immun. 1976 3 1699 1709</note>
<relatedItem type="host">
<titleInfo>
<title>Infect. Immun.</title>
</titleInfo>
<part>
<date>1976</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1699</start>
<end>1709</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b13">
<titleInfo>
<title>Fluorescent antibody complement fixation method for detection of dengue viruses in mice</title>
</titleInfo>
<name type="personal">
<namePart type="given">R W</namePart>
<namePart type="family">Atchison</namePart>
</name>
<name type="personal">
<namePart type="given">J V</namePart>
<namePart type="family">Ordonez</namePart>
</name>
<name type="personal">
<namePart type="given">G E</namePart>
<namePart type="family">Sather</namePart>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Hammon</namePart>
</name>
<genre>journal</genre>
<note>AtchisonR W OrdonezJ V SatherG E HammonW Fluorescent antibody complement fixation method for detection of dengue viruses in mice J. Immunol. 1964 94 936 943</note>
<relatedItem type="host">
<titleInfo>
<title>J. Immunol.</title>
</titleInfo>
<part>
<date>1964</date>
<detail type="volume">
<caption>vol.</caption>
<number>94</number>
</detail>
<extent unit="pages">
<start>936</start>
<end>943</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b14">
<titleInfo>
<title>Replication of dengue viruses in mosquito cell cultures – a model from ultrastructural observations</title>
</titleInfo>
<name type="personal">
<namePart type="given">O M</namePart>
<namePart type="family">Barth</namePart>
</name>
<genre>journal</genre>
<note>BarthO M Replication of dengue viruses in mosquito cell cultures – a model from ultrastructural observations Mem. Inst. Oswaldo Cruz 1982 87 565 574</note>
<relatedItem type="host">
<titleInfo>
<title>Mem. Inst. Oswaldo Cruz</title>
</titleInfo>
<part>
<date>1982</date>
<detail type="volume">
<caption>vol.</caption>
<number>87</number>
</detail>
<extent unit="pages">
<start>565</start>
<end>574</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b15">
<titleInfo>
<title>Ultrastructural aspects of the dengue virus (flavivirus) particle morphogenesis</title>
</titleInfo>
<name type="personal">
<namePart type="given">O M</namePart>
<namePart type="family">Barth</namePart>
</name>
<genre>journal</genre>
<note>BarthO M Ultrastructural aspects of the dengue virus (flavivirus) particle morphogenesis J. Submicrosc. Cytol. Pathol. 1999 31 407 412</note>
<relatedItem type="host">
<titleInfo>
<title>J. Submicrosc. Cytol. Pathol.</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>31</number>
</detail>
<extent unit="pages">
<start>407</start>
<end>412</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b16">
<titleInfo>
<title>Cryosubstitution technique reveals new morphology of flavivirus-induced structures</title>
</titleInfo>
<name type="personal">
<namePart type="given">M L</namePart>
<namePart type="family">Ng</namePart>
</name>
<name type="personal">
<namePart type="given">F M</namePart>
<namePart type="family">Yeong</namePart>
</name>
<name type="personal">
<namePart type="given">S H</namePart>
<namePart type="family">Tan</namePart>
</name>
<genre>journal</genre>
<note>NgM L YeongF M TanS H Cryosubstitution technique reveals new morphology of flavivirus-induced structures J. Virol. Methods 1994 49 305 314</note>
<relatedItem type="host">
<titleInfo>
<title>J. Virol. Methods</title>
</titleInfo>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>49</number>
</detail>
<extent unit="pages">
<start>305</start>
<end>314</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b17">
<titleInfo>
<title>Immunolocalization of the dengue virus nonstructural protein NS1 suggests a role in viral RNA replication</title>
</titleInfo>
<name type="personal">
<namePart type="given">J M</namePart>
<namePart type="family">Mackenzie</namePart>
</name>
<name type="personal">
<namePart type="given">M K</namePart>
<namePart type="family">Jones</namePart>
</name>
<name type="personal">
<namePart type="given">P R</namePart>
<namePart type="family">Young</namePart>
</name>
<genre>journal</genre>
<note>MackenzieJ M JonesM K YoungP R Immunolocalization of the dengue virus nonstructural protein NS1 suggests a role in viral RNA replication Virology 1996 220 232 240</note>
<relatedItem type="host">
<titleInfo>
<title>Virology</title>
</titleInfo>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>220</number>
</detail>
<extent unit="pages">
<start>232</start>
<end>240</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b18">
<titleInfo>
<title>Composition and three dimensional architecture of the dengue virus replication and assembly sites</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">welsh</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Miller</namePart>
</name>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Romero-brey</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Merz</namePart>
</name>
<name type="personal">
<namePart type="given">C K E</namePart>
<namePart type="family">Bleck</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Walther</namePart>
</name>
<name type="personal">
<namePart type="given">S D</namePart>
<namePart type="family">Fuller</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Antony</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Krijnse-Locker</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Bartenschalger</namePart>
</name>
<genre>journal</genre>
<note>welshS MillerS Romero-breyI MerzA BleckC K E WaltherP FullerS D AntonyC Krijnse-LockerJ BartenschalgerR Composition and three dimensional architecture of the dengue virus replication and assembly sites Cell Host Microbe 2009 5 365 375</note>
<relatedItem type="host">
<titleInfo>
<title>Cell Host Microbe</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>365</start>
<end>375</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b19">
<titleInfo>
<title>Electron microscopic examination of Aedes albopictus clone C6/36 cells infected with dengue virus 2 at elevated incubation temperature</title>
</titleInfo>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Pandey</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Ichinose</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Igarashi</namePart>
</name>
<genre>journal</genre>
<note>PandeyB IchinoseA IgarashiA Electron microscopic examination of Aedes albopictus clone C6/36 cells infected with dengue virus 2 at elevated incubation temperature Acta Virol. 1998 42 35 39</note>
