Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insights in Chloroquine Action: Perspectives and Implications in Malaria and COVID-19.

Identifieur interne : 001053 ( Main/Exploration ); précédent : 001052; suivant : 001054

Insights in Chloroquine Action: Perspectives and Implications in Malaria and COVID-19.

Auteurs : Micheli Mainardi Pillat [Brésil] ; Arne Krüger [Brésil] ; Lara Mendes Ferreira Guimarães [Brésil] ; Claudiana Lameu [Brésil] ; Edmarcia Elisa De Souza [Brésil] ; Carsten Wrenger [Brésil] ; Henning Ulrich [Brésil]

Source :

RBID : pubmed:32686260

Descripteurs français

English descriptors

Abstract

Malaria is a threat to human mankind and kills about half a million people every year. On the other hand, COVID-19 resulted in several hundred thousand deaths since December 2019 and remains without an efficient and safe treatment. The antimalarials chloroquine (CQ) and its analog, hydroxychloroquine (HCQ), have been tested for COVID-19 treatment, and several conflicting evidence has been obtained. Therefore, the aim of this review was to summarize the evidence regarding action mechanisms of these compounds against Plasmodium and SARS-CoV-2 infection, together with cytometry applications. CQ and HCQ act on the renin angiotensin system, with possible implications on the cardiorespiratory system. In this context, flow and image cytometry emerge as powerful technologies to investigate the mechanism of therapeutic candidates, as well as for the identification of the immune response and prognostics of disease severity. Data from the large randomized trials support the conclusion that CQ and HCQ do not provide any clinical improvements in disease severity and progression of SARS-CoV-2 patients, as well as they do not present any solid evidence of increased serious side effects. These drugs are safe and effective antimalarials agents, but in SARS-CoV-2 patients, they need further studies in the context of clinical trials. © 2020 International Society for Advancement of Cytometry.

DOI: 10.1002/cyto.a.24190
PubMed: 32686260
PubMed Central: PMC7404934


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insights in Chloroquine Action: Perspectives and Implications in Malaria and COVID-19.</title>
<author>
<name sortKey="Pillat, Micheli Mainardi" sort="Pillat, Micheli Mainardi" uniqKey="Pillat M" first="Micheli Mainardi" last="Pillat">Micheli Mainardi Pillat</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul</wicri:regionArea>
<placeName>
<region type="state">Rio Grande do Sul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kruger, Arne" sort="Kruger, Arne" uniqKey="Kruger A" first="Arne" last="Krüger">Arne Krüger</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guimaraes, Lara Mendes Ferreira" sort="Guimaraes, Lara Mendes Ferreira" uniqKey="Guimaraes L" first="Lara Mendes Ferreira" last="Guimarães">Lara Mendes Ferreira Guimarães</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lameu, Claudiana" sort="Lameu, Claudiana" uniqKey="Lameu C" first="Claudiana" last="Lameu">Claudiana Lameu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="De Souza, Edmarcia Elisa" sort="De Souza, Edmarcia Elisa" uniqKey="De Souza E" first="Edmarcia Elisa" last="De Souza">Edmarcia Elisa De Souza</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wrenger, Carsten" sort="Wrenger, Carsten" uniqKey="Wrenger C" first="Carsten" last="Wrenger">Carsten Wrenger</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ulrich, Henning" sort="Ulrich, Henning" uniqKey="Ulrich H" first="Henning" last="Ulrich">Henning Ulrich</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32686260</idno>
<idno type="pmid">32686260</idno>
<idno type="doi">10.1002/cyto.a.24190</idno>
<idno type="pmc">PMC7404934</idno>
<idno type="wicri:Area/Main/Corpus">001100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001100</idno>
<idno type="wicri:Area/Main/Curation">001100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001100</idno>
<idno type="wicri:Area/Main/Exploration">001100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Insights in Chloroquine Action: Perspectives and Implications in Malaria and COVID-19.</title>
<author>
<name sortKey="Pillat, Micheli Mainardi" sort="Pillat, Micheli Mainardi" uniqKey="Pillat M" first="Micheli Mainardi" last="Pillat">Micheli Mainardi Pillat</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul</wicri:regionArea>
<placeName>
