Serveur d'exploration sur la COVID en France

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Partially RepRapable automated open source bag valve mask-based ventilator.

Identifieur interne : 000483 ( Main/Corpus ); précédent : 000482; suivant : 000484

Partially RepRapable automated open source bag valve mask-based ventilator.

Auteurs : Aliaksei Petsiuk ; Nagendra G. Tanikella ; Samantha Dertinger ; Adam Pringle ; Shane Oberloier ; Joshua M. Pearce

Source :

RBID : pubmed:32835141

Abstract

This study describes the development of a simple and easy-to-build portable automated bag valve mask (BVM) compression system, which, during acute shortages and supply chain disruptions can serve as a temporary emergency ventilator. The resuscitation system is based on the Arduino controller with a real-time operating system installed on a largely RepRap 3-D printable parametric component-based structure. The cost of the materials for the system is under $170, which makes it affordable for replication by makers around the world. The device provides a controlled breathing mode with tidal volumes from 100 to 800 mL, breathing rates from 5 to 40 breaths/minute, and inspiratory-to-expiratory ratio from 1:1 to 1:4. The system is designed for reliability and scalability of measurement circuits through the use of the serial peripheral interface and has the ability to connect additional hardware due to the object-oriented algorithmic approach. Experimental results after testing on an artificial lung for peak inspiratory pressure (PIP), respiratory rate (RR), positive end-expiratory pressure (PEEP), tidal volume, proximal pressure, and lung pressure demonstrate repeatability and accuracy exceeding human capabilities in BVM-based manual ventilation. Future work is necessary to further develop and test the system to make it acceptable for deployment outside of emergencies such as with COVID-19 pandemic in clinical environments, however, the nature of the design is such that desired features are relatively easy to add using protocols and parametric design files provided.

