Serveur d'exploration sur la COVID chez les séniors

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location.

Identifieur interne : 000244 ( Main/Corpus ); précédent : 000243; suivant : 000245

Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location.

Auteurs : Yangling Zhou ; Pejman Ghassemi ; Michelle Chen ; David Mcbride ; Jon P. Casamento ; T Joshua Pfefer ; Quanzeng Wang

Source :

RBID : pubmed:32921005

English descriptors

Abstract

SIGNIFICANCE

Infrared thermographs (IRTs) have been used for fever screening during infectious disease epidemics, including severe acute respiratory syndrome, Ebola virus disease, and coronavirus disease 2019 (COVID-19). Although IRTs have significant potential for human body temperature measurement, the literature indicates inconsistent diagnostic performance, possibly due to wide variations in implemented methodology. A standardized method for IRT fever screening was recently published, but there is a lack of clinical data demonstrating its impact on IRT performance.

AIM

Perform a clinical study to assess the diagnostic effectiveness of standardized IRT-based fever screening and evaluate the effect of facial measurement location.

APPROACH

We performed a clinical study of 596 subjects. Temperatures from 17 facial locations were extracted from thermal images and compared with oral thermometry. Statistical analyses included calculation of receiver operating characteristic (ROC) curves and area under the curve (AUC) values for detection of febrile subjects.

RESULTS

Pearson correlation coefficients for IRT-based and reference (oral) temperatures were found to vary strongly with measurement location. Approaches based on maximum temperatures in either inner canthi or full-face regions indicated stronger discrimination ability than maximum forehead temperature (AUC values of 0.95 to 0.97 versus 0.86 to 0.87, respectively) and other specific facial locations. These values are markedly better than the vast majority of results found in prior human studies of IRT-based fever screening.

CONCLUSION

Our findings provide clinical confirmation of the utility of consensus approaches for fever screening, including the use of inner canthi temperatures, while also indicating that full-face maximum temperatures may provide an effective alternate approach.


