Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mobility network models of COVID-19 explain inequities and inform reopening.

Identifieur interne : 000061 ( Main/Exploration ); précédent : 000060; suivant : 000062

Mobility network models of COVID-19 explain inequities and inform reopening.

Auteurs : Serina Chang [États-Unis] ; Emma Pierson [États-Unis] ; Pang Wei Koh [États-Unis] ; Jaline Gerardin [États-Unis] ; Beth Redbird [États-Unis] ; David Grusky [États-Unis] ; Jure Leskovec [États-Unis]

Source :

RBID : pubmed:33171481

Descripteurs français

English descriptors

Abstract

The coronavirus disease 2019 (COVID-19) pandemic markedly changed human mobility patterns, necessitating epidemiological models that can capture the effects of these changes in mobility on the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. Here we introduce a metapopulation susceptible-exposed-infectious-removed (SEIR) model that integrates fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in ten of the largest US metropolitan areas. Our mobility networks are derived from mobile phone data and map the hourly movements of 98 million people from neighbourhoods (or census block groups) to points of interest such as restaurants and religious establishments, connecting 56,945 census block groups to 552,758 points of interest with 5.4 billion hourly edges. We show that by integrating these networks, a relatively simple SEIR model can accurately fit the real case trajectory, despite substantial changes in the behaviour of the population over time. Our model predicts that a small minority of 'superspreader' points of interest account for a large majority of the infections, and that restricting the maximum occupancy at each point of interest is more effective than uniformly reducing mobility. Our model also correctly predicts higher infection rates among disadvantaged racial and socioeconomic groups2-8 solely as the result of differences in mobility: we find that disadvantaged groups have not been able to reduce their mobility as sharply, and that the points of interest that they visit are more crowded and are therefore associated with higher risk. By capturing who is infected at which locations, our model supports detailed analyses that can inform more-effective and equitable policy responses to COVID-19.