DOI: 10.1016/j.ohx.2020.e00131
PubMed: 32835141
PubMed Central: PMC7417990

Links to Exploration step

pubmed:32835141

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Partially RepRapable automated open source bag valve mask-based ventilator.</title>
<author>
<name sortKey="Petsiuk, Aliaksei" sort="Petsiuk, Aliaksei" uniqKey="Petsiuk A" first="Aliaksei" last="Petsiuk">Aliaksei Petsiuk</name>
<affiliation>
<nlm:affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tanikella, Nagendra G" sort="Tanikella, Nagendra G" uniqKey="Tanikella N" first="Nagendra G" last="Tanikella">Nagendra G. Tanikella</name>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dertinger, Samantha" sort="Dertinger, Samantha" uniqKey="Dertinger S" first="Samantha" last="Dertinger">Samantha Dertinger</name>
<affiliation>
<nlm:affiliation>Biomedical Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pringle, Adam" sort="Pringle, Adam" uniqKey="Pringle A" first="Adam" last="Pringle">Adam Pringle</name>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oberloier, Shane" sort="Oberloier, Shane" uniqKey="Oberloier S" first="Shane" last="Oberloier">Shane Oberloier</name>
<affiliation>
<nlm:affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pearce, Joshua M" sort="Pearce, Joshua M" uniqKey="Pearce J" first="Joshua M" last="Pearce">Joshua M. Pearce</name>
<affiliation>
<nlm:affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Équipe de Recherche sur les Processus Innovatifs (ERPI) , Université de Lorraine, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Electrical Engineering, Aalto University, Finland.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32835141</idno>
<idno type="pmid">32835141</idno>
<idno type="doi">10.1016/j.ohx.2020.e00131</idno>
<idno type="pmc">PMC7417990</idno>
<idno type="wicri:Area/Main/Corpus">000483</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000483</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Partially RepRapable automated open source bag valve mask-based ventilator.</title>
<author>
<name sortKey="Petsiuk, Aliaksei" sort="Petsiuk, Aliaksei" uniqKey="Petsiuk A" first="Aliaksei" last="Petsiuk">Aliaksei Petsiuk</name>
<affiliation>
<nlm:affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tanikella, Nagendra G" sort="Tanikella, Nagendra G" uniqKey="Tanikella N" first="Nagendra G" last="Tanikella">Nagendra G. Tanikella</name>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dertinger, Samantha" sort="Dertinger, Samantha" uniqKey="Dertinger S" first="Samantha" last="Dertinger">Samantha Dertinger</name>
<affiliation>
<nlm:affiliation>Biomedical Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pringle, Adam" sort="Pringle, Adam" uniqKey="Pringle A" first="Adam" last="Pringle">Adam Pringle</name>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oberloier, Shane" sort="Oberloier, Shane" uniqKey="Oberloier S" first="Shane" last="Oberloier">Shane Oberloier</name>
<affiliation>
<nlm:affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pearce, Joshua M" sort="Pearce, Joshua M" uniqKey="Pearce J" first="Joshua M" last="Pearce">Joshua M. Pearce</name>
<affiliation>
<nlm:affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Équipe de Recherche sur les Processus Innovatifs (ERPI) , Université de Lorraine, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Electrical Engineering, Aalto University, Finland.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">HardwareX</title>
<idno type="ISSN">2468-0672</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study describes the development of a simple and easy-to-build portable automated bag valve mask (BVM) compression system, which, during acute shortages and supply chain disruptions can serve as a temporary emergency ventilator. The resuscitation system is based on the Arduino controller with a real-time operating system installed on a largely RepRap 3-D printable parametric component-based structure. The cost of the materials for the system is under $170, which makes it affordable for replication by makers around the world. The device provides a controlled breathing mode with tidal volumes from 100 to 800 mL, breathing rates from 5 to 40 breaths/minute, and inspiratory-to-expiratory ratio from 1:1 to 1:4. The system is designed for reliability and scalability of measurement circuits through the use of the serial peripheral interface and has the ability to connect additional hardware due to the object-oriented algorithmic approach. Experimental results after testing on an artificial lung for peak inspiratory pressure (PIP), respiratory rate (RR), positive end-expiratory pressure (PEEP), tidal volume, proximal pressure, and lung pressure demonstrate repeatability and accuracy exceeding human capabilities in BVM-based manual ventilation. Future work is necessary to further develop and test the system to make it acceptable for deployment outside of emergencies such as with COVID-19 pandemic in clinical environments, however, the nature of the design is such that desired features are relatively easy to add using protocols and parametric design files provided.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32835141</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2468-0672</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>HardwareX</Title>
<ISOAbbreviation>HardwareX</ISOAbbreviation>
</Journal>
<ArticleTitle>Partially RepRapable automated open source bag valve mask-based ventilator.</ArticleTitle>
<Pagination>
<MedlinePgn>e00131</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ohx.2020.e00131</ELocationID>
<Abstract>
<AbstractText>This study describes the development of a simple and easy-to-build portable automated bag valve mask (BVM) compression system, which, during acute shortages and supply chain disruptions can serve as a temporary emergency ventilator. The resuscitation system is based on the Arduino controller with a real-time operating system installed on a largely RepRap 3-D printable parametric component-based structure. The cost of the materials for the system is under $170, which makes it affordable for replication by makers around the world. The device provides a controlled breathing mode with tidal volumes from 100 to 800 mL, breathing rates from 5 to 40 breaths/minute, and inspiratory-to-expiratory ratio from 1:1 to 1:4. The system is designed for reliability and scalability of measurement circuits through the use of the serial peripheral interface and has the ability to connect additional hardware due to the object-oriented algorithmic approach. Experimental results after testing on an artificial lung for peak inspiratory pressure (PIP), respiratory rate (RR), positive end-expiratory pressure (PEEP), tidal volume, proximal pressure, and lung pressure demonstrate repeatability and accuracy exceeding human capabilities in BVM-based manual ventilation. Future work is necessary to further develop and test the system to make it acceptable for deployment outside of emergencies such as with COVID-19 pandemic in clinical environments, however, the nature of the design is such that desired features are relatively easy to add using protocols and parametric design files provided.</AbstractText>
<CopyrightInformation>© 2020 The Authors.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Petsiuk</LastName>
<ForeName>Aliaksei</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tanikella</LastName>
<ForeName>Nagendra G</ForeName>
<Initials>NG</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dertinger</LastName>
<ForeName>Samantha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Biomedical Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pringle</LastName>
<ForeName>Adam</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oberloier</LastName>
