Serveur d'exploration sur la COVID chez les séniors

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation.

Identifieur interne : 000893 ( Main/Corpus ); précédent : 000892; suivant : 000894

Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation.

Auteurs : Ahmed Abdulaal ; Aatish Patel ; Esmita Charani ; Sarah Denny ; Nabeela Mughal ; Luke Moore

Source :

RBID : pubmed:32735549

English descriptors

Abstract

BACKGROUND

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is a public health emergency and the case fatality rate in the United Kingdom is significant. Although there appear to be several early predictors of outcome, there are no currently validated prognostic models or scoring systems applicable specifically to patients with confirmed SARS-CoV-2.

OBJECTIVE

We aim to create a point-of-admission mortality risk scoring system using an artificial neural network (ANN).

METHODS

We present an ANN that can provide a patient-specific, point-of-admission mortality risk prediction to inform clinical management decisions at the earliest opportunity. The ANN analyzes a set of patient features including demographics, comorbidities, smoking history, and presenting symptoms and predicts patient-specific mortality risk during the current hospital admission. The model was trained and validated on data extracted from 398 patients admitted to hospital with a positive real-time reverse transcription polymerase chain reaction (RT-PCR) test for SARS-CoV-2.

RESULTS

Patient-specific mortality was predicted with 86.25% accuracy, with a sensitivity of 87.50% (95% CI 61.65%-98.45%) and specificity of 85.94% (95% CI 74.98%-93.36%). The positive predictive value was 60.87% (95% CI 45.23%-74.56%), and the negative predictive value was 96.49% (95% CI 88.23%-99.02%). The area under the receiver operating characteristic curve was 90.12%.

CONCLUSIONS

This analysis demonstrates an adaptive ANN trained on data at a single site, which demonstrates the early utility of deep learning approaches in a rapidly evolving pandemic with no established or validated prognostic scoring systems.


