Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

De novo design, retrosynthetic analysis and combinatorial synthesis of a hybrid antiviral (VTAR-01) to inhibit the interaction of SARS-CoV2 spike glycoprotein with human angiotensin-converting enzyme 2.

Identifieur interne : 001A53 ( Main/Exploration ); précédent : 001A52; suivant : 001A54

De novo design, retrosynthetic analysis and combinatorial synthesis of a hybrid antiviral (VTAR-01) to inhibit the interaction of SARS-CoV2 spike glycoprotein with human angiotensin-converting enzyme 2.

Auteurs : Vishvanath Tiwari [Inde]

Source :

RBID : pubmed:32878881

Descripteurs français

English descriptors

Abstract

SARS-like coronavirus (SARS-CoV2) has emerged as a global threat to humankind and is rapidly spreading. The infectivity, pathogenesis and infection of this virus are dependent on the interaction of SARS-CoV2 spike protein with human angiotensin converting enzyme 2 (hACE2). Spike protein contains a receptor-binding domain (RBD) that recognizes hACE-2. In the present study, we are reporting a de novo designed novel hybrid antiviral 'VTAR-01' molecule that binds at the interface of RBD-hACE2 interaction. A series of antiviral molecules were tested for binding at the interface of RBD-hACE2 interaction. In silico screening, molecular mechanics and molecular dynamics simulation (MDS) analysis suggest ribavirin, ascorbate, lopinavir and hydroxychloroquine have strong interaction at the RBD-hACE2 interface. These four molecules were used for de novo fragment-based antiviral design. De novo designing, docking and MDS analysis identified a 'VTAR' hybrid molecule that has better interaction with this interface than all of the antivirals used to design it. We have further used retrosynthetic analysis and combinatorial synthesis to design 100 variants of VTAR molecules. Retrosynthetic analysis and combinatorial synthesis, along with docking and MDS, identified that VTAR-01 interacts with the interface of the RBD-ACE2 complex. MDS analysis confirmed its interaction with the RBD-ACE2 interface by involving Glu35 and Lys353 of ACE2, as well as Gln493 and Ser494 of RBD. Interaction of spike protein with ACE2 is essential for pathogenesis and infection of this virus; hence, this in silico designed hybrid antiviral molecule (VTAR-01) that binds at the interface of RBD-hACE2 may be further developed to control the infection of SARS-CoV2.