<region type="state">Rio Grande do Sul</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kruger, Arne" sort="Kruger, Arne" uniqKey="Kruger A" first="Arne" last="Krüger">Arne Krüger</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guimaraes, Lara Mendes Ferreira" sort="Guimaraes, Lara Mendes Ferreira" uniqKey="Guimaraes L" first="Lara Mendes Ferreira" last="Guimarães">Lara Mendes Ferreira Guimarães</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lameu, Claudiana" sort="Lameu, Claudiana" uniqKey="Lameu C" first="Claudiana" last="Lameu">Claudiana Lameu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="De Souza, Edmarcia Elisa" sort="De Souza, Edmarcia Elisa" uniqKey="De Souza E" first="Edmarcia Elisa" last="De Souza">Edmarcia Elisa De Souza</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wrenger, Carsten" sort="Wrenger, Carsten" uniqKey="Wrenger C" first="Carsten" last="Wrenger">Carsten Wrenger</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ulrich, Henning" sort="Ulrich, Henning" uniqKey="Ulrich H" first="Henning" last="Ulrich">Henning Ulrich</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cytometry. Part A : the journal of the International Society for Analytical Cytology</title>
<idno type="eISSN">1552-4930</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antimalarials (adverse effects)</term>
<term>Antimalarials (therapeutic use)</term>
<term>Antiviral Agents (adverse effects)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Betacoronavirus (drug effects)</term>
<term>Betacoronavirus (immunology)</term>
<term>Betacoronavirus (pathogenicity)</term>
<term>COVID-19 (MeSH)</term>
<term>Chloroquine (adverse effects)</term>
<term>Chloroquine (therapeutic use)</term>
<term>Coronavirus Infections (diagnosis)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (immunology)</term>
<term>Coronavirus Infections (virology)</term>
<term>Flow Cytometry (MeSH)</term>
<term>Host Microbial Interactions (MeSH)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Malaria (diagnosis)</term>
<term>Malaria (drug therapy)</term>
<term>Malaria (immunology)</term>
<term>Malaria (parasitology)</term>
<term>Pandemics (MeSH)</term>
<term>Plasmodium (drug effects)</term>
<term>Plasmodium (immunology)</term>
<term>Plasmodium (pathogenicity)</term>
<term>Pneumonia, Viral (diagnosis)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (immunology)</term>
<term>Pneumonia, Viral (virology)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Treatment Outcome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antipaludiques (effets indésirables)</term>
<term>Antipaludiques (usage thérapeutique)</term>
<term>Antiviraux (effets indésirables)</term>
<term>Antiviraux (usage thérapeutique)</term>
<term>Betacoronavirus (effets des médicaments et des substances chimiques)</term>
<term>Betacoronavirus (immunologie)</term>
<term>Betacoronavirus (pathogénicité)</term>
<term>Chloroquine (effets indésirables)</term>
<term>Chloroquine (usage thérapeutique)</term>
<term>Cytométrie en flux (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Infections à coronavirus (diagnostic)</term>
<term>Infections à coronavirus (immunologie)</term>
<term>Infections à coronavirus (traitement médicamenteux)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Interactions hôte-microbes (MeSH)</term>
<term>Interactions hôte-parasite (MeSH)</term>
<term>Paludisme (diagnostic)</term>
<term>Paludisme (immunologie)</term>
<term>Paludisme (parasitologie)</term>
<term>Paludisme (traitement médicamenteux)</term>
<term>Pandémies (MeSH)</term>
<term>Plasmodium (effets des médicaments et des substances chimiques)</term>
<term>Plasmodium (immunologie)</term>
<term>Plasmodium (pathogénicité)</term>
<term>Pneumopathie virale (diagnostic)</term>
<term>Pneumopathie virale (immunologie)</term>
<term>Pneumopathie virale (traitement médicamenteux)</term>
<term>Pneumopathie virale (virologie)</term>
<term>Résultat thérapeutique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Antimalarials</term>
<term>Antiviral Agents</term>
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antimalarials</term>
<term>Antiviral Agents</term>
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Malaria</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Paludisme</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betacoronavirus</term>
<term>Plasmodium</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Malaria</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Plasmodium</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Antipaludiques</term>
<term>Antiviraux</term>
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Infections à coronavirus</term>
<term>Paludisme</term>
<term>Plasmodium</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Betacoronavirus</term>
<term>Coronavirus Infections</term>
<term>Malaria</term>
<term>Plasmodium</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Paludisme</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Malaria</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Betacoronavirus</term>
<term>Plasmodium</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Plasmodium</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Paludisme</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Antipaludiques</term>
<term>Antiviraux</term>
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>COVID-19</term>
<term>Flow Cytometry</term>
<term>Host Microbial Interactions</term>
<term>Host-Parasite Interactions</term>
<term>Humans</term>
<term>Pandemics</term>
<term>SARS-CoV-2</term>
<term>Treatment Outcome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cytométrie en flux</term>