DOI: 10.1117/1.JBO.25.9.097002
PubMed: 32921005
PubMed Central: PMC7486803

Links to Exploration step

pubmed:32921005

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location.</title>
<author>
<name sortKey="Zhou, Yangling" sort="Zhou, Yangling" uniqKey="Zhou Y" first="Yangling" last="Zhou">Yangling Zhou</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>University of Maryland, Department of Mechanical Engineering, Baltimore County, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghassemi, Pejman" sort="Ghassemi, Pejman" uniqKey="Ghassemi P" first="Pejman" last="Ghassemi">Pejman Ghassemi</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Michelle" sort="Chen, Michelle" uniqKey="Chen M" first="Michelle" last="Chen">Michelle Chen</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mcbride, David" sort="Mcbride, David" uniqKey="Mcbride D" first="David" last="Mcbride">David Mcbride</name>
<affiliation>
<nlm:affiliation>University of Maryland, University Health Center, College Park, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casamento, Jon P" sort="Casamento, Jon P" uniqKey="Casamento J" first="Jon P" last="Casamento">Jon P. Casamento</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfefer, T Joshua" sort="Pfefer, T Joshua" uniqKey="Pfefer T" first="T Joshua" last="Pfefer">T Joshua Pfefer</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Quanzeng" sort="Wang, Quanzeng" uniqKey="Wang Q" first="Quanzeng" last="Wang">Quanzeng Wang</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32921005</idno>
<idno type="pmid">32921005</idno>
<idno type="doi">10.1117/1.JBO.25.9.097002</idno>
<idno type="pmc">PMC7486803</idno>
<idno type="wicri:Area/Main/Corpus">000244</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000244</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location.</title>
<author>
<name sortKey="Zhou, Yangling" sort="Zhou, Yangling" uniqKey="Zhou Y" first="Yangling" last="Zhou">Yangling Zhou</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>University of Maryland, Department of Mechanical Engineering, Baltimore County, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghassemi, Pejman" sort="Ghassemi, Pejman" uniqKey="Ghassemi P" first="Pejman" last="Ghassemi">Pejman Ghassemi</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Michelle" sort="Chen, Michelle" uniqKey="Chen M" first="Michelle" last="Chen">Michelle Chen</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mcbride, David" sort="Mcbride, David" uniqKey="Mcbride D" first="David" last="Mcbride">David Mcbride</name>
<affiliation>
<nlm:affiliation>University of Maryland, University Health Center, College Park, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casamento, Jon P" sort="Casamento, Jon P" uniqKey="Casamento J" first="Jon P" last="Casamento">Jon P. Casamento</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfefer, T Joshua" sort="Pfefer, T Joshua" uniqKey="Pfefer T" first="T Joshua" last="Pfefer">T Joshua Pfefer</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Quanzeng" sort="Wang, Quanzeng" uniqKey="Wang Q" first="Quanzeng" last="Wang">Quanzeng Wang</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biomedical optics</title>
<idno type="eISSN">1560-2281</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Aged (MeSH)</term>
<term>Area Under Curve (MeSH)</term>
<term>Betacoronavirus (MeSH)</term>
<term>Body Temperature (MeSH)</term>
<term>Coronavirus Infections (diagnosis)</term>
<term>Face (physiology)</term>
<term>Female (MeSH)</term>
<term>Fever (diagnosis)</term>
<term>Humans (MeSH)</term>
<term>Infrared Rays (MeSH)</term>
<term>Male (MeSH)</term>
<term>Mass Screening (methods)</term>
<term>Middle Aged (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (diagnosis)</term>
<term>Practice Guidelines as Topic (MeSH)</term>
<term>ROC Curve (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Thermography (methods)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Fever</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Mass Screening</term>
<term>Thermography</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Face</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Aged</term>
<term>Area Under Curve</term>
<term>Betacoronavirus</term>
<term>Body Temperature</term>
<term>Female</term>
<term>Humans</term>
<term>Infrared Rays</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Pandemics</term>
<term>Practice Guidelines as Topic</term>
<term>ROC Curve</term>
<term>Reproducibility of Results</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>Infrared thermographs (IRTs) have been used for fever screening during infectious disease epidemics, including severe acute respiratory syndrome, Ebola virus disease, and coronavirus disease 2019 (COVID-19). Although IRTs have significant potential for human body temperature measurement, the literature indicates inconsistent diagnostic performance, possibly due to wide variations in implemented methodology. A standardized method for IRT fever screening was recently published, but there is a lack of clinical data demonstrating its impact on IRT performance.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>AIM</b>
</p>
<p>Perform a clinical study to assess the diagnostic effectiveness of standardized IRT-based fever screening and evaluate the effect of facial measurement location.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>APPROACH</b>
</p>
<p>We performed a clinical study of 596 subjects. Temperatures from 17 facial locations were extracted from thermal images and compared with oral thermometry. Statistical analyses included calculation of receiver operating characteristic (ROC) curves and area under the curve (AUC) values for detection of febrile subjects.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Pearson correlation coefficients for IRT-based and reference (oral) temperatures were found to vary strongly with measurement location. Approaches based on maximum temperatures in either inner canthi or full-face regions indicated stronger discrimination ability than maximum forehead temperature (AUC values of 0.95 to 0.97 versus 0.86 to 0.87, respectively) and other specific facial locations. These values are markedly better than the vast majority of results found in prior human studies of IRT-based fever screening.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our findings provide clinical confirmation of the utility of consensus approaches for fever screening, including the use of inner canthi temperatures, while also indicating that full-face maximum temperatures may provide an effective alternate approach.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32921005</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1560-2281</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Journal of biomedical optics</Title>
<ISOAbbreviation>J Biomed Opt</ISOAbbreviation>
</Journal>
<ArticleTitle>Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1117/1.JBO.25.9.097002</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE">Infrared thermographs (IRTs) have been used for fever screening during infectious disease epidemics, including severe acute respiratory syndrome, Ebola virus disease, and coronavirus disease 2019 (COVID-19). Although IRTs have significant potential for human body temperature measurement, the literature indicates inconsistent diagnostic performance, possibly due to wide variations in implemented methodology. A standardized method for IRT fever screening was recently published, but there is a lack of clinical data demonstrating its impact on IRT performance.</AbstractText>
<AbstractText Label="AIM">Perform a clinical study to assess the diagnostic effectiveness of standardized IRT-based fever screening and evaluate the effect of facial measurement location.</AbstractText>
<AbstractText Label="APPROACH">We performed a clinical study of 596 subjects. Temperatures from 17 facial locations were extracted from thermal images and compared with oral thermometry. Statistical analyses included calculation of receiver operating characteristic (ROC) curves and area under the curve (AUC) values for detection of febrile subjects.</AbstractText>
<AbstractText Label="RESULTS">Pearson correlation coefficients for IRT-based and reference (oral) temperatures were found to vary strongly with measurement location. Approaches based on maximum temperatures in either inner canthi or full-face regions indicated stronger discrimination ability than maximum forehead temperature (AUC values of 0.95 to 0.97 versus 0.86 to 0.87, respectively) and other specific facial locations. These values are markedly better than the vast majority of results found in prior human studies of IRT-based fever screening.</AbstractText>
<AbstractText Label="CONCLUSION">Our findings provide clinical confirmation of the utility of consensus approaches for fever screening, including the use of inner canthi temperatures, while also indicating that full-face maximum temperatures may provide an effective alternate approach.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Yangling</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Maryland, Department of Mechanical Engineering, Baltimore County, Maryland, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghassemi</LastName>
