Serveur d'exploration sur la COVID chez les séniors

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Early Stage Machine Learning-Based Prediction of US County Vulnerability to the COVID-19 Pandemic: Machine Learning Approach.

Identifieur interne : 000709 ( Main/Curation ); précédent : 000708; suivant : 000710

Early Stage Machine Learning-Based Prediction of US County Vulnerability to the COVID-19 Pandemic: Machine Learning Approach.

Auteurs : Mihir Mehta [États-Unis] ; Juxihong Julaiti [États-Unis] ; Paul Griffin [États-Unis] ; Soundar Kumara [États-Unis]

Source :

RBID : pubmed:32784193

Descripteurs français

English descriptors

Abstract

BACKGROUND

The rapid spread of COVID-19 means that government and health services providers have little time to plan and design effective response policies. It is therefore important to quickly provide accurate predictions of how vulnerable geographic regions such as counties are to the spread of this virus.

OBJECTIVE

The aim of this study is to develop county-level prediction around near future disease movement for COVID-19 occurrences using publicly available data.

METHODS

We estimated county-level COVID-19 occurrences for the period March 14 to 31, 2020, based on data fused from multiple publicly available sources inclusive of health statistics, demographics, and geographical features. We developed a three-stage model using XGBoost, a machine learning algorithm, to quantify the probability of COVID-19 occurrence and estimate the number of potential occurrences for unaffected counties. Finally, these results were combined to predict the county-level risk. This risk was then used as an estimated after-five-day-vulnerability of the county.

RESULTS

The model predictions showed a sensitivity over 71% and specificity over 94% for models built using data from March 14 to 31, 2020. We found that population, population density, percentage of people aged >70 years, and prevalence of comorbidities play an important role in predicting COVID-19 occurrences. We observed a positive association at the county level between urbanicity and vulnerability to COVID-19.

CONCLUSIONS

The developed model can be used for identification of vulnerable counties and potential data discrepancies. Limited testing facilities and delayed results introduce significant variation in reported cases, which produces a bias in the model.