<term>Humains</term>
<term>Interactions hôte-microbes</term>
<term>Interactions hôte-parasite</term>
<term>Pandémies</term>
<term>Résultat thérapeutique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Malaria is a threat to human mankind and kills about half a million people every year. On the other hand, COVID-19 resulted in several hundred thousand deaths since December 2019 and remains without an efficient and safe treatment. The antimalarials chloroquine (CQ) and its analog, hydroxychloroquine (HCQ), have been tested for COVID-19 treatment, and several conflicting evidence has been obtained. Therefore, the aim of this review was to summarize the evidence regarding action mechanisms of these compounds against Plasmodium and SARS-CoV-2 infection, together with cytometry applications. CQ and HCQ act on the renin angiotensin system, with possible implications on the cardiorespiratory system. In this context, flow and image cytometry emerge as powerful technologies to investigate the mechanism of therapeutic candidates, as well as for the identification of the immune response and prognostics of disease severity. Data from the large randomized trials support the conclusion that CQ and HCQ do not provide any clinical improvements in disease severity and progression of SARS-CoV-2 patients, as well as they do not present any solid evidence of increased serious side effects. These drugs are safe and effective antimalarials agents, but in SARS-CoV-2 patients, they need further studies in the context of clinical trials. © 2020 International Society for Advancement of Cytometry.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32686260</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1552-4930</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>97</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Cytometry. Part A : the journal of the International Society for Analytical Cytology</Title>
<ISOAbbreviation>Cytometry A</ISOAbbreviation>
</Journal>
<ArticleTitle>Insights in Chloroquine Action: Perspectives and Implications in Malaria and COVID-19.</ArticleTitle>
<Pagination>
<MedlinePgn>872-881</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cyto.a.24190</ELocationID>
<Abstract>
<AbstractText>Malaria is a threat to human mankind and kills about half a million people every year. On the other hand, COVID-19 resulted in several hundred thousand deaths since December 2019 and remains without an efficient and safe treatment. The antimalarials chloroquine (CQ) and its analog, hydroxychloroquine (HCQ), have been tested for COVID-19 treatment, and several conflicting evidence has been obtained. Therefore, the aim of this review was to summarize the evidence regarding action mechanisms of these compounds against Plasmodium and SARS-CoV-2 infection, together with cytometry applications. CQ and HCQ act on the renin angiotensin system, with possible implications on the cardiorespiratory system. In this context, flow and image cytometry emerge as powerful technologies to investigate the mechanism of therapeutic candidates, as well as for the identification of the immune response and prognostics of disease severity. Data from the large randomized trials support the conclusion that CQ and HCQ do not provide any clinical improvements in disease severity and progression of SARS-CoV-2 patients, as well as they do not present any solid evidence of increased serious side effects. These drugs are safe and effective antimalarials agents, but in SARS-CoV-2 patients, they need further studies in the context of clinical trials. © 2020 International Society for Advancement of Cytometry.</AbstractText>
<CopyrightInformation>© 2020 International Society for Advancement of Cytometry.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Pillat</LastName>
<ForeName>Micheli Mainardi</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Krüger</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-5531-9508</Identifier>
<AffiliationInfo>
<Affiliation>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guimarães</LastName>
<ForeName>Lara Mendes Ferreira</ForeName>
<Initials>LMF</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lameu</LastName>
<ForeName>Claudiana</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Souza</LastName>
<ForeName>Edmarcia Elisa</ForeName>
<Initials>EE</Initials>
<AffiliationInfo>
<Affiliation>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wrenger</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0001-5987-1749</Identifier>
<AffiliationInfo>
<Affiliation>Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ulrich</LastName>
<ForeName>Henning</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-2114-3815</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior</Agency>
<Country>International</Country>
</Grant>
<Grant>
<Agency>Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul</Agency>
<Country>International</Country>
</Grant>
<Grant>
