Serveur d'exploration sur la COVID en France

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Open source high-temperature RepRap for 3-D printing heat-sterilizable PPE and other applications.

Identifieur interne : 000392 ( Main/Corpus ); précédent : 000391; suivant : 000393

Open source high-temperature RepRap for 3-D printing heat-sterilizable PPE and other applications.

Auteurs : Noah G. Skrzypczak ; Nagendra G. Tanikella ; Joshua M. Pearce

Source :

RBID : pubmed:32838090

Abstract

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met for under $1000, the Cerberus - an open source three-headed self-replicating rapid prototyper (RepRap) was designed and tested with the following capabilities: i) 200 °C-capable heated bed, ii) 500 °C-capable hot end, iii) isolated heated chamber with 1 kW space heater core and iv) mains voltage chamber and bed heating for rapid start. The Cereberus successfully prints polyetherketoneketone (PEKK) and polyetherimide (PEI, ULTEM) with tensile strengths of 77.5 and 80.5 MPa, respectively. As a case study, open source face masks were 3-D printed in PEKK and shown not to warp upon widely home-accessible oven-based sterilization.

DOI: 10.1016/j.ohx.2020.e00130
PubMed: 32838090
PubMed Central: PMC7391241

Links to Exploration step

pubmed:32838090

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Open source high-temperature RepRap for 3-D printing heat-sterilizable PPE and other applications.</title>
<author>
<name sortKey="Skrzypczak, Noah G" sort="Skrzypczak, Noah G" uniqKey="Skrzypczak N" first="Noah G" last="Skrzypczak">Noah G. Skrzypczak</name>
<affiliation>
<nlm:affiliation>Mechanical Engineering - Engineering Mechanics, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tanikella, Nagendra G" sort="Tanikella, Nagendra G" uniqKey="Tanikella N" first="Nagendra G" last="Tanikella">Nagendra G. Tanikella</name>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pearce, Joshua M" sort="Pearce, Joshua M" uniqKey="Pearce J" first="Joshua M" last="Pearce">Joshua M. Pearce</name>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Équipe de Recherche sur les Processus Innovatifs (ERPI), Université de Lorraine, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Electrical Engineering, Aalto University, Finland.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32838090</idno>
<idno type="pmid">32838090</idno>
<idno type="doi">10.1016/j.ohx.2020.e00130</idno>
<idno type="pmc">PMC7391241</idno>
<idno type="wicri:Area/Main/Corpus">000392</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000392</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Open source high-temperature RepRap for 3-D printing heat-sterilizable PPE and other applications.</title>
<author>
<name sortKey="Skrzypczak, Noah G" sort="Skrzypczak, Noah G" uniqKey="Skrzypczak N" first="Noah G" last="Skrzypczak">Noah G. Skrzypczak</name>
<affiliation>
<nlm:affiliation>Mechanical Engineering - Engineering Mechanics, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tanikella, Nagendra G" sort="Tanikella, Nagendra G" uniqKey="Tanikella N" first="Nagendra G" last="Tanikella">Nagendra G. Tanikella</name>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pearce, Joshua M" sort="Pearce, Joshua M" uniqKey="Pearce J" first="Joshua M" last="Pearce">Joshua M. Pearce</name>
<affiliation>
<nlm:affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Équipe de Recherche sur les Processus Innovatifs (ERPI), Université de Lorraine, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Electrical Engineering, Aalto University, Finland.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">HardwareX</title>
<idno type="ISSN">2468-0672</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met for under $1000, the Cerberus - an open source three-headed self-replicating rapid prototyper (RepRap) was designed and tested with the following capabilities: i) 200 °C-capable heated bed, ii) 500 °C-capable hot end, iii) isolated heated chamber with 1 kW space heater core and iv) mains voltage chamber and bed heating for rapid start. The Cereberus successfully prints polyetherketoneketone (PEKK) and polyetherimide (PEI, ULTEM) with tensile strengths of 77.5 and 80.5 MPa, respectively. As a case study, open source face masks were 3-D printed in PEKK and shown not to warp upon widely home-accessible oven-based sterilization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32838090</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2468-0672</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>HardwareX</Title>
<ISOAbbreviation>HardwareX</ISOAbbreviation>
</Journal>
<ArticleTitle>Open source high-temperature RepRap for 3-D printing heat-sterilizable PPE and other applications.</ArticleTitle>
<Pagination>
<MedlinePgn>e00130</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ohx.2020.e00130</ELocationID>
<Abstract>
<AbstractText>Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met for under $1000, the Cerberus - an open source three-headed self-replicating rapid prototyper (RepRap) was designed and tested with the following capabilities: i) 200 °C-capable heated bed, ii) 500 °C-capable hot end, iii) isolated heated chamber with 1 kW space heater core and iv) mains voltage chamber and bed heating for rapid start. The Cereberus successfully prints polyetherketoneketone (PEKK) and polyetherimide (PEI, ULTEM) with tensile strengths of 77.5 and 80.5 MPa, respectively. As a case study, open source face masks were 3-D printed in PEKK and shown not to warp upon widely home-accessible oven-based sterilization.</AbstractText>
<CopyrightInformation>© 2020 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Skrzypczak</LastName>
<ForeName>Noah G</ForeName>
<Initials>NG</Initials>
<AffiliationInfo>
<Affiliation>Mechanical Engineering - Engineering Mechanics, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tanikella</LastName>
<ForeName>Nagendra G</ForeName>
<Initials>NG</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pearce</LastName>
<ForeName>Joshua M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science & Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Electrical & Computer Engineering, Michigan Technological University, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Équipe de Recherche sur les Processus Innovatifs (ERPI), Université de Lorraine, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Electrical Engineering, Aalto University, Finland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>HardwareX</MedlineTA>
<NlmUniqueID>101710262</NlmUniqueID>
<ISSNLinking>2468-0672</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">3-D printing</Keyword>
<Keyword MajorTopicYN="N">Additive manufacturing</Keyword>
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">High temperature 3-D printing</Keyword>
<Keyword MajorTopicYN="N">Medical hardware</Keyword>
<Keyword MajorTopicYN="N">Open hardware</Keyword>
<Keyword MajorTopicYN="N">Open source</Keyword>
<Keyword MajorTopicYN="N">Open source medical hardware</Keyword>
<Keyword MajorTopicYN="N">Polycarbonate</Keyword>
<Keyword MajorTopicYN="N">RepRap</Keyword>
<Keyword MajorTopicYN="N">ULTEM</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32838090</ArticleId>
<ArticleId IdType="doi">10.1016/j.ohx.2020.e00130</ArticleId>
<ArticleId IdType="pii">S2468-0672(20)30039-0</ArticleId>
<ArticleId IdType="pii">e00130</ArticleId>
<ArticleId IdType="pmc">PMC7391241</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidFranceV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000392 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000392 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidFranceV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32838090
   |texte=   Open source high-temperature RepRap for 3-D printing heat-sterilizable PPE and other applications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32838090" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidFranceV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 6 23:31:36 2020. Site generation: Fri Feb 12 22:48:37 2021