Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

AeDES: a next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission.

Identifieur interne : 000465 ( Main/Corpus ); précédent : 000464; suivant : 000466

AeDES: a next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission.

Auteurs : Á G. Mu Oz ; X. Chourio ; Ana Rivière-Cinnamond ; M A Diuk-Wasser ; P A Kache ; E A Mordecai ; L. Harrington ; M C Thomson

Source :

RBID : pubmed:32724218

English descriptors

Abstract

Aedes-borne diseases, such as dengue and chikungunya, are responsible for more than 50 million infections worldwide every year, with an overall increase of 30-fold in the last 50 years, mainly due to city population growth, more frequent travels and ecological changes. In the United States of America, the vast majority of Aedes-borne infections are imported from endemic regions by travelers, who can become new sources of mosquito infection upon their return home if the exposed population is susceptible to the disease, and if suitable environmental conditions for the mosquitoes and the virus are present. Since the susceptibility of the human population can be determined via periodic monitoring campaigns, the environmental suitability for the presence of mosquitoes and viruses becomes one of the most important pieces of information for decision makers in the health sector. We present a next-generation monitoring and forecasting system for [Formula: see text]-borne diseases' environmental suitability (AeDES) of transmission in the conterminous United States and transboundary regions, using calibrated ento-epidemiological models, climate models and temperature observations. After analyzing the seasonal predictive skill of AeDES, we briefly consider the recent Zika epidemic, and the compound effects of the current Central American dengue outbreak happening during the SARS-CoV-2 pandemic, to illustrate how a combination of tailored deterministic and probabilistic forecasts can inform key prevention and control strategies .