<Agency>Conselho Nacional de Desenvolvimento Científico e Tecnológico</Agency>
<Country>International</Country>
</Grant>
<Grant>
<Agency>São Paulo Research Foundation</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>2015/19128-2</GrantID>
<Agency>Fundação de Amparo à Pesquisa do Estado de São Paulo</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>2015/26722-8</GrantID>
<Agency>Fundação de Amparo à Pesquisa do Estado de São Paulo</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>2018/07366-4</GrantID>
<Agency>Fundação de Amparo à Pesquisa do Estado de São Paulo</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>2018/08820-0</GrantID>
<Agency>Fundação de Amparo à Pesquisa do Estado de São Paulo</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cytometry A</MedlineTA>
<NlmUniqueID>101235694</NlmUniqueID>
<ISSNLinking>1552-4922</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000962">Antimalarials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000962" MajorTopicYN="N">Antimalarials</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076662" MajorTopicYN="N">Host Microbial Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008288" MajorTopicYN="N">Malaria</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010961" MajorTopicYN="N">Plasmodium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Plasmodium</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="Y">autophagy</Keyword>
<Keyword MajorTopicYN="Y">clinical trials</Keyword>
<Keyword MajorTopicYN="Y">renin angiotensin system</Keyword>
<Keyword MajorTopicYN="Y">side effect</Keyword>
<Keyword MajorTopicYN="Y">viral invasion</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32686260</ArticleId>
<ArticleId IdType="doi">10.1002/cyto.a.24190</ArticleId>
<ArticleId IdType="pmc">PMC7404934</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>Literature Cited</Title>
<Reference>
<Citation>Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D'Alessandro U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar J 2011;144:1-12.</Citation>
</Reference>
<Reference>
<Citation>Gorka AP, Dios A, Roepe PD. Quinoline drug-Heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem 2013;56:5231-5246.</Citation>
</Reference>
<Reference>
<Citation>Müller IB, Hyde JE. Antimalarial drugs: Modes of action and mechanisms of parasite resistance. Future Microbiol 2010;5:1857-1873.</Citation>
</Reference>
<Reference>
<Citation>WHO, List 2019. World Health Organization model list of essential medicines: 21st List 2019. 2019. https://apps.who.int/iris/handle/10665/325771.</Citation>
</Reference>
<Reference>
<Citation>Kaur K, Jain M, Reddy RP, Jain R. Quinolines and structurally related heterocycles as antimalarials. Eur J Med Chem 2010;45:3245-3264.</Citation>
</Reference>
<Reference>
<Citation>Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020;16:1-4.</Citation>
</Reference>
<Reference>
<Citation>McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med 1983;75:11-18.</Citation>
</Reference>
<Reference>
<Citation>PubChem. n.d. ‘Chloroquine’. https://pubchem.ncbi.nlm.nih.gov/compound/2719 (accessed 8 April 2020).</Citation>
</Reference>
<Reference>
<Citation>Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: An old drug against today's diseases? Lancet Infect Dis 2003;3:722-727.</Citation>
</Reference>
<Reference>
<Citation>Fitch CD. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of Quinoline drugs. Life Sci 2004;74:1957-1972.</Citation>
</Reference>
<Reference>
<Citation>Hempelmann E. Hemozoin biocrystallization in plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol Res 2007;100:671-676.</Citation>
</Reference>
<Reference>
<Citation>Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U. Antimalarial drugs inhibiting Hemozoin (beta-hematin) formation: A mechanistic update. Life Sci 2007;80:813-828.</Citation>
</Reference>
<Reference>
<Citation>Lisewski AM, Quiros JP, Ng CL, Adikesavan AK, Miura K, Putluri N, Eastman RT. Supergenomic network compression and the discovery of EXP1 as a glutathione transferase inhibited by artesunate. Cell 2014;158:916-928.</Citation>
</Reference>
<Reference>
<Citation>Lisewski AM, Quiros JP, Mittal M, Putluri N, Sreekumar A, Haeggström JZ, Lichtarge O. Potential role of Plasmodium falciparum exported protein 1 in the chloroquine mode of action. Int J Parasitol Drugs Drug Resist 2018;8:31-35.</Citation>
</Reference>
<Reference>
<Citation>Woodland JG, Hunter R, Smith PJ, Egan TJ. Chemical proteomics and super-resolution imaging reveal that chloroquine interacts with Plasmodium falciparum multidrug resistance-associated protein and lipids. ACS Chem Biol 2018;13:2939-2948.</Citation>
</Reference>
<Reference>
<Citation>Delves M, Plouffe D, Scheurer C, Meister S, Wittlin S, Winzeler EA, Sinden RE, Leroy D. The activities of current antimalarial drugs on the life cycle stages of plasmodium: A comparative study with human and rodent parasites. PLoS Med 2012;9:e1001169.</Citation>
</Reference>
<Reference>