DOI: 10.1038/s41586-020-2923-3
PubMed: 33171481


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mobility network models of COVID-19 explain inequities and inform reopening.</title>
<author>
<name sortKey="Chang, Serina" sort="Chang, Serina" uniqKey="Chang S" first="Serina" last="Chang">Serina Chang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Pierson, Emma" sort="Pierson, Emma" uniqKey="Pierson E" first="Emma" last="Pierson">Emma Pierson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Microsoft Research, Cambridge, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microsoft Research, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Koh, Pang Wei" sort="Koh, Pang Wei" uniqKey="Koh P" first="Pang Wei" last="Koh">Pang Wei Koh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gerardin, Jaline" sort="Gerardin, Jaline" uniqKey="Gerardin J" first="Jaline" last="Gerardin">Jaline Gerardin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Preventive Medicine, Northwestern University, Chicago, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Redbird, Beth" sort="Redbird, Beth" uniqKey="Redbird B" first="Beth" last="Redbird">Beth Redbird</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Sociology, Northwestern University, Evanston, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Sociology, Northwestern University, Evanston, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Policy Research, Northwestern University, Evanston, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Policy Research, Northwestern University, Evanston, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grusky, David" sort="Grusky, David" uniqKey="Grusky D" first="David" last="Grusky">David Grusky</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Sociology, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Sociology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Center on Poverty and Inequality, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center on Poverty and Inequality, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Leskovec, Jure" sort="Leskovec, Jure" uniqKey="Leskovec J" first="Jure" last="Leskovec">Jure Leskovec</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA. jure@cs.stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Chan Zuckerberg Biohub, San Francisco, CA, USA. jure@cs.stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chan Zuckerberg Biohub, San Francisco, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33171481</idno>
<idno type="pmid">33171481</idno>
<idno type="doi">10.1038/s41586-020-2923-3</idno>
<idno type="wicri:Area/Main/Corpus">000173</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000173</idno>
<idno type="wicri:Area/Main/Curation">000173</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000173</idno>
<idno type="wicri:Area/Main/Exploration">000173</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mobility network models of COVID-19 explain inequities and inform reopening.</title>
<author>
<name sortKey="Chang, Serina" sort="Chang, Serina" uniqKey="Chang S" first="Serina" last="Chang">Serina Chang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Pierson, Emma" sort="Pierson, Emma" uniqKey="Pierson E" first="Emma" last="Pierson">Emma Pierson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Microsoft Research, Cambridge, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microsoft Research, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Koh, Pang Wei" sort="Koh, Pang Wei" uniqKey="Koh P" first="Pang Wei" last="Koh">Pang Wei Koh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gerardin, Jaline" sort="Gerardin, Jaline" uniqKey="Gerardin J" first="Jaline" last="Gerardin">Jaline Gerardin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Preventive Medicine, Northwestern University, Chicago, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Redbird, Beth" sort="Redbird, Beth" uniqKey="Redbird B" first="Beth" last="Redbird">Beth Redbird</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Sociology, Northwestern University, Evanston, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Sociology, Northwestern University, Evanston, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Policy Research, Northwestern University, Evanston, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Policy Research, Northwestern University, Evanston, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grusky, David" sort="Grusky, David" uniqKey="Grusky D" first="David" last="Grusky">David Grusky</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Sociology, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Sociology, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Center on Poverty and Inequality, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center on Poverty and Inequality, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Leskovec, Jure" sort="Leskovec, Jure" uniqKey="Leskovec J" first="Jure" last="Leskovec">Jure Leskovec</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA. jure@cs.stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Chan Zuckerberg Biohub, San Francisco, CA, USA. jure@cs.stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chan Zuckerberg Biohub, San Francisco, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature</title>
<idno type="eISSN">1476-4687</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>COVID-19 (epidemiology)</term>
<term>COVID-19 (prevention & control)</term>
<term>COVID-19 (transmission)</term>
<term>Cell Phone (statistics & numerical data)</term>
<term>Computer Simulation (MeSH)</term>
<term>Continental Population Groups (statistics & numerical data)</term>
<term>Data Analysis (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Locomotion (MeSH)</term>
<term>Mobile Applications (statistics & numerical data)</term>
<term>Physical Distancing (MeSH)</term>
<term>Religion (MeSH)</term>
<term>Restaurants (organization & administration)</term>
<term>Risk Assessment (MeSH)</term>
<term>Socioeconomic Factors (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de données (MeSH)</term>
<term>Applications mobiles (statistiques et données numériques)</term>
<term>Appréciation des risques (MeSH)</term>