DOI: 10.1242/bio.054056
PubMed: 32878881
PubMed Central: PMC7595696


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<i>De novo</i>
design, retrosynthetic analysis and combinatorial synthesis of a hybrid antiviral (VTAR-01) to inhibit the interaction of SARS-CoV2 spike glycoprotein with human angiotensin-converting enzyme 2.</title>
<author>
<name sortKey="Tiwari, Vishvanath" sort="Tiwari, Vishvanath" uniqKey="Tiwari V" first="Vishvanath" last="Tiwari">Vishvanath Tiwari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India vishvanath@curaj.ac.in.</nlm:affiliation>
<country wicri:rule="url">Inde</country>
<wicri:regionArea>Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817</wicri:regionArea>
<wicri:noRegion>Ajmer 305817</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32878881</idno>
<idno type="pmid">32878881</idno>
<idno type="doi">10.1242/bio.054056</idno>
<idno type="pmc">PMC7595696</idno>
<idno type="wicri:Area/Main/Corpus">000D08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D08</idno>
<idno type="wicri:Area/Main/Curation">000D08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D08</idno>
<idno type="wicri:Area/Main/Exploration">000D08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">
<i>De novo</i>
design, retrosynthetic analysis and combinatorial synthesis of a hybrid antiviral (VTAR-01) to inhibit the interaction of SARS-CoV2 spike glycoprotein with human angiotensin-converting enzyme 2.</title>
<author>
<name sortKey="Tiwari, Vishvanath" sort="Tiwari, Vishvanath" uniqKey="Tiwari V" first="Vishvanath" last="Tiwari">Vishvanath Tiwari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India vishvanath@curaj.ac.in.</nlm:affiliation>
<country wicri:rule="url">Inde</country>
<wicri:regionArea>Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817</wicri:regionArea>
<wicri:noRegion>Ajmer 305817</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biology open</title>
<idno type="eISSN">2046-6390</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angiotensin-Converting Enzyme 2 (MeSH)</term>
<term>Antiviral Agents (chemistry)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Betacoronavirus (metabolism)</term>
<term>Cell Death (drug effects)</term>
<term>Combinatorial Chemistry Techniques (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Peptidyl-Dipeptidase A (chemistry)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Protein Binding (drug effects)</term>
<term>Protein Domains (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Thermodynamics (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antiviraux (composition chimique)</term>
<term>Antiviraux (pharmacologie)</term>
<term>Betacoronavirus (métabolisme)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Liaison aux protéines (effets des médicaments et des substances chimiques)</term>
<term>Mort cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Peptidyl-Dipeptidase A (composition chimique)</term>
<term>Peptidyl-Dipeptidase A (métabolisme)</term>
<term>Simulation de docking moléculaire (MeSH)</term>
<term>Techniques de chimie combinatoire (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antiviral Agents</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Angiotensin-Converting Enzyme 2</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Antiviraux</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Death</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Liaison aux protéines</term>
<term>Mort cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Combinatorial Chemistry Techniques</term>
<term>Humans</term>
<term>Molecular Docking Simulation</term>
<term>Protein Domains</term>
<term>SARS-CoV-2</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Humains</term>
<term>Simulation de docking moléculaire</term>
<term>Techniques de chimie combinatoire</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">SARS-like coronavirus (SARS-CoV2) has emerged as a global threat to humankind and is rapidly spreading. The infectivity, pathogenesis and infection of this virus are dependent on the interaction of SARS-CoV2 spike protein with human angiotensin converting enzyme 2 (hACE2). Spike protein contains a receptor-binding domain (RBD) that recognizes hACE-2. In the present study, we are reporting a
<i>de novo</i>
designed novel hybrid antiviral 'VTAR-01' molecule that binds at the interface of RBD-hACE2 interaction. A series of antiviral molecules were tested for binding at the interface of RBD-hACE2 interaction.
<i>In silico</i>
screening, molecular mechanics and molecular dynamics simulation (MDS) analysis suggest ribavirin, ascorbate, lopinavir and hydroxychloroquine have strong interaction at the RBD-hACE2 interface. These four molecules were used for
<i>de novo</i>
fragment-based antiviral design.
<i>De novo</i>
designing, docking and MDS analysis identified a 'VTAR' hybrid molecule that has better interaction with this interface than all of the antivirals used to design it. We have further used retrosynthetic analysis and combinatorial synthesis to design 100 variants of VTAR molecules. Retrosynthetic analysis and combinatorial synthesis, along with docking and MDS, identified that VTAR-01 interacts with the interface of the RBD-ACE2 complex. MDS analysis confirmed its interaction with the RBD-ACE2 interface by involving Glu35 and Lys353 of ACE2, as well as Gln493 and Ser494 of RBD. Interaction of spike protein with ACE2 is essential for pathogenesis and infection of this virus; hence, this
<i>i</i>
<i>n s</i>
<i>ilico</i>
designed hybrid antiviral molecule (VTAR-01) that binds at the interface of RBD-hACE2 may be further developed to control the infection of SARS-CoV2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32878881</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2046-6390</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Biology open</Title>
<ISOAbbreviation>Biol Open</ISOAbbreviation>
</Journal>
<ArticleTitle>
<i>De novo</i>
design, retrosynthetic analysis and combinatorial synthesis of a hybrid antiviral (VTAR-01) to inhibit the interaction of SARS-CoV2 spike glycoprotein with human angiotensin-converting enzyme 2.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">bio054056</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1242/bio.054056</ELocationID>
<Abstract>
<AbstractText>SARS-like coronavirus (SARS-CoV2) has emerged as a global threat to humankind and is rapidly spreading. The infectivity, pathogenesis and infection of this virus are dependent on the interaction of SARS-CoV2 spike protein with human angiotensin converting enzyme 2 (hACE2). Spike protein contains a receptor-binding domain (RBD) that recognizes hACE-2. In the present study, we are reporting a
<i>de novo</i>
designed novel hybrid antiviral 'VTAR-01' molecule that binds at the interface of RBD-hACE2 interaction. A series of antiviral molecules were tested for binding at the interface of RBD-hACE2 interaction.
<i>In silico</i>
screening, molecular mechanics and molecular dynamics simulation (MDS) analysis suggest ribavirin, ascorbate, lopinavir and hydroxychloroquine have strong interaction at the RBD-hACE2 interface. These four molecules were used for
<i>de novo</i>
fragment-based antiviral design.
<i>De novo</i>
designing, docking and MDS analysis identified a 'VTAR' hybrid molecule that has better interaction with this interface than all of the antivirals used to design it. We have further used retrosynthetic analysis and combinatorial synthesis to design 100 variants of VTAR molecules. Retrosynthetic analysis and combinatorial synthesis, along with docking and MDS, identified that VTAR-01 interacts with the interface of the RBD-ACE2 complex. MDS analysis confirmed its interaction with the RBD-ACE2 interface by involving Glu35 and Lys353 of ACE2, as well as Gln493 and Ser494 of RBD. Interaction of spike protein with ACE2 is essential for pathogenesis and infection of this virus; hence, this
<i>i</i>
<i>n s</i>
<i>ilico</i>