DOI: 10.2196/19446
PubMed: 32784193
PubMed Central: PMC7490002

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32784193

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Early Stage Machine Learning-Based Prediction of US County Vulnerability to the COVID-19 Pandemic: Machine Learning Approach.</title>
<author>
<name sortKey="Mehta, Mihir" sort="Mehta, Mihir" uniqKey="Mehta M" first="Mihir" last="Mehta">Mihir Mehta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Penn State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Penn State University, University Park, PA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Julaiti, Juxihong" sort="Julaiti, Juxihong" uniqKey="Julaiti J" first="Juxihong" last="Julaiti">Juxihong Julaiti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Penn State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Penn State University, University Park, PA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Griffin, Paul" sort="Griffin, Paul" uniqKey="Griffin P" first="Paul" last="Griffin">Paul Griffin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Purdue University, West Lafayette, IN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Purdue University, West Lafayette, IN</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kumara, Soundar" sort="Kumara, Soundar" uniqKey="Kumara S" first="Soundar" last="Kumara">Soundar Kumara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Penn State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Penn State University, University Park, PA</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32784193</idno>
<idno type="pmid">32784193</idno>
<idno type="doi">10.2196/19446</idno>
<idno type="pmc">PMC7490002</idno>
<idno type="wicri:Area/Main/Corpus">000709</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000709</idno>
<idno type="wicri:Area/Main/Curation">000709</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000709</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Early Stage Machine Learning-Based Prediction of US County Vulnerability to the COVID-19 Pandemic: Machine Learning Approach.</title>
<author>
<name sortKey="Mehta, Mihir" sort="Mehta, Mihir" uniqKey="Mehta M" first="Mihir" last="Mehta">Mihir Mehta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Penn State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Penn State University, University Park, PA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Julaiti, Juxihong" sort="Julaiti, Juxihong" uniqKey="Julaiti J" first="Juxihong" last="Julaiti">Juxihong Julaiti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Penn State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Penn State University, University Park, PA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Griffin, Paul" sort="Griffin, Paul" uniqKey="Griffin P" first="Paul" last="Griffin">Paul Griffin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Purdue University, West Lafayette, IN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Purdue University, West Lafayette, IN</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kumara, Soundar" sort="Kumara, Soundar" uniqKey="Kumara S" first="Soundar" last="Kumara">Soundar Kumara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Penn State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Penn State University, University Park, PA</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">JMIR public health and surveillance</title>
<idno type="eISSN">2369-2960</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged (MeSH)</term>
<term>Algorithms (MeSH)</term>
<term>Betacoronavirus (MeSH)</term>
<term>Comorbidity (MeSH)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Coronavirus Infections (virology)</term>
<term>Humans (MeSH)</term>
<term>Machine Learning (MeSH)</term>
<term>Models, Statistical (MeSH)</term>
<term>Pandemics (prevention & control)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Pneumonia, Viral (prevention & control)</term>
<term>Pneumonia, Viral (virology)</term>
<term>Population Density (MeSH)</term>
<term>Population Surveillance (methods)</term>
<term>Risk Assessment (MeSH)</term>
<term>United States (MeSH)</term>
<term>Urban Population (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Apprentissage machine (MeSH)</term>
<term>Appréciation des risques (MeSH)</term>
<term>Betacoronavirus (MeSH)</term>
<term>Comorbidité (MeSH)</term>
<term>Densité de population (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Infections à coronavirus (prévention et contrôle)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Infections à coronavirus (épidémiologie)</term>
<term>Modèles statistiques (MeSH)</term>
<term>Pandémies (prévention et contrôle)</term>
<term>Pneumopathie virale (prévention et contrôle)</term>
<term>Pneumopathie virale (virologie)</term>
<term>Pneumopathie virale (épidémiologie)</term>
<term>Population urbaine (MeSH)</term>
<term>Sujet âgé (MeSH)</term>
<term>Surveillance de la population (méthodes)</term>
<term>États-Unis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>United States</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Population Surveillance</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Surveillance de la population</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pandemics</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pandémies</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Algorithms</term>
<term>Betacoronavirus</term>
<term>Comorbidity</term>
<term>Humans</term>
<term>Machine Learning</term>
<term>Models, Statistical</term>
<term>Population Density</term>
<term>Risk Assessment</term>
<term>Urban Population</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Apprentissage machine</term>
<term>Appréciation des risques</term>
<term>Betacoronavirus</term>
<term>Comorbidité</term>
<term>Densité de population</term>
<term>Humains</term>
<term>Modèles statistiques</term>
<term>Population urbaine</term>
<term>Sujet âgé</term>
<term>États-Unis</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The rapid spread of COVID-19 means that government and health services providers have little time to plan and design effective response policies. It is therefore important to quickly provide accurate predictions of how vulnerable geographic regions such as counties are to the spread of this virus.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVE</b>
</p>
<p>The aim of this study is to develop county-level prediction around near future disease movement for COVID-19 occurrences using publicly available data.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>We estimated county-level COVID-19 occurrences for the period March 14 to 31, 2020, based on data fused from multiple publicly available sources inclusive of health statistics, demographics, and geographical features. We developed a three-stage model using XGBoost, a machine learning algorithm, to quantify the probability of COVID-19 occurrence and estimate the number of potential occurrences for unaffected counties. Finally, these results were combined to predict the county-level risk. This risk was then used as an estimated after-five-day-vulnerability of the county.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The model predictions showed a sensitivity over 71% and specificity over 94% for models built using data from March 14 to 31, 2020. We found that population, population density, percentage of people aged >70 years, and prevalence of comorbidities play an important role in predicting COVID-19 occurrences. We observed a positive association at the county level between urbanicity and vulnerability to COVID-19.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The developed model can be used for identification of vulnerable counties and potential data discrepancies. Limited testing facilities and delayed results introduce significant variation in reported cases, which produces a bias in the model.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32784193</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2369-2960</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>JMIR public health and surveillance</Title>
<ISOAbbreviation>JMIR Public Health Surveill</ISOAbbreviation>
</Journal>
<ArticleTitle>Early Stage Machine Learning-Based Prediction of US County Vulnerability to the COVID-19 Pandemic: Machine Learning Approach.</ArticleTitle>
<Pagination>