<Citation>D'Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P, Delbue S. The use of antimalarial drugs against viral infection. Microorganisms 2020;8:85.</Citation>
</Reference>
<Reference>
<Citation>Wellems TE, Plowe CV. Chloroquine-resistant malaria. J Infect Dis 2001;184:770-776.</Citation>
</Reference>
<Reference>
<Citation>Djimdé A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourté Y, Coulibaly D. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 2001;344:257-263.</Citation>
</Reference>
<Reference>
<Citation>Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in cloroquine resistance. Mol Cell 2000;6:861-871.</Citation>
</Reference>
<Reference>
<Citation>Ibraheem ZO, Majid RA, Noor SM, Sedik HM, Basir R. Role of different Pfcrt and Pfmdr-1 mutations in conferring resistance to Antimalaria drugs in Plasmodium falciparum. Malaria Res Treatment 2014;2014:950424.</Citation>
</Reference>
<Reference>
<Citation>Cooper RA, Hartwig CL, Ferdig MT. Pfcrt is more than the Plasmodium falciparum Chloroquine resistance gene: A functional and evolutionary perspective. Acta Trop 2005;94:170-180.</Citation>
</Reference>
<Reference>
<Citation>Martin RE, Marchetti RV, Cowan AR, Howitt SM, Bröer S, Kirk K. Chloroquine transport via the malaria parasite's chloroquine resistance transporter. Science 2009;325:1680-1682.</Citation>
</Reference>
<Reference>
<Citation>Duraisingh MT, Cowman AF. Contribution of the Pfmdr1 gene to antimalarial drug-resistance. Acta Trop 2005;94:181-190.</Citation>
</Reference>
<Reference>
<Citation>Henry M, Briolant S, Zettor S, Pelleau S, Baragatti M, Baret E, Mosnier J, Amalvict R, Fusai T, Rogier C, et al. Plasmodium falciparum Na+/H+ exchanger 1 transporter is involved in reduced susceptibility to quinine. Antimicrob Agents Chemother 2009;53:1926-1930.</Citation>
</Reference>
<Reference>
<Citation>Chen N, Russell B, Fowler E, Peters J, Cheng Q. Levels of chloroquine resistance in Plasmodium falciparum are determined by loci other than Pfcrt and Pfmdr1. J Infect Dis 2002;185:405-407.</Citation>
</Reference>
<Reference>
<Citation>Jiang H, Patel JJ, Yi M, Mu J, Ding J, Stephens R, Cooper RA, Ferdig MT, Su X. Genome-wide compensatory changes accompany drug- selected mutations in the Plasmodium falciparum Crt gene. PLoS One 2008;6:1-11.</Citation>
</Reference>
<Reference>
<Citation>Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer 2017;17(9):528-542.</Citation>
</Reference>
<Reference>
<Citation>Hu TY, Frieman M, Wolfram J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotechnol 2020;15:247-249.</Citation>
</Reference>
<Reference>
<Citation>Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010;6(11):e1001176.</Citation>
</Reference>
<Reference>
<Citation>Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res 2020;177:104762.</Citation>
</Reference>
<Reference>
<Citation>Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004;323:264-268.</Citation>
</Reference>
<Reference>
<Citation>Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, Johnson RF, Olinger GG Jr, Jahrling PB, Laidlaw M, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother 2014;58:4885-4893.</Citation>
</Reference>
<Reference>
<Citation>Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: Suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep 2020;16:434-440.</Citation>
</Reference>
<Reference>
<Citation>Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367:1444-1448.</Citation>
</Reference>
<Reference>
<Citation>Fantini J, Chahinian H, Yahi N. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Int J Antimicrob Agents 2020;56(2):106020. https://doi.org/10.1016/j.ijantimicag.2020.106020.</Citation>
</Reference>
<Reference>
<Citation>Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020;55:105932.</Citation>
</Reference>
<Reference>
<Citation>Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents 2020;55:105938.</Citation>
</Reference>
<Reference>
<Citation>Kwiek JJ, Haystead TA, Rudolph J. Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. Biochemistry 2004;43:4538-4547.</Citation>
</Reference>
<Reference>
<Citation>Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006;6:67-69.</Citation>
</Reference>
<Reference>
<Citation>Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology J 2005;2:69.</Citation>
</Reference>
<Reference>
<Citation>Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 2017;5:e00293.</Citation>
</Reference>
<Reference>
<Citation>Schett G, Sticherling M, Neurath MF. COVID-19: Risk for cytokine targeting in chronic inflammatory diseases. Nat Rev Immunol 2020;20:271-272.</Citation>
</Reference>
<Reference>
<Citation>Vabret N, Britton GT, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD. Immunology of COVID-19: Current state of the science. Immunity 2020;52:910-941. https://doi.org/10.1016/j.immuni.2020.05.002.</Citation>
</Reference>
<Reference>
<Citation>He L, Ding Y, Zhang Q, Che X, He Y, Shen H, Wang H, Li Z, Zhao L, Geng J, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006;210:288-297.</Citation>
</Reference>
<Reference>