DOI: 10.2196/20259
PubMed: 32735549
PubMed Central: PMC7451108

Links to Exploration step

pubmed:32735549

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation.</title>
<author>
<name sortKey="Abdulaal, Ahmed" sort="Abdulaal, Ahmed" uniqKey="Abdulaal A" first="Ahmed" last="Abdulaal">Ahmed Abdulaal</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Aatish" sort="Patel, Aatish" uniqKey="Patel A" first="Aatish" last="Patel">Aatish Patel</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charani, Esmita" sort="Charani, Esmita" uniqKey="Charani E" first="Esmita" last="Charani">Esmita Charani</name>
<affiliation>
<nlm:affiliation>NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denny, Sarah" sort="Denny, Sarah" uniqKey="Denny S" first="Sarah" last="Denny">Sarah Denny</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mughal, Nabeela" sort="Mughal, Nabeela" uniqKey="Mughal N" first="Nabeela" last="Mughal">Nabeela Mughal</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, Luke" sort="Moore, Luke" uniqKey="Moore L" first="Luke" last="Moore">Luke Moore</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32735549</idno>
<idno type="pmid">32735549</idno>
<idno type="doi">10.2196/20259</idno>
<idno type="pmc">PMC7451108</idno>
<idno type="wicri:Area/Main/Corpus">000893</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000893</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation.</title>
<author>
<name sortKey="Abdulaal, Ahmed" sort="Abdulaal, Ahmed" uniqKey="Abdulaal A" first="Ahmed" last="Abdulaal">Ahmed Abdulaal</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Aatish" sort="Patel, Aatish" uniqKey="Patel A" first="Aatish" last="Patel">Aatish Patel</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charani, Esmita" sort="Charani, Esmita" uniqKey="Charani E" first="Esmita" last="Charani">Esmita Charani</name>
<affiliation>
<nlm:affiliation>NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denny, Sarah" sort="Denny, Sarah" uniqKey="Denny S" first="Sarah" last="Denny">Sarah Denny</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mughal, Nabeela" sort="Mughal, Nabeela" uniqKey="Mughal N" first="Nabeela" last="Mughal">Nabeela Mughal</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, Luke" sort="Moore, Luke" uniqKey="Moore L" first="Luke" last="Moore">Luke Moore</name>
<affiliation>
<nlm:affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of medical Internet research</title>
<idno type="eISSN">1438-8871</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged (MeSH)</term>
<term>Aged, 80 and over (MeSH)</term>
<term>Artificial Intelligence (MeSH)</term>
<term>Betacoronavirus (MeSH)</term>
<term>Comorbidity (MeSH)</term>
<term>Coronavirus Infections (diagnosis)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Female (MeSH)</term>
<term>Hospitalization (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Middle Aged (MeSH)</term>
<term>Neural Networks, Computer (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (diagnosis)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Prognosis (MeSH)</term>
<term>ROC Curve (MeSH)</term>
<term>United Kingdom (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>United Kingdom</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Aged, 80 and over</term>
<term>Artificial Intelligence</term>
<term>Betacoronavirus</term>
<term>Comorbidity</term>
<term>Female</term>
<term>Hospitalization</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Neural Networks, Computer</term>
<term>Pandemics</term>
<term>Prognosis</term>
<term>ROC Curve</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is a public health emergency and the case fatality rate in the United Kingdom is significant. Although there appear to be several early predictors of outcome, there are no currently validated prognostic models or scoring systems applicable specifically to patients with confirmed SARS-CoV-2.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVE</b>
</p>
<p>We aim to create a point-of-admission mortality risk scoring system using an artificial neural network (ANN).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>We present an ANN that can provide a patient-specific, point-of-admission mortality risk prediction to inform clinical management decisions at the earliest opportunity. The ANN analyzes a set of patient features including demographics, comorbidities, smoking history, and presenting symptoms and predicts patient-specific mortality risk during the current hospital admission. The model was trained and validated on data extracted from 398 patients admitted to hospital with a positive real-time reverse transcription polymerase chain reaction (RT-PCR) test for SARS-CoV-2.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Patient-specific mortality was predicted with 86.25% accuracy, with a sensitivity of 87.50% (95% CI 61.65%-98.45%) and specificity of 85.94% (95% CI 74.98%-93.36%). The positive predictive value was 60.87% (95% CI 45.23%-74.56%), and the negative predictive value was 96.49% (95% CI 88.23%-99.02%). The area under the receiver operating characteristic curve was 90.12%.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This analysis demonstrates an adaptive ANN trained on data at a single site, which demonstrates the early utility of deep learning approaches in a rapidly evolving pandemic with no established or validated prognostic scoring systems.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32735549</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1438-8871</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Journal of medical Internet research</Title>
<ISOAbbreviation>J Med Internet Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation.</ArticleTitle>
<Pagination>
<MedlinePgn>e20259</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2196/20259</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is a public health emergency and the case fatality rate in the United Kingdom is significant. Although there appear to be several early predictors of outcome, there are no currently validated prognostic models or scoring systems applicable specifically to patients with confirmed SARS-CoV-2.</AbstractText>
<AbstractText Label="OBJECTIVE">We aim to create a point-of-admission mortality risk scoring system using an artificial neural network (ANN).</AbstractText>
<AbstractText Label="METHODS">We present an ANN that can provide a patient-specific, point-of-admission mortality risk prediction to inform clinical management decisions at the earliest opportunity. The ANN analyzes a set of patient features including demographics, comorbidities, smoking history, and presenting symptoms and predicts patient-specific mortality risk during the current hospital admission. The model was trained and validated on data extracted from 398 patients admitted to hospital with a positive real-time reverse transcription polymerase chain reaction (RT-PCR) test for SARS-CoV-2.</AbstractText>
<AbstractText Label="RESULTS">Patient-specific mortality was predicted with 86.25% accuracy, with a sensitivity of 87.50% (95% CI 61.65%-98.45%) and specificity of 85.94% (95% CI 74.98%-93.36%). The positive predictive value was 60.87% (95% CI 45.23%-74.56%), and the negative predictive value was 96.49% (95% CI 88.23%-99.02%). The area under the receiver operating characteristic curve was 90.12%.</AbstractText>
<AbstractText Label="CONCLUSIONS">This analysis demonstrates an adaptive ANN trained on data at a single site, which demonstrates the early utility of deep learning approaches in a rapidly evolving pandemic with no established or validated prognostic scoring systems.</AbstractText>
<CopyrightInformation>©Ahmed Abdulaal, Aatish Patel, Esmita Charani, Sarah Denny, Nabeela Mughal, Luke Moore. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 25.08.2020.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Abdulaal</LastName>
<ForeName>Ahmed</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-3536-4803</Identifier>
<AffiliationInfo>
<Affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Aatish</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-2503-2602</Identifier>
<AffiliationInfo>
<Affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Charani</LastName>
<ForeName>Esmita</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0002-5938-1202</Identifier>
<AffiliationInfo>
<Affiliation>NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Denny</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-8248-6053</Identifier>
<AffiliationInfo>
<Affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mughal</LastName>
<ForeName>Nabeela</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0001-8013-5412</Identifier>
<AffiliationInfo>
<Affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>Luke</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0001-7095-7922</Identifier>
<AffiliationInfo>
<Affiliation>Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D023361">Validation Study</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>J Med Internet Res</MedlineTA>
<NlmUniqueID>100959882</NlmUniqueID>
<ISSNLinking>1438-8871</ISSNLinking>
</MedlineJournalInfo>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001185" MajorTopicYN="N">Artificial Intelligence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="Y">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015897" MajorTopicYN="N">Comorbidity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="Y">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006760" MajorTopicYN="N">Hospitalization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016571" MajorTopicYN="N">Neural Networks, Computer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="Y">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="Y">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012372" MajorTopicYN="N">ROC Curve</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006113" MajorTopicYN="N" Type="Geographic">United Kingdom</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">artificial intelligence</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">deep learning</Keyword>
<Keyword MajorTopicYN="Y">machine learning</Keyword>
<Keyword MajorTopicYN="Y">modeling</Keyword>
<Keyword MajorTopicYN="Y">neural network</Keyword>
<Keyword MajorTopicYN="Y">prediction</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32735549</ArticleId>
<ArticleId IdType="pii">v22i8e20259</ArticleId>
<ArticleId IdType="doi">10.2196/20259</ArticleId>
<ArticleId IdType="pmc">PMC7451108</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Clin Microbiol Infect. 2020 Jun;26(6):767-772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32304745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 28;395(10229):1054-1062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Internet Res. 2020 Jun 10;22(6):e20239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32496207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2020 Mar 19;15(3):e0230548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32191764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2015 Aug 5;7(299):299ra122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26246167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biomed Eng. 2018 Oct;2(10):749-760</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31001455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Transplant. 2020 May 5;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32368838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2020 May;8(5):506-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32272080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Obesity (Silver Spring). 2020 Jul;28(7):1195-1199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32271993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Intern Med. 2020 May 12;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32396163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NPJ Digit Med. 2018 May 8;1:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31304302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2020 Aug 3;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32747392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Cybern. 2016 Jul;46(7):1704-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27244754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2020 Jun 2;31(6):1068-1077.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32369736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Aug;572(7767):116-119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31367026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 May 22;369:m1985</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32444460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidSeniorV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000893 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000893 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidSeniorV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32735549
   |texte=   Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32735549" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidSeniorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Oct 15 09:49:45 2020. Site generation: Wed Jan 27 17:10:23 2021