DOI: 10.1038/s41598-020-69625-4
PubMed: 32724218
PubMed Central: PMC7387552

Links to Exploration step

pubmed:32724218

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">AeDES: a next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission.</title>
<author>
<name sortKey="Mu Oz, A G" sort="Mu Oz, A G" uniqKey="Mu Oz A" first="Á G" last="Mu Oz">Á G. Mu Oz</name>
<affiliation>
<nlm:affiliation>International Research Institute for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York, NY, 10964, USA. agmunoz@iri.columbia.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chourio, X" sort="Chourio, X" uniqKey="Chourio X" first="X" last="Chourio">X. Chourio</name>
<affiliation>
<nlm:affiliation>International Research Institute for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York, NY, 10964, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riviere Cinnamond, Ana" sort="Riviere Cinnamond, Ana" uniqKey="Riviere Cinnamond A" first="Ana" last="Rivière-Cinnamond">Ana Rivière-Cinnamond</name>
<affiliation>
<nlm:affiliation>Pan-American Health Organization (PAHO), World Health Organization (WHO), Washington, DC, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Diuk Wasser, M A" sort="Diuk Wasser, M A" uniqKey="Diuk Wasser M" first="M A" last="Diuk-Wasser">M A Diuk-Wasser</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kache, P A" sort="Kache, P A" uniqKey="Kache P" first="P A" last="Kache">P A Kache</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mordecai, E A" sort="Mordecai, E A" uniqKey="Mordecai E" first="E A" last="Mordecai">E A Mordecai</name>
<affiliation>
<nlm:affiliation>Biology Department, Stanford University, Stanford, CA, 94305, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harrington, L" sort="Harrington, L" uniqKey="Harrington L" first="L" last="Harrington">L. Harrington</name>
<affiliation>
<nlm:affiliation>Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thomson, M C" sort="Thomson, M C" uniqKey="Thomson M" first="M C" last="Thomson">M C Thomson</name>
<affiliation>
<nlm:affiliation>International Research Institute for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York, NY, 10964, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Wellcome Trust, London, NW1 2BE, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32724218</idno>
<idno type="pmid">32724218</idno>
<idno type="doi">10.1038/s41598-020-69625-4</idno>
<idno type="pmc">PMC7387552</idno>
<idno type="wicri:Area/Main/Corpus">000465</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000465</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">AeDES: a next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission.</title>
<author>
<name sortKey="Mu Oz, A G" sort="Mu Oz, A G" uniqKey="Mu Oz A" first="Á G" last="Mu Oz">Á G. Mu Oz</name>
<affiliation>
<nlm:affiliation>International Research Institute for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York, NY, 10964, USA. agmunoz@iri.columbia.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chourio, X" sort="Chourio, X" uniqKey="Chourio X" first="X" last="Chourio">X. Chourio</name>
<affiliation>
<nlm:affiliation>International Research Institute for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York, NY, 10964, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riviere Cinnamond, Ana" sort="Riviere Cinnamond, Ana" uniqKey="Riviere Cinnamond A" first="Ana" last="Rivière-Cinnamond">Ana Rivière-Cinnamond</name>
<affiliation>
<nlm:affiliation>Pan-American Health Organization (PAHO), World Health Organization (WHO), Washington, DC, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Diuk Wasser, M A" sort="Diuk Wasser, M A" uniqKey="Diuk Wasser M" first="M A" last="Diuk-Wasser">M A Diuk-Wasser</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kache, P A" sort="Kache, P A" uniqKey="Kache P" first="P A" last="Kache">P A Kache</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mordecai, E A" sort="Mordecai, E A" uniqKey="Mordecai E" first="E A" last="Mordecai">E A Mordecai</name>
<affiliation>
<nlm:affiliation>Biology Department, Stanford University, Stanford, CA, 94305, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harrington, L" sort="Harrington, L" uniqKey="Harrington L" first="L" last="Harrington">L. Harrington</name>
<affiliation>
<nlm:affiliation>Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thomson, M C" sort="Thomson, M C" uniqKey="Thomson M" first="M C" last="Thomson">M C Thomson</name>
<affiliation>
<nlm:affiliation>International Research Institute for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York, NY, 10964, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Wellcome Trust, London, NW1 2BE, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aedes (virology)</term>
<term>Animals (MeSH)</term>
<term>Betacoronavirus (isolation & purification)</term>
<term>COVID-19 (MeSH)</term>
<term>Climate (MeSH)</term>
<term>Coronavirus Infections (pathology)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Coronavirus Infections (virology)</term>
<term>Databases, Factual (MeSH)</term>
<term>Decision Making (MeSH)</term>
<term>Epidemiological Monitoring (veterinary)</term>
<term>Humans (MeSH)</term>
<term>Mosquito Vectors (virology)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (pathology)</term>
<term>Pneumonia, Viral (transmission)</term>
<term>Pneumonia, Viral (virology)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Vector Borne Diseases (epidemiology)</term>
<term>Vector Borne Diseases (pathology)</term>
<term>Vector Borne Diseases (virology)</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Vector Borne Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
<term>Vector Borne Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Epidemiological Monitoring</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Aedes</term>
<term>Coronavirus Infections</term>
<term>Mosquito Vectors</term>
<term>Pneumonia, Viral</term>
<term>Vector Borne Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>COVID-19</term>
<term>Climate</term>
<term>Databases, Factual</term>
<term>Decision Making</term>
<term>Humans</term>
<term>Pandemics</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aedes-borne diseases, such as dengue and chikungunya, are responsible for more than 50 million infections worldwide every year, with an overall increase of 30-fold in the last 50 years, mainly due to city population growth, more frequent travels and ecological changes. In the United States of America, the vast majority of Aedes-borne infections are imported from endemic regions by travelers, who can become new sources of mosquito infection upon their return home if the exposed population is susceptible to the disease, and if suitable environmental conditions for the mosquitoes and the virus are present. Since the susceptibility of the human population can be determined via periodic monitoring campaigns, the environmental suitability for the presence of mosquitoes and viruses becomes one of the most important pieces of information for decision makers in the health sector. We present a next-generation monitoring and forecasting system for [Formula: see text]-borne diseases' environmental suitability (AeDES) of transmission in the conterminous United States and transboundary regions, using calibrated ento-epidemiological models, climate models and temperature observations. After analyzing the seasonal predictive skill of AeDES, we briefly consider the recent Zika epidemic, and the compound effects of the current Central American dengue outbreak happening during the SARS-CoV-2 pandemic, to illustrate how a combination of tailored deterministic and probabilistic forecasts can inform key prevention and control strategies .</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32724218</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>AeDES: a next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission.</ArticleTitle>
<Pagination>
<MedlinePgn>12640</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-020-69625-4</ELocationID>
<Abstract>