<Citation>Yu B, Li C, Chen P, Zhou N, Wang L, Li J, Jiang H, Wang DW. Hydroxychloroquine application is associated with a decreased mortality in critically ill patients with COVID-19. medRxiv 2020. https://doi.org/10.1101/2020.04.27.20073379.</Citation>
</Reference>
<Reference>
<Citation>Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269-271.</Citation>
</Reference>
<Reference>
<Citation>Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, et al. In vitro antiviral activity and projection of optimized dosing Design of Hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020;1:8. https://doi.org/10.1093/cid/ciaa237.</Citation>
</Reference>
<Reference>
<Citation>Simões E, Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and mas receptor axis in inflammation and fibrosis. Br J Pharmacol 2020;169:477-492.</Citation>
</Reference>
<Reference>
<Citation>Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 2017;21:234.</Citation>
</Reference>
<Reference>
<Citation>Jia H. Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. Shock 2016;46:239-248.</Citation>
</Reference>
<Reference>
<Citation>Gironacci MM, Vicario A, Cerezo G, Silva MG. The depressor axis of the renin-angiotensin system and brain disorders: A translational approach. Clin Sci 2018;132:1021-1038.</Citation>
</Reference>
<Reference>
<Citation>Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020;11:1620.</Citation>
</Reference>
<Reference>
<Citation>Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020;126:1456-1474.</Citation>
</Reference>
<Reference>
<Citation>Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: New roles in inflammation, immunology and aging. EMBO Mol Med 2010;2:247-257.</Citation>
</Reference>
<Reference>
<Citation>De Gasparo M. Angiotensin II and nitric oxide interaction. Heart Fail Rev 2002;7:347-358.</Citation>
</Reference>
<Reference>
<Citation>de Cavanagh EMV, Inserra F, Ferder M, Ferder L. From mitochondria to disease: Role of the renin-angiotensin system. Am J Nephrol 2007;27:545-553.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez-Morales AJ, Cardona-Ospina JA, Ocampo EG, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, et al. Latin American network of coronavirus disease 2019-COVID-19 research (LANCOVID-19) clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Di 2020;34:101623.</Citation>
</Reference>
<Reference>
<Citation>Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis 2020;20:425-434.</Citation>
</Reference>
<Reference>
<Citation>Ranieri VM, Rubenfeld GD, Thompson BT. Acute respiratory distress syndrome: The Berlin definition. JAMA - J Am Med Assoc 2012;307:2526-2533.</Citation>
</Reference>
<Reference>
<Citation>Li Y, Wu J, He Q, Shou Z, Zhang P, Pen W, Zhu Y, Chen J. Angiotensin (1-7) prevent heart dysfunction and left ventricular remodeling caused by renal dysfunction in 5/6 nephrectomy mice. Hypertens Res 2009;32:369-374.</Citation>
</Reference>
<Reference>
<Citation>McKinney CA, Fattah C, Loughrey CM, Milligan G, Nicklin SA. Angiotensin-(1-7) and angiotensin-(1-9): Function in cardiac and vascular remodelling. Clin Sci 2014;126:815-827.</Citation>
</Reference>
<Reference>
<Citation>Joviano-Santos JV, Santos-Miranda A, Joca HC, Cruz JS, Ferreira AJ. New insights into the elucidation of angiotensin-(1-7) in vivo antiarrhythmic effects and its related cellular mechanisms. Exp Physiol 2016;101:1506-1516.</Citation>
</Reference>
<Reference>
<Citation>South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol 2020;16:305-307.</Citation>
</Reference>
<Reference>
<Citation>Hemnes AR, Rathinasabapathy A, Austin EA, Brittain EL, Carrier EJ, Chen X, Fessel JP, Fike CD, Fong P, Fortune N, et al. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respir J 2018;51:1702638.</Citation>
</Reference>
<Reference>
<Citation>Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005;22:69.</Citation>
</Reference>
<Reference>
<Citation>Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, Mourão MPG, Brito-Sousa JD, Baía-da-Silva D, Guerra MVF, et al. Effect of high vs low doses of Chloroquine Diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial. JAMA Netw Open 2020;3(4):e208857.</Citation>
</Reference>
<Reference>
<Citation>Hernandez AV, Roman YM, Pasupuleti V, Barboza JJ, White M. Hydroxychloroquine or Chloroquine for treatment or prophylaxis of COVID-19: A living systematic review. Ann Intern Med 2020. https://doi.org/10.7326/M20-2496.</Citation>
</Reference>
<Reference>
<Citation>Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, Weinberg P, Kirkwood J, Muse A, DeHovitz J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA 2020;323:2493-2502.</Citation>
</Reference>
<Reference>
<Citation>Mahevas M, Tran V-T, Roumier M, Chabrol A, Paule R, Guillaud C, Gallien S, Lepeule R, Szwebel T-A, Lescure X, et al. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: results of a study using routinely collected data to emulate a target trial. BMJ 2020;369:m1844. https://doi.org/10.1101/2020.04.10.20060699.</Citation>
</Reference>
<Reference>