<MedlinePgn>e19446</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2196/19446</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">The rapid spread of COVID-19 means that government and health services providers have little time to plan and design effective response policies. It is therefore important to quickly provide accurate predictions of how vulnerable geographic regions such as counties are to the spread of this virus.</AbstractText>
<AbstractText Label="OBJECTIVE">The aim of this study is to develop county-level prediction around near future disease movement for COVID-19 occurrences using publicly available data.</AbstractText>
<AbstractText Label="METHODS">We estimated county-level COVID-19 occurrences for the period March 14 to 31, 2020, based on data fused from multiple publicly available sources inclusive of health statistics, demographics, and geographical features. We developed a three-stage model using XGBoost, a machine learning algorithm, to quantify the probability of COVID-19 occurrence and estimate the number of potential occurrences for unaffected counties. Finally, these results were combined to predict the county-level risk. This risk was then used as an estimated after-five-day-vulnerability of the county.</AbstractText>
<AbstractText Label="RESULTS">The model predictions showed a sensitivity over 71% and specificity over 94% for models built using data from March 14 to 31, 2020. We found that population, population density, percentage of people aged >70 years, and prevalence of comorbidities play an important role in predicting COVID-19 occurrences. We observed a positive association at the county level between urbanicity and vulnerability to COVID-19.</AbstractText>
<AbstractText Label="CONCLUSIONS">The developed model can be used for identification of vulnerable counties and potential data discrepancies. Limited testing facilities and delayed results introduce significant variation in reported cases, which produces a bias in the model.</AbstractText>
<CopyrightInformation>©Mihir Mehta, Juxihong Julaiti, Paul Griffin, Soundar Kumara. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 11.09.2020.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mehta</LastName>
<ForeName>Mihir</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-2269-0212</Identifier>
<AffiliationInfo>
<Affiliation>Penn State University, University Park, PA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Julaiti</LastName>
<ForeName>Juxihong</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-4936-728X</Identifier>
<AffiliationInfo>
<Affiliation>Penn State University, University Park, PA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Griffin</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">0000-0002-0206-4775</Identifier>
<AffiliationInfo>
<Affiliation>Purdue University, West Lafayette, IN, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumara</LastName>
<ForeName>Soundar</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-7941-8818</Identifier>
<AffiliationInfo>
<Affiliation>Penn State University, University Park, PA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>JMIR Public Health Surveill</MedlineTA>
<NlmUniqueID>101669345</NlmUniqueID>
<ISSNLinking>2369-2960</ISSNLinking>
</MedlineJournalInfo>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>H</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015897" MajorTopicYN="N">Comorbidity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069550" MajorTopicYN="N">Machine Learning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="Y">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="Y">Pandemics</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011156" MajorTopicYN="N">Population Density</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011159" MajorTopicYN="N">Population Surveillance</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014505" MajorTopicYN="N">Urban Population</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">XGBoost</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">county-level vulnerability</Keyword>
<Keyword MajorTopicYN="Y">machine learning</Keyword>
<Keyword MajorTopicYN="Y">prediction model</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32784193</ArticleId>
<ArticleId IdType="pii">v6i3e19446</ArticleId>
<ArticleId IdType="doi">10.2196/19446</ArticleId>
<ArticleId IdType="pmc">PMC7490002</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1966-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2004 Sep 15;160(6):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care. 2016 May 07;20(1):123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27153800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Immunol. 2017 Aug 4;2(14):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28778905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2007 Oct 16;147(8):573-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2017 Jan;162(1):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27664026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2018 Nov 27;19(6):1236-1246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2020 Apr;8(4):e21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Environ Res Public Health. 2019 Nov 25;16(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31775236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Public Health. 2016 Nov 29;16(1):1203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2003 Dec;9(12):1608-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14720403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 1):031917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15089332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Syst. 2017 Apr;41(4):69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28285459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Apr 14;323(14):1339-1340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32108857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vital Health Stat 2. 2014 Apr;(166):1-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24776070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1961-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Public Health. 2018 May 2;18(1):574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29716568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2003 Sep 7;224(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12900200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Korean Med Sci. 2017 May;32(5):744-749</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28378546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Epidemiol Community Health. 2003 Oct;57(10):831-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2019 Dec 31;188(12):2222-2239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31509183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2014 Jun;23:63-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2016 Jan;22(1):49-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26692185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2020 Apr 03;69(13):382-386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32240123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2015 Jun 25;20(25):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26132766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2016 Aug;49:129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27352628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiology. 2005 Nov;16(6):791-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2014 Dec;29:301-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25303830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2013 Sep;17(9):e668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23916548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidSeniorV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000709 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000709 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidSeniorV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32784193
   |texte=   Early Stage Machine Learning-Based Prediction of US County Vulnerability to the COVID-19 Pandemic: Machine Learning Approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:32784193" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidSeniorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Oct 15 09:49:45 2020. Site generation: Wed Jan 27 17:10:23 2021