designed hybrid antiviral molecule (VTAR-01) that binds at the interface of RBD-hACE2 may be further developed to control the infection of SARS-CoV2.</AbstractText>
<CopyrightInformation>© 2020. Published by The Company of Biologists Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tiwari</LastName>
<ForeName>Vishvanath</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">0000-0003-1664-3871</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India vishvanath@curaj.ac.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biol Open</MedlineTA>
<NlmUniqueID>101578018</NlmUniqueID>
<ISSNLinking>2046-6390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.23</RegistryNumber>
<NameOfSubstance UI="C000705307">ACE2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.23</RegistryNumber>
<NameOfSubstance UI="D000085962">Angiotensin-Converting Enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000085962" MajorTopicYN="N">Angiotensin-Converting Enzyme 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020650" MajorTopicYN="Y">Combinatorial Chemistry Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Angiotensin converting enzyme 2</Keyword>
<Keyword MajorTopicYN="Y">De novo designing</Keyword>
<Keyword MajorTopicYN="Y">Hybrid antiviral molecule</Keyword>
<Keyword MajorTopicYN="Y">Molecular dynamics simulation</Keyword>
<Keyword MajorTopicYN="Y">Retrosynthetic analysis</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV2 spike glycoprotein</Keyword>
</KeywordList>
<CoiStatement>Competing interestsThe authors declare no competing or financial interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32878881</ArticleId>
<ArticleId IdType="pii">bio.054056</ArticleId>
<ArticleId IdType="doi">10.1242/bio.054056</ArticleId>
<ArticleId IdType="pmc">PMC7595696</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2020 Mar 13;367(6483):1260-1263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32075877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2020 Mar 16;14(1):72-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Aug 6;383(6):517-525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32492293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Jul;216:108442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32335290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 May;581(7807):221-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32225175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Aug;217:108487</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32479986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2019 Mar 15;125:1156-1167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30579900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2020 Jun;492:108025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32402850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 May;214:108408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32247038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Aug;217:108496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32526272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Jul;216:108464</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32405269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Aug;217:108486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32479985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2020 Jun;178:104786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32251767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 May 7;382(19):1787-1799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32187464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Hepatol. 2016 Jan 18;8(2):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26807208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2020 Jul 1;75(7):1667-1670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32196083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Jun;215:108450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32360516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Jan 25;13(1):e0191838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29370280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jul;92(7):740-746</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32227493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Sep;218:108516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32574709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2018 Feb;107(Pt A):1242-1252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28964839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2020 Feb 13;63(3):1415-1433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31965799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2018 Dec;66:57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30227225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Aug;217:108493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32526273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Aug 1;202(3):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Mar 16;287(12):8904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22291007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biochem Biophys. 2018 Sep;76(3):391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29926429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thorax. 2004 Mar;59(3):252-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Apr 11;395(10231):1179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32278373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2014 Jan 27;54(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24372539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 May;214:108413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32276139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2020 Apr;5(4):562-569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32094589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Metab Syndr. 2020 May - Jun;14(3):241-246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32247211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Jun 13;395(10240):1845-1854</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32450106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2019 Sep 23;59(9):3782-3793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31404495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2016 Oct;23(10):899-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27617430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jul 2;47(W1):W357-W364</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31106366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Jan 10;11(1):222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31924756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 1996 Jul 19;39(15):2887-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8709122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Jun;215:108410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32276140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2003 Dec;52(6):1049-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14613951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Aug;217:108509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32535188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Ther. 2016;21(5):455-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26492219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Aug;217:108480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32461193</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Tiwari, Vishvanath" sort="Tiwari, Vishvanath" uniqKey="Tiwari V" first="Vishvanath" last="Tiwari">Vishvanath Tiwari</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32878881
   |texte=   De novo design, retrosynthetic analysis and combinatorial synthesis of a hybrid antiviral (VTAR-01) to inhibit the interaction of SARS-CoV2 spike glycoprotein with human angiotensin-converting enzyme 2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32878881" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021