<Citation>Warner FJ, Smith AI, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2: A molecular and cellular perspective. Cell Mol Life Sci 2004;61:2704-2713.</Citation>
</Reference>
<Reference>
<Citation>Smit C, Peeters MYM, van den Anker JN, Knibbe CAJ. Chloroquine for SARS-CoV-2: Implications of its unique pharmacokinetic and safety properties. Clin Pharmacokinet 2020;18:1-11.</Citation>
</Reference>
<Reference>
<Citation>Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: From malaria to autoimmunity. Clin Rev Allergy Immunol 2012;42:145-153.</Citation>
</Reference>
<Reference>
<Citation>Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020;14:72-73.</Citation>
</Reference>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56(1):105949. https://doi.org/10.1016/j.ijantimicag.2020.105949.</Citation>
</Reference>
<Reference>
<Citation>Mahévas M, Tran VT, Roumier M, Chabrol A, Paule R, Guillaud C, Gallien S, Lepeule R, Szwebel T-A, Lescure X, et al. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: Results of a study using routinely collected data to emulate a target trial. MedRxiv preprint 2020. https://doi.org/10.1101/2020.04.10.20060699.</Citation>
</Reference>
<Reference>
<Citation>Kupferschmidt K. Three big studies dim hopes that hydroxychloroquine can treat or prevent COVID-19. Science 2020. http://dx.doi.org/10.1126/science.abd2496.</Citation>
</Reference>
<Reference>
<Citation>Statement from the Chief Investigators of the Randomised Evaluation of COVid-19 thERapY (RECOVERY) Trial on hydroxychloroquine, 5 June 2020. No clinical benefit from use of hydroxychloroquine in hospitalised patients with COVID-19. 2020. Available online at: https://www.recoverytrial.net/files/hcq-recovery-statement-050620-final-002.pdf</Citation>
</Reference>
<Reference>
<Citation>NIH halts clinical trial of hydroxychloroquine. Study shows treatment does no harm, but provides no benefit. 2020. Available online at: https://www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine</Citation>
</Reference>
<Reference>
<Citation>Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, Skipper CP, Nascene AA, Nicol MR, Abassi M, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med 2020;383(6):517-525.</Citation>
</Reference>
<Reference>
<Citation>Horby P, Landray M. Edinburgh, UK, 2020. Available at: https://www.recoverytrial.net/files/recovery-dmc-letter-24-may-2020.pdf</Citation>
</Reference>
<Reference>
<Citation>Joseph A. WHO Resumes Hydroxychloroquine Study for Covid-19, after Reviewing Safety Concerns. Available at: https://www.statnews.com/2020/06/03/who-resuming-hydroxychloroquine-study-for-covid-19/.</Citation>
</Reference>
<Reference>
<Citation>Ratliff NB, Estes ML, Myles JL, Shirey EK, McMahon JT. Diagnosis of chloroquine cardiomyopathy by endomyocardial biopsy. N Engl J Med 1987;316:191-193.</Citation>
</Reference>
<Reference>
<Citation>Procko E. The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus. BioRxiv 2020. https://doi.org/10.1101/2020.03.16.994236.</Citation>
</Reference>
<Reference>
<Citation>Petit CM, Chouljenko VN, Iyer A, Colgrove R, Farzan M, Knipe DM, Kousoulas KG. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology 2007;360:264-274.</Citation>
</Reference>
<Reference>
<Citation>Sha Y, Wu Y, Cao Z, Xu X, Wu W, Jiang D, Mao X, Liu H, Zhu Y, Gong R, et al. A convenient cell fusion assay for the study of SARS-CoV entry and inhibition. IUBMB Life 2006;58:480-486.</Citation>
</Reference>
<Reference>
<Citation>Wang S, Guo F, Liu K, Wang H, Rao S, Yang P, Jiang C. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Res 2008;136:8-15.</Citation>
</Reference>
<Reference>
<Citation>Wang C, Li W, Drabek D, Okba NMA, Haperen RV, Osterhaus ADME, Kuppeveld FJMV, Haagmans BL, Grosveld F, Bosch B-J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020;11(1):2251. https://doi.org/10.1101/2020.03.11.987958.</Citation>
</Reference>
<Reference>
<Citation>Yuan X, Wu J, Shan Y, Yao Z, Dong B, Chen B, Zhao Z, Wang S, Chen J, Cong Y. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology 2006;346:74-85.</Citation>
</Reference>
<Reference>
<Citation>Yang N, Shen HM. Targeting the Endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int J Biol Sci 2020;16:1724-1731.</Citation>
</Reference>
<Reference>
<Citation>Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018;14:1435-1455.</Citation>
</Reference>
<Reference>
<Citation>Kyrmizi I, Gresnigt MS, Akoumianaki T, Samonis G, Sidiropoulos P, Boumpas D, Netea MG, van de Veerdonk FL, Kontoyiannis DP, Chamilos G. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J Immunol 2013;191:1287-1299.</Citation>
</Reference>
<Reference>
<Citation>Tripathi A, Thangaraj A, Chivero ET, Periyasamy P, Callen S, Burkovetskaya ME, Guo ML, Buch S. Antiretroviral-mediated microglial activation involves dysregulated autophagy and lysosomal dysfunction. Cell 2019;8:1168.</Citation>
</Reference>
<Reference>
<Citation>Zhao J, Wang ML, Li Z, Gao DM, Cai Y, Chang J, Wang SP. Interferon-alpha-2b induces autophagy in hepatocellular carcinoma cells through Beclin1 pathway. Cancer Biol Med 2014;11:64-68.</Citation>