<term>Facteurs socioéconomiques (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Locomotion (MeSH)</term>
<term>Populations d'origine continentale (statistiques et données numériques)</term>
<term>Religion (MeSH)</term>
<term>Restaurants (organisation et administration)</term>
<term>Simulation numérique (MeSH)</term>
<term>Téléphones portables (statistiques et données numériques)</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="organisation et administration" xml:lang="fr">
<term>Restaurants</term>
</keywords>
<keywords scheme="MESH" qualifier="organization & administration" xml:lang="en">
<term>Restaurants</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Cell Phone</term>
<term>Continental Population Groups</term>
<term>Mobile Applications</term>
</keywords>
<keywords scheme="MESH" qualifier="statistiques et données numériques" xml:lang="fr">
<term>Applications mobiles</term>
<term>Populations d'origine continentale</term>
<term>Téléphones portables</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Data Analysis</term>
<term>Humans</term>
<term>Locomotion</term>
<term>Physical Distancing</term>
<term>Religion</term>
<term>Risk Assessment</term>
<term>Socioeconomic Factors</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de données</term>
<term>Appréciation des risques</term>
<term>Facteurs socioéconomiques</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Locomotion</term>
<term>Religion</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coronavirus disease 2019 (COVID-19) pandemic markedly changed human mobility patterns, necessitating epidemiological models that can capture the effects of these changes in mobility on the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
<sup>1</sup>
. Here we introduce a metapopulation susceptible-exposed-infectious-removed (SEIR) model that integrates fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in ten of the largest US metropolitan areas. Our mobility networks are derived from mobile phone data and map the hourly movements of 98 million people from neighbourhoods (or census block groups) to points of interest such as restaurants and religious establishments, connecting 56,945 census block groups to 552,758 points of interest with 5.4 billion hourly edges. We show that by integrating these networks, a relatively simple SEIR model can accurately fit the real case trajectory, despite substantial changes in the behaviour of the population over time. Our model predicts that a small minority of 'superspreader' points of interest account for a large majority of the infections, and that restricting the maximum occupancy at each point of interest is more effective than uniformly reducing mobility. Our model also correctly predicts higher infection rates among disadvantaged racial and socioeconomic groups
<sup>2-8</sup>
solely as the result of differences in mobility: we find that disadvantaged groups have not been able to reduce their mobility as sharply, and that the points of interest that they visit are more crowded and are therefore associated with higher risk. By capturing who is infected at which locations, our model supports detailed analyses that can inform more-effective and equitable policy responses to COVID-19.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33171481</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>01</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1476-4687</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>589</Volume>
<Issue>7840</Issue>
<PubDate>
<Year>2021</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>Nature</Title>
<ISOAbbreviation>Nature</ISOAbbreviation>
</Journal>
<ArticleTitle>Mobility network models of COVID-19 explain inequities and inform reopening.</ArticleTitle>
<Pagination>
<MedlinePgn>82-87</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41586-020-2923-3</ELocationID>
<Abstract>
<AbstractText>The coronavirus disease 2019 (COVID-19) pandemic markedly changed human mobility patterns, necessitating epidemiological models that can capture the effects of these changes in mobility on the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
<sup>1</sup>
. Here we introduce a metapopulation susceptible-exposed-infectious-removed (SEIR) model that integrates fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in ten of the largest US metropolitan areas. Our mobility networks are derived from mobile phone data and map the hourly movements of 98 million people from neighbourhoods (or census block groups) to points of interest such as restaurants and religious establishments, connecting 56,945 census block groups to 552,758 points of interest with 5.4 billion hourly edges. We show that by integrating these networks, a relatively simple SEIR model can accurately fit the real case trajectory, despite substantial changes in the behaviour of the population over time. Our model predicts that a small minority of 'superspreader' points of interest account for a large majority of the infections, and that restricting the maximum occupancy at each point of interest is more effective than uniformly reducing mobility. Our model also correctly predicts higher infection rates among disadvantaged racial and socioeconomic groups
<sup>2-8</sup>
solely as the result of differences in mobility: we find that disadvantaged groups have not been able to reduce their mobility as sharply, and that the points of interest that they visit are more crowded and are therefore associated with higher risk. By capturing who is infected at which locations, our model supports detailed analyses that can inform more-effective and equitable policy responses to COVID-19.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Chang</LastName>
<ForeName>Serina</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4253-1016</Identifier>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Pierson</LastName>
<ForeName>Emma</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Microsoft Research, Cambridge, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Koh</LastName>
<ForeName>Pang Wei</ForeName>
<Initials>PW</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gerardin</LastName>