<relatedItem type="host">
<titleInfo>
<title>Acta Virol.</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>42</number>
</detail>
<extent unit="pages">
<start>35</start>
<end>39</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b20">
<titleInfo>
<title>Electron microscopic study of persistent dengue virus infection: analysis of a cell line persistently infected with dengue 2 virus</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Takasaki</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Takada</namePart>
</name>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Kurane</namePart>
</name>
<genre>journal</genre>
<note>TakasakiT TakadaK KuraneI Electron microscopic study of persistent dengue virus infection: analysis of a cell line persistently infected with dengue 2 virus Intervirology 2001 44 48 54</note>
<relatedItem type="host">
<titleInfo>
<title>Intervirology</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>44</number>
</detail>
<extent unit="pages">
<start>48</start>
<end>54</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b21">
<titleInfo>
<title>Autophagic machinery activated by dengue virus enhances virus replication</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Lee</namePart>
</name>
<name type="personal">
<namePart type="given">H-Y</namePart>
<namePart type="family">Lei</namePart>
</name>
<name type="personal">
<namePart type="given">M-T</namePart>
<namePart type="family">Liu</namePart>
</name>
<name type="personal">
<namePart type="given">J-R</namePart>
<namePart type="family">Wang</namePart>
</name>
<name type="personal">
<namePart type="given">S-H</namePart>
<namePart type="family">Chen</namePart>
</name>
<name type="personal">
<namePart type="given">Y-F</namePart>
<namePart type="family">Jiang-Shieh</namePart>
</name>
<name type="personal">
<namePart type="given">Y S</namePart>
<namePart type="family">Lin</namePart>
</name>
<name type="personal">
<namePart type="given">R M</namePart>
<namePart type="family">Yeh</namePart>
</name>
<name type="personal">
<namePart type="given">C C</namePart>
<namePart type="family">Liu</namePart>
</name>
<name type="personal">
<namePart type="given">H-S</namePart>
<namePart type="family">Liu</namePart>
</name>
<genre>journal</genre>
<note>LeeY LeiH-Y LiuM-T WangJ-R ChenS-H Jiang-ShiehY-F LinY S YehR M LiuC C LiuH-S Autophagic machinery activated by dengue virus enhances virus replication Virology 2008 374 240 248</note>
<relatedItem type="host">
<titleInfo>
<title>Virology</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>374</number>
</detail>
<extent unit="pages">
<start>240</start>
<end>248</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b22">
<titleInfo>
<title>SARS coronavirus replication is supported by a tubulovesicular network of modified endoplasmic reticulum</title>
</titleInfo>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Knoops</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Kikert</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Van den Wom</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Zevenhoven-Dobbe</namePart>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Van der Meer</namePart>
</name>
<name type="personal">
<namePart type="given">A J</namePart>
<namePart type="family">Koster</namePart>
</name>
<name type="personal">
<namePart type="given">A M</namePart>
<namePart type="family">Mommas</namePart>
</name>
<name type="personal">
<namePart type="given">E J</namePart>
<namePart type="family">Snijder</namePart>
</name>
<genre>journal</genre>
<note>KnoopsK KikertM Van den WomS Zevenhoven-DobbeJ Van der MeerY KosterA J MommasA M SnijderE J SARS coronavirus replication is supported by a tubulovesicular network of modified endoplasmic reticulum PLoS Biol. 2008 6 1957 1974</note>
<relatedItem type="host">
<titleInfo>
<title>PLoS Biol.</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>1957</start>
<end>1974</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b23">
<titleInfo>
<title>Architects of assembly: roles of flaviviridae nonstructural proteins in virion morphogenesis</title>
</titleInfo>
<name type="personal">
<namePart type="given">C L</namePart>
<namePart type="family">Murray</namePart>
</name>
<name type="personal">
<namePart type="given">C T</namePart>
<namePart type="family">Jones</namePart>
</name>
<name type="personal">
<namePart type="given">C M</namePart>
<namePart type="family">Rice</namePart>
</name>
<genre>journal</genre>
<note>MurrayC L JonesC T RiceC M Architects of assembly: roles of flaviviridae nonstructural proteins in virion morphogenesis Nat. Rev. Microbiol. 2008 6 699 708</note>
<relatedItem type="host">
<titleInfo>
<title>Nat. Rev. Microbiol.</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>699</start>
<end>708</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">935978052B3A8551F2036D32EBA6CEC090F03BB2</identifier>
<identifier type="ark">ark:/67375/HXZ-FWGV50K4-7</identifier>
<identifier type="DOI">10.1093/jmicro/dfq063</identifier>
<identifier type="ArticleID">dfq063</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© The Author 2010. Published by Oxford University Press on behalf of Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>Converted from (version 1.2.0) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-12-09</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-FWGV50K4-7/record.json</uri>
</json:item>
</metadata>
<covers>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/935978052B3A8551F2036D32EBA6CEC090F03BB2/covers/tiff</uri>
</json:item>
<json:item>
<extension>html</extension>
<original>true</original>
<mimetype>text/html</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-FWGV50K4-7/covers.html</uri>
</json:item>
</covers>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-FWGV50K4-7/annexes.gif</uri>
</json:item>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-FWGV50K4-7/annexes.jpeg</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000626 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000626 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:935978052B3A8551F2036D32EBA6CEC090F03BB2
   |texte=   Dengue virus-induced autophagosomes and changes in endomembrane ultrastructure imaged by electron tomography and whole-mount grid-cell culture techniques
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021