<AbstractText>Aedes-borne diseases, such as dengue and chikungunya, are responsible for more than 50 million infections worldwide every year, with an overall increase of 30-fold in the last 50 years, mainly due to city population growth, more frequent travels and ecological changes. In the United States of America, the vast majority of Aedes-borne infections are imported from endemic regions by travelers, who can become new sources of mosquito infection upon their return home if the exposed population is susceptible to the disease, and if suitable environmental conditions for the mosquitoes and the virus are present. Since the susceptibility of the human population can be determined via periodic monitoring campaigns, the environmental suitability for the presence of mosquitoes and viruses becomes one of the most important pieces of information for decision makers in the health sector. We present a next-generation monitoring and forecasting system for [Formula: see text]-borne diseases' environmental suitability (AeDES) of transmission in the conterminous United States and transboundary regions, using calibrated ento-epidemiological models, climate models and temperature observations. After analyzing the seasonal predictive skill of AeDES, we briefly consider the recent Zika epidemic, and the compound effects of the current Central American dengue outbreak happening during the SARS-CoV-2 pandemic, to illustrate how a combination of tailored deterministic and probabilistic forecasts can inform key prevention and control strategies .</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Muñoz</LastName>
<ForeName>Á G</ForeName>
<Initials>ÁG</Initials>
<Identifier Source="ORCID">0000-0002-2212-6654</Identifier>
<AffiliationInfo>
<Affiliation>International Research Institute for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York, NY, 10964, USA. agmunoz@iri.columbia.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chourio</LastName>
<ForeName>X</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>International Research Institute for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York, NY, 10964, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rivière-Cinnamond</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Pan-American Health Organization (PAHO), World Health Organization (WHO), Washington, DC, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Diuk-Wasser</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kache</LastName>
<ForeName>P A</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mordecai</LastName>
<ForeName>E A</ForeName>
<Initials>EA</Initials>
<Identifier Source="ORCID">0000-0002-4402-5547</Identifier>
<AffiliationInfo>
<Affiliation>Biology Department, Stanford University, Stanford, CA, 94305, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harrington</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-2143-2051</Identifier>
<AffiliationInfo>
<Affiliation>Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thomson</LastName>
<ForeName>M C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>International Research Institute for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York, NY, 10964, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Wellcome Trust, London, NW1 2BE, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1R35GM133439-01</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>2018-01754</GrantID>
<Agency>Svenska Forskningsrådet Formas (Swedish Research Council Formas)</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>NA18OAR4310339</GrantID>
<Agency>United States Department of Commerce | National Oceanic and Atmospheric Administration (NOAA)</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>U01CK000509-01</GrantID>
<Agency>U.S. Department of Health & Human Services | Centers for Disease Control and Prevention (CDC)</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>R35 GM133439</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 CK000509</GrantID>
<Acronym>CK</Acronym>
<Agency>NCEZID CDC HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>001</GrantID>
<Acronym>WHO_</Acronym>
<Agency>World Health Organization</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000330" MajorTopicYN="N">Aedes</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="N">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016208" MajorTopicYN="N">Databases, Factual</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003657" MajorTopicYN="N">Decision Making</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062665" MajorTopicYN="Y">Epidemiological Monitoring</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072138" MajorTopicYN="N">Mosquito Vectors</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000079426" MajorTopicYN="N">Vector Borne Diseases</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32724218</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-020-69625-4</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-020-69625-4</ArticleId>
<ArticleId IdType="pmc">PMC7387552</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Stat Methods Med Res. 1993;2(1):23-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8261248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2003 Jan;9(1):86-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12533286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11887-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26351662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis Poverty. 2018 Aug 10;7(1):81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30092816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2018 Aug 15;285(1884):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30111605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 19;9(3):e91989</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24647562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):119-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27994145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4055-4059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28396438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1996 Dec 14;348(9042):1664-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8962017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2017 Apr 27;11(4):e0005568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28448507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 06;9(3):e89783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24603439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2016 Oct 6;5(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Control Hosp Epidemiol. 2020 May 04;:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32362302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 May 30;114(22):E4334-E4343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28442561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2018 Jul 17;15(7):e1002613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30016319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Public Health. 2009 Nov 20;9:422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19930557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Apr 24;10(4):e1003583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24762780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2019 Oct;22(10):1690-1708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31286630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2019 Oct 10;15(10):e1007369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31600194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Mar 13;347(6227):aaa4339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Jul 12;8:1291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28747901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 2013 May;88(5):971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23478584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saudi Med J. 2005 Feb;26(2):191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15770290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 2014 Mar 1;92(3):171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24700976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Curr. 2016 Mar 16;8:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27066299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):994-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23277539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Emerg Med. 2020 Aug;76(2):168-178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32507491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Health Geogr. 2009 Nov 30;8:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19948034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2009 Jul 21;3(7):e481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19621090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Apr 19;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27090089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jul 22;353(6297):353-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27417493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis Model. 2017 Jun 29;2(3):288-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29928743</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000465 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000465 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32724218
   |texte=   AeDES: a next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32724218" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021