<ForeName>Jaline</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8071-9928</Identifier>
<AffiliationInfo>
<Affiliation>Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Redbird</LastName>
<ForeName>Beth</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Sociology, Northwestern University, Evanston, IL, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Policy Research, Northwestern University, Evanston, IL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grusky</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Sociology, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center on Poverty and Inequality, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leskovec</LastName>
<ForeName>Jure</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-5411-923X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Stanford University, Stanford, CA, USA. jure@cs.stanford.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Chan Zuckerberg Biohub, San Francisco, CA, USA. jure@cs.stanford.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nature</MedlineTA>
<NlmUniqueID>0410462</NlmUniqueID>
<ISSNLinking>0028-0836</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nature. 2021 Jan;589(7840):26-28</RefSource>
<PMID Version="1">33173216</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040421" MajorTopicYN="N">Cell Phone</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="Y">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044469" MajorTopicYN="N">Continental Population Groups</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078332" MajorTopicYN="N">Data Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008124" MajorTopicYN="Y">Locomotion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063731" MajorTopicYN="N">Mobile Applications</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000085762" MajorTopicYN="Y">Physical Distancing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012067" MajorTopicYN="N">Religion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012147" MajorTopicYN="N">Restaurants</DescriptorName>
<QualifierName UI="Q000458" MajorTopicYN="N">organization & administration</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012959" MajorTopicYN="Y">Socioeconomic Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>20</Hour>
<Minute>15</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33171481</ArticleId>
<ArticleId IdType="doi">10.1038/s41586-020-2923-3</ArticleId>
<ArticleId IdType="pii">10.1038/s41586-020-2923-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Buckee, C. O. et al. Aggregated mobility data could help fight COVID-19. Science 368, 145–146 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wilson, C. These graphs show how COVID-19 is ravaging New York City’s low-income neighborhoods. Time (15 April 2020).</Citation>
</Reference>
<Reference>
<Citation>Garg, S. et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 — COVID-NET, 14 states, March 1—30, 2020. MMWR Morb. Mortal. Wkly Rep. 69, 458–464 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.15585/mmwr.mm6915e3</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Reeves, R. V. & Rothwell, J. Class and COVID: How the Less Affluent face Double Risks. https://www.brookings.edu/blog/up-front/2020/03/27/class-and-covid-how-the-less-affluent-face-double-risks/ (The Brookings Institution, 2020).</Citation>
</Reference>
<Reference>
<Citation>Pareek, M. et al. Ethnicity and COVID-19: an urgent public health research priority. Lancet 395, 1421–1422 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S0140-6736(20)30922-3</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dorn, A. V., Cooney, R. E. & Sabin, M. L. COVID-19 exacerbating inequalities in the US. Lancet 395, 1243–1244 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S0140-6736(20)30893-X</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yancy, C. W. COVID-19 and African Americans. J. Am. Med. Assoc. 323, 1891–1892 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jama.2020.6548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chowkwanyun, M. & Reed, A. L. Jr. Racial Health Disparities and Covid-19 — caution and context. N. Engl. J. Med. 383, 201–203 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMp2012910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41586-020-2405-7</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rojas, R. & Delkic, M. As states reopen, governors balance existing risks with new ones. The New York Times (17 May 2020).</Citation>
</Reference>
<Reference>
<Citation>Endo, A., Abbott, S., Kucharski, A. J. & Funk, S. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res. 5, 67 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.12688/wellcomeopenres.15842.3</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. https://doi.org/10.1038/s41591-020-1092-0 (2020).</Citation>
</Reference>
<Reference>
<Citation>Park, S. Y. et al. Coronavirus disease outbreak in call center, South Korea. Emerg. Infect. Dis. 26, 1666–1670 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3201/eid2608.201274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bi, Q. et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect. Dis. 20, 911–919 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S1473-3099(20)30287-5</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368, 395–400 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1126/science.aba9757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jia, J. S. et al. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 582, 389–394 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41586-020-2284-y</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pei, S., Kandula, S. & Shaman, J. Differential effects of intervention timing on COVID-19 spread in the United States. Preprint at https://doi.org/10.1101/2020.05.15.20103655 (2020).</Citation>
</Reference>
<Reference>