<ForeName>Pejman</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Michelle</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, Maryland, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McBride</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>University of Maryland, University Health Center, College Park, Maryland, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Casamento</LastName>
<ForeName>Jon P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pfefer</LastName>
<ForeName>T Joshua</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Quanzeng</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biomed Opt</MedlineTA>
<NlmUniqueID>9605853</NlmUniqueID>
<ISSNLinking>1083-3668</ISSNLinking>
</MedlineJournalInfo>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019540" MajorTopicYN="N">Area Under Curve</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001831" MajorTopicYN="Y">Body Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="Y">diagnosis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005145" MajorTopicYN="N">Face</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005334" MajorTopicYN="N">Fever</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="Y">diagnosis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007259" MajorTopicYN="N">Infrared Rays</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008403" MajorTopicYN="N">Mass Screening</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="Y">diagnosis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017410" MajorTopicYN="N">Practice Guidelines as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012372" MajorTopicYN="N">ROC Curve</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013817" MajorTopicYN="N">Thermography</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">Pearson correlation coefficients</Keyword>
<Keyword MajorTopicYN="Y">fever screening</Keyword>
<Keyword MajorTopicYN="Y">infectious disease epidemics</Keyword>
<Keyword MajorTopicYN="Y">inner canthi</Keyword>
<Keyword MajorTopicYN="Y">medical guidelines</Keyword>
<Keyword MajorTopicYN="Y">receiver operating characteristic (ROC) curve</Keyword>
<Keyword MajorTopicYN="Y">thermography</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>20</Hour>
<Minute>45</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32921005</ArticleId>
<ArticleId IdType="pii">JBO-200193R</ArticleId>
<ArticleId IdType="doi">10.1117/1.JBO.25.9.097002</ArticleId>
<ArticleId IdType="pmc">PMC7486803</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chronobiol Int. 2001 Mar;18(2):249-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11379665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Health. 2014 May 30;36:e2014004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25045577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian Pediatr. 2011 Apr;48(4):277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21532099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 05;6(1):e14490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Circadian Rhythms. 2005 Mar 10;3(1):3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Travel Med. 2004 Sep-Oct;11(5):273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15544710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Control Hosp Epidemiol. 2011 May;32(5):504-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Public Health. 2015 Nov;129(11):1471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26296847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2010 Nov;16(11):1710-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microvasc Res. 2004 Sep;68(2):104-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Appl Physiol Occup Physiol. 1983;50(3):331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6683157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2009 Feb 12;14(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19215720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neth J Med. 2014 Nov;72(9):442-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25387613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2011 May 03;11:111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21539735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer. 1950 Jan;3(1):32-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15405679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Med Biol. 1973 Sep;18(5):686-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4758213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hong Kong Med J. 2012 Aug;18 Suppl 3:31-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22865221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 May;33(5):464-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25965752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Emerg Care. 2013 Mar;29(3):305-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23426254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dentomaxillofac Radiol. 2017 Aug;46(6):20160367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28613936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Child Care Health Dev. 2012 Jul;38(4):471-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21651612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Eng Med Biol Mag. 2006 May-Jun;25(3):68-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16764433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 Apr;20(4):425-434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32105637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sensors (Basel). 2018 Jan 04;18(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29300320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Mar 5;382(10):929-936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32004427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Gen Pract. 2004 Nov;54(508):869; author reply 869</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Intern Med. 1998 Sep 28;158(17):1870-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9759682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Eng Med Biol Mag. 2009 Jan-Feb;28(1):76-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Otolaryngol. 2005 Apr;34(2):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Environ Res Public Health. 2019 Nov 21;16(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31766548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Phys. 2005 Jan;32(1):93-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15719959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2020 Jan 07;9:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31908267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hong Kong Med J. 2013 Apr;19(2):109-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sleep. 1980;2(3):329-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7403736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Control Hosp Epidemiol. 2004 Dec;25(12):1109-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15636300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Forum Infect Dis. 2019 Apr 09;6(4):ofz032</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30976605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chronobiol Int. 2017;34(5):666-676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27726448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2020 Feb;25(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32046816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Asia Pac J Public Health. 2005;17(1):26-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16044829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sensors (Basel). 2014 Jul 10;14(7):12305-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25014096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Sep 19;13(9):e0203302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30231046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2020 May;8(5):475-481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32105632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Trop Paediatr. 2005 Dec;25(4):267-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2014 Oct 14;349:g6202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25316030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Nurs. 2011 May;20(9-10):1311-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidSeniorV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000244 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000244 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidSeniorV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32921005
   |texte=   Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32921005" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidSeniorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Oct 15 09:49:45 2020. Site generation: Wed Jan 27 17:10:23 2021