<ForeName>Shane</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pearce</LastName>
<ForeName>Joshua M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Équipe de Recherche sur les Processus Innovatifs (ERPI) , Université de Lorraine, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Electrical Engineering, Aalto University, Finland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>HardwareX</MedlineTA>
<NlmUniqueID>101710262</NlmUniqueID>
<ISSNLinking>2468-0672</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">3-D printing</Keyword>
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Coronavirus pandemic</Keyword>
<Keyword MajorTopicYN="N">Embedded systems</Keyword>
<Keyword MajorTopicYN="N">Influenza pandemic</Keyword>
<Keyword MajorTopicYN="N">Medical hardware</Keyword>
<Keyword MajorTopicYN="N">Open hardware</Keyword>
<Keyword MajorTopicYN="N">Open source</Keyword>
<Keyword MajorTopicYN="N">Open source medical hardware</Keyword>
<Keyword MajorTopicYN="N">Pandemic</Keyword>
<Keyword MajorTopicYN="N">Pandemic ventilator</Keyword>
<Keyword MajorTopicYN="N">Real-time operating system</Keyword>
<Keyword MajorTopicYN="N">RepRap</Keyword>
<Keyword MajorTopicYN="N">Single-limb</Keyword>
<Keyword MajorTopicYN="N">Ventilation</Keyword>
<Keyword MajorTopicYN="N">Ventilator</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32835141</ArticleId>
<ArticleId IdType="doi">10.1016/j.ohx.2020.e00131</ArticleId>
<ArticleId IdType="pii">S2468-0672(20)30040-7</ArticleId>
<ArticleId IdType="pii">e00131</ArticleId>
<ArticleId IdType="pmc">PMC7417990</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Anaesthesia. 2010 Mar;65(3):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Care. 2017 Jun;62(6):662-677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28546371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2015 May 1;60 Suppl 1:S52-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25878301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 1998 Dec;158(6):1831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>P T. 2014 Oct;39(10):704-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25336867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anesthesiology. 2020 Jul;133(1):246-248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32287047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2017 Apr 18;89(8):4330-4338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28379683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Biomed Eng. 1991 Feb;38(2):214-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2066132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2017 Jun;23(6):914-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28518041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2018 Sep 27;16(9):e3000014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30260950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anesthesiology. 2016 May;124(5):1100-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26872367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 2015 Jan;147(1):102-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25079506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J Suppl. 2003 Aug;42:2s-9s</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12945994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Nov 28;369(22):2126-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24283226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2020 Apr 24;18(4):e3000730</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32330124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Care. 2008 Jan;53(1):91-5; discussion 95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J Suppl. 2003 Nov;47:15s-25s</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14621113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ Innov. 2016 Apr;2(2):78-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27158528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Public Health Nutr. 2017 Aug;20(11):2063-2066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28488563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000Res. 2020 Mar 30;9:218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32411358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anaesthesia. 2009 Sep;64(9):937-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19645759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 1998 Jan;157(1):294-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9445314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Device. 2010 Jun 1;4(2):027514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32328214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Res Methods. 2012 Jun;44(2):305-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Crit Care Med. 2011 Mar;12(2):e51-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20473239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Disaster Med Public Health Prep. 2012 Jun;6(2):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22700021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Care. 2012 Feb;57(2):282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Feb 19;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care Med. 1993 Jan;21(1):131-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8420720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Materials (Basel). 2018 Aug 12;11(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30103532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Emerg Med. 2017 Dec 04;17(1):37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29202698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care Med. 2010 Oct;38(10 Suppl):S539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21164395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Autom. 2016 Aug;21(4):489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27197798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>3D Print Med. 2019 Nov 21;5(1):16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31754879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2000 Oct;89(4):1645-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11007607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Intensiva. 2012 May;36(4):294-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22014424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Sep 14;337(6100):1303-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Disaster Med Public Health Prep. 2010 Oct;4(3):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Care. 2011 Nov;56(11):1758-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21605483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 7;395(10226):755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32145772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2020 Jun 4;55(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32312862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2020 Feb 28;18(1):57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32106852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Infect Dis Med Microbiol. 2009 Winter;20(4):e115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119787</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidFranceV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000483 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000483 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidFranceV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32835141
   |texte=   Partially RepRapable automated open source bag valve mask-based ventilator.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32835141" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidFranceV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 6 23:31:36 2020. Site generation: Fri Feb 12 22:48:37 2021