<Citation>Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature 585, 410–413 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41586-020-2293-x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis. 20, 1247–1254 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S1473-3099(20)30553-3</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 368, 489–493 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1126/science.abb3221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pei, S. & Shaman, J. Initial simulation of SARS-CoV2 spread and intervention effects in the continental US. Preprint at https://doi.org/10.1101/2020.03.21.20040303 (2020).</Citation>
</Reference>
<Reference>
<Citation>Aleta, A. et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat. Hum. Behav. 4, 964–971 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41562-020-0931-9</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Duque, D. et al. Timing social distancing to avert unmanageable COVID-19 hospital surges. Proc. Natl Acad. Sci. USA 177, 19873–19878 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.2009033117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Block, P. et al. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat. Hum. Behav. 4, 588–596 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41562-020-0898-6</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Karin, O. et al. Adaptive cyclic exit strategies from lockdown to suppress COVID-19 and allow economic activity. Preprint at https://doi.org/10.1101/2020.04.04.20053579 (2020).</Citation>
</Reference>
<Reference>
<Citation>Gao, S. et al. Mapping county-level mobility pattern changes in the United States in response to COVID-19. SIGSPATIAL Special 12, 16–26 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1145/3404820.3404824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Klein, B. et al. Assessing Changes in Commuting and Individual Mobility in Major Metropolitan Areas in the United States during the COVID-19 Outbreak. https://www.networkscienceinstitute.org/publications/assessing-changes-in-commuting-and-individual-mobility-in-major-metropolitan-areas-in-the-united-states-during-the-covid-19-outbreak (2020).</Citation>
</Reference>
<Reference>
<Citation>Benzell, S. G., Collis, A. & Nicolaides, C. Rationing social contact during the COVID-19 pandemic: transmission risk and social benefits of US locations. Proc. Natl Acad. Sci. USA 117, 14642–14644 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.2008025117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Baicker, K. et al. Is it safer to visit a coffee shop or a gym? The New York Times (6 May 2020).</Citation>
</Reference>
<Reference>
<Citation>Hsiang, S. et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 584, 262–267 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41586-020-2404-8</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Deming, W. E. & Stephan, F. F. On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11, 427–444 (1940).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1214/aoms/1177731829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>The New York Times. Coronavirus (COVID-19) Data in the United States. https://github.com/nytimes/covid-19-data (2020).</Citation>
</Reference>
<Reference>
<Citation>Tian, H. et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 368, 638–642 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1126/science.abb6105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Watts, D. J., Muhamad, R., Medina, D. C. & Dodds, P. S. Multiscale, resurgent epidemics in a hierarchical metapopulation model. Proc. Natl Acad. Sci. USA 102, 11157–11162 (2005).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.0501226102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>California Department of Public Health. COVID-19 Industry Guidance: Retail. https://covid19.ca.gov/pdf/guidance-retail.pdf (2020).</Citation>
</Reference>
<Reference>
<Citation>Birge, J., Candogan, O. & Feng, Y. Controlling epidemic spread: reducing economic losses with targeted closures. BFI Working Paper No. 2020-57 (8 May 2020).</Citation>
</Reference>
<Reference>
<Citation>Webb Hooper, M., Nápoles, A. M. & Pérez-Stable, E. J. COVID-19 and racial/ethnic disparities. J. Am. Med. Assoc. 323, 2466–2467 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jama.2020.8598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Laurencin, C. T. & McClinton, A. The COVID-19 pandemic: a call to action to identify and address racial and ethnic disparities. J. Racial Ethn. Health Disparities 7, 398–402 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s40615-020-00756-0</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>SafeGraph. Places Schema. https://docs.safegraph.com/docs/places-schema (2020).</Citation>
</Reference>
<Reference>
<Citation>SafeGraph. Weekly Patterns. https://docs.safegraph.com/docs/weekly-patterns (2020).</Citation>
</Reference>
<Reference>
<Citation>SafeGraph. Using SafeGraph Polygons to Estimate Point-Of-Interest Square Footage. https://www.safegraph.com/blog/using-safegraph-polygons-to-estimate-point-of-interest-square-footage (2019).</Citation>
</Reference>
<Reference>
<Citation>SafeGraph. Guide to Points-of-Interest Data: POI Data FAQ. https://www.safegraph.com/points-of-interest-poi-data-guide (2020).</Citation>
</Reference>
<Reference>
<Citation>SafeGraph. Social Distancing Metrics. https://docs.safegraph.com/docs/social-distancing-metrics (2020).</Citation>
</Reference>
<Reference>
<Citation>Athey, S. et al. Estimating heterogeneous consumer preferences for restaurants and travel time using mobile location data. In AEA Papers and Proceedings Vol. 108, 64–67 (2018).</Citation>
</Reference>
<Reference>
<Citation>Chen, M. K. & Rohla, R. The effect of partisanship and political advertising on close family ties. Science 360, 1020–1024 (2018).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1126/science.aaq1433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Farboodi, M., Jarosch, G. & Shimer, R. Internal and external effects of social distancing in a pandemic. NBER Working Paper 27059 https://doi.org/10.3386/w27059 (National Bureau Of Economic Research, 2020).</Citation>
</Reference>
<Reference>
<Citation>Killeen, B. D. et al. A county-level dataset for informing the United States’ response to COVID-19. Preprint at https://arxiv.org/abs/2004.00756 (2020).</Citation>
</Reference>
<Reference>