</Reference>
<Reference>
<Citation>Zha BS, Wan X, Zhang X, Zha W, Zhou J, Wabitsch M, Wang G, Lyall V, Hylemon PB, Zhou H. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes. PLoS One 2013;8:e59514.</Citation>
</Reference>
<Reference>
<Citation>Kusoglu A, Bagca BG, Ozates Ay NP, Saydam G, Avci CB. Ruxolitinib regulates the autophagy machinery in multiple myeloma cells. Anticancer Agents Med Chem 2020. Preprint. https://doi.org/10.2174/1871520620666200218105159.</Citation>
</Reference>
<Reference>
<Citation>Mayle KM, Le AM, Kamei DT. The intracellular trafficking pathway of transferrin. Biochim Biophys Acta 2012;1820:264-281.</Citation>
</Reference>
<Reference>
<Citation>Dunn KW, Park J, Semrad CE, Gelman DL, Shevell T, McGraw TE. Regulation of endocytic trafficking and acidification are independent of the cystic fibrosis transmembrane regulator. J Biol Chem 1994;269:5336-5345.</Citation>
</Reference>
<Reference>
<Citation>Benjaminsen RV, Sun H, Henriksen JR, Christensen NM, Almdal K, Andresen TL. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano 2011;5:5864-5873.</Citation>
</Reference>
<Reference>
<Citation>Ulrich H, Pillat MM, Tárnok A. Dengue Fever, COVID-19 (SARS-CoV-2) and antibody-dependent Enhancement (ADE) - A perspective. Cytometry A 2020;97:662-667. https://doi.org/10.1002/cyto.a.24047.</Citation>
</Reference>
<Reference>
<Citation>Kuppalli K, Rasmussen AL. A glimpse into the eye of the COVID-19 cytokine storm. EBioMedicine 2020;55:102789.</Citation>
</Reference>
<Reference>
<Citation>Cossarizza A, De Biasi S, Guaraldi G, Girardis M, Mussini C. SARS-CoV-2, the virus that causes COVID-19: Cytometry and the new challenge for Global Health. Cytometry Part A 2020;97A:340-343.</Citation>
</Reference>
<Reference>
<Citation>Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020;71(15):762-768. https://doi.org/10.1093/cid/ciaa248.</Citation>
</Reference>
<Reference>
<Citation>Halter S, Aimade L, Barbié M, Brisson H, Rouby JJ, Langeron O, Klatzmann D, Rosenzwajg M, Monsel A. T regulatory cells activation and distribution are modified in critically ill patients with acute respiratory distress syndrome: A prospective single-Centre observational study. Anaesth Crit Care Pain Med 2020;39:35-44.</Citation>
</Reference>
<Reference>
<Citation>Wang W, Su B, Pang L, Qiao L, Feng Y, Ouyang Y, Guo X, Shi H, Wei F, Su X, et al. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients. Cell Mol Immunol 2020;17:650-652.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, Luo M, Chen L, Zhao Y. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect 2020;81:6-12.</Citation>
</Reference>
<Reference>
<Citation>Bhat T, Teli S, Rijal J, Bhat H, Raza M, Khoueiry G, Meghani M, Akhtar M, Costantino T. Neutrophil to lymphocyte ratio and cardiovascular diseases: A review. Expert Rev Cardiovasc Ther 2013;11:55-59.</Citation>
</Reference>
<Reference>
<Citation>Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, et al. Immunology of COVID-19: Current state of the science. Immunity 2020;53:910-941.</Citation>
</Reference>
<Reference>
<Citation>WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19 4 July 2020. Available at: https://www.who.int/news-room/detail/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
</country>
<region>
<li>Rio Grande do Sul</li>
<li>État de São Paulo</li>
</region>
<settlement>
<li>São Paulo</li>
</settlement>
<orgName>
<li>Université de São Paulo</li>
</orgName>
</list>
<tree>
<country name="Brésil">
<region name="Rio Grande do Sul">
<name sortKey="Pillat, Micheli Mainardi" sort="Pillat, Micheli Mainardi" uniqKey="Pillat M" first="Micheli Mainardi" last="Pillat">Micheli Mainardi Pillat</name>
</region>
<name sortKey="De Souza, Edmarcia Elisa" sort="De Souza, Edmarcia Elisa" uniqKey="De Souza E" first="Edmarcia Elisa" last="De Souza">Edmarcia Elisa De Souza</name>
<name sortKey="Guimaraes, Lara Mendes Ferreira" sort="Guimaraes, Lara Mendes Ferreira" uniqKey="Guimaraes L" first="Lara Mendes Ferreira" last="Guimarães">Lara Mendes Ferreira Guimarães</name>
<name sortKey="Kruger, Arne" sort="Kruger, Arne" uniqKey="Kruger A" first="Arne" last="Krüger">Arne Krüger</name>
<name sortKey="Lameu, Claudiana" sort="Lameu, Claudiana" uniqKey="Lameu C" first="Claudiana" last="Lameu">Claudiana Lameu</name>
<name sortKey="Ulrich, Henning" sort="Ulrich, Henning" uniqKey="Ulrich H" first="Henning" last="Ulrich">Henning Ulrich</name>
<name sortKey="Wrenger, Carsten" sort="Wrenger, Carsten" uniqKey="Wrenger C" first="Carsten" last="Wrenger">Carsten Wrenger</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001053 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001053 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32686260
   |texte=   Insights in Chloroquine Action: Perspectives and Implications in Malaria and COVID-19.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32686260" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021