<Citation>Allcott, H. et al. Polarization and public health: partisan differences in social distancing during the coronavirus pandemic. NBER Working Paper 26946 https://doi.org/10.3386/w26946 (National Bureau Of Economic Research, 2020).</Citation>
</Reference>
<Reference>
<Citation>Google. COVID-19 Community Mobility Reports. https://google.com/covid19/mobility/ (2020).</Citation>
</Reference>
<Reference>
<Citation>Athey, S. et al. Experienced Segregation. Working Paper 3785 https://gsb.stanford.edu/faculty-research/working-papers/experienced-segregation (2019).</Citation>
</Reference>
<Reference>
<Citation>Squire, R. F. What about Bias in the SafeGraph Dataset? https://safegraph.com/blog/what-about-bias-in-the-safegraph-dataset (2019).</Citation>
</Reference>
<Reference>
<Citation>US Census Bureau. American Community Survey (ACS) https://census.gov/programs-surveys/acs (published 30 January 2020).</Citation>
</Reference>
<Reference>
<Citation>Bishop, Y. M., Fienberg, S. E. & Holland, P. W. Discrete Multivariate Analysis:  Theory and Practice (MIT Press, 1975). </Citation>
</Reference>
<Reference>
<Citation>Birkin, M. & Clarke, M. Synthesis—a synthetic spatial information system for urban and regional analysis: methods and examples. Environ. Plann. A 20, 1645–1671 (1988).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1068/a201645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wong, D. W. The reliability of using the iterative proportional fitting procedure. Prof. Geogr. 44, 340–348 (1992).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.0033-0124.1992.00340.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Simpson, L. & Tranmer, M. Combining sample and census data in small area estimates: iterative proportional fitting with standard software. Prof. Geogr. 57, 222–234 (2005).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.0033-0124.2005.00474.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hu, H., Nigmatulina, K. & Eckhoff, P. The scaling of contact rates with population density for the infectious disease models. Math. Biosci. 244, 125–134 (2013).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.mbs.2013.04.013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kucharski, A. J. et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect. Dis. 20, 553–558 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S1473-3099(20)30144-4</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Park, M., Cook, A. R., Lim, J. T., Sun, Y. & Dickens, B. L. A systematic review of COVID-19 epidemiology based on current evidence. J. Clin. Med. 9, 967 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3390/jcm9040967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curmei, M. et al. Estimating household transmission of SARS-CoV-2. Preprint at https://doi.org/10.1101/2020.05.23.20111559 (2020).</Citation>
</Reference>
<Reference>
<Citation>Li, W. et al. The characteristics of household transmission of COVID-19. Clin. Infect. Dis. 71, 1943–1946 (2020).</Citation>
</Reference>
<Reference>
<Citation>Gudbjartsson, D. F. et al. Spread of SARS-CoV-2 in the Icelandic population. N. Engl. J. Med. 382, 2302–2315 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa2006100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carey, B. & Glanz, J. Hidden outbreaks spread through U.S. cities far earlier than Americans knew, estimates say. The New York Times (23 April 2020).</Citation>
</Reference>
<Reference>
<Citation>Bommer, C. & Vollmer, S. Average Detection Rate of SARS-CoV-2 Infections is Estimated Around Nine Percent. https://www.uni-goettingen.de/en/606540.html (2020).</Citation>
</Reference>
<Reference>
<Citation>Javan, E., Fox, S. J. & Meyers, L. A. The unseen and pervasive threat of COVID-19 throughout the US. Preprint at https://doi.org/10.1101/2020.04.06.20053561 (2020).</Citation>
</Reference>
<Reference>
<Citation>Perkins, T. A. et al. Estimating unobserved SARS-CoV-2 infections in the United States. Proc. Natl Acad. Sci. USA 117, 22597–22602 (2020).</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.2005476117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>King, A. A., Domenech de Cellès, M., Magpantay, F. M. & Rohani, P. Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proc. R. Soc. Lond. B 282, 20150347 (2015).</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Illinois</li>
<li>Massachusetts</li>
</region>
<settlement>
<li>Stanford (Californie)</li>
</settlement>
<orgName>
<li>Université Stanford</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Chang, Serina" sort="Chang, Serina" uniqKey="Chang S" first="Serina" last="Chang">Serina Chang</name>
</region>
<name sortKey="Gerardin, Jaline" sort="Gerardin, Jaline" uniqKey="Gerardin J" first="Jaline" last="Gerardin">Jaline Gerardin</name>
<name sortKey="Grusky, David" sort="Grusky, David" uniqKey="Grusky D" first="David" last="Grusky">David Grusky</name>
<name sortKey="Grusky, David" sort="Grusky, David" uniqKey="Grusky D" first="David" last="Grusky">David Grusky</name>
<name sortKey="Koh, Pang Wei" sort="Koh, Pang Wei" uniqKey="Koh P" first="Pang Wei" last="Koh">Pang Wei Koh</name>
<name sortKey="Leskovec, Jure" sort="Leskovec, Jure" uniqKey="Leskovec J" first="Jure" last="Leskovec">Jure Leskovec</name>
<name sortKey="Leskovec, Jure" sort="Leskovec, Jure" uniqKey="Leskovec J" first="Jure" last="Leskovec">Jure Leskovec</name>
<name sortKey="Pierson, Emma" sort="Pierson, Emma" uniqKey="Pierson E" first="Emma" last="Pierson">Emma Pierson</name>
<name sortKey="Pierson, Emma" sort="Pierson, Emma" uniqKey="Pierson E" first="Emma" last="Pierson">Emma Pierson</name>
<name sortKey="Redbird, Beth" sort="Redbird, Beth" uniqKey="Redbird B" first="Beth" last="Redbird">Beth Redbird</name>
<name sortKey="Redbird, Beth" sort="Redbird, Beth" uniqKey="Redbird B" first="Beth" last="Redbird">Beth Redbird</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000061 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000061 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33171481
   |texte=   Mobility network models of COVID-19 explain inequities and inform reopening.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33171481" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021