Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19.

Identifieur interne : 000332 ( Main/Exploration ); précédent : 000331; suivant : 000333

Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19.

Auteurs : R K Hussein [Arabie saoudite] ; H M Elkhair [Arabie saoudite, Soudan]

Source :

RBID : pubmed:33518801

Abstract

Vast amount of research has been recently conducted to discover drugs for efficacious treatment of corona virus disease 2019 (COVID-19). The ambiguity about using Chloroquine/ Hydroxychloroquine to treat this illness was a springboard towards new methods for improving the adequacy of these drugs. The effective treatment of COVID-19 using Zinc complexes as add-on to Chloroquine/ Hydroxychloroquine has received major attention in this context. The current studies have shed a light on molecular docking and molecular dynamics methodologies as powerful techniques in establishing therapeutic strategies to combat COVID-19 pandemic. We are proposing some zinc compounds coordination to Chloroquine/ Hydroxychloroquine in order to enhance their activity. The molecular docking calculations showed that Zn(QC)Cl2(H2O) has the least binding energy -7.70 Kcal /mol then Zn(HQC)Cl2(H2O) -7.54 Kcal /mol. The recorded hydrogen bonds were recognized in the strongest range of H Bond category distances. Identification of binding site interactions revealed that the interaction of Zn(QC)Cl2(H2O)with the protease of COVID-19 results in three hydrogen bonds, while Zn(HQC)Cl2(H2O) exhibited a strong binding to the main protease receptor by forming eight hydrogen bonds. The dynamic behavior of the proposed complexes was revealed by molecular dynamics simulations. The outcomes obtained from Molecular dynamics calculations approved the stability of Mpro-Zn(CQ/HCQ)Cl2H2O systems. These findings recommend Zn (CQ) Cl2H2O and Zn (HCQ) Cl2H2O as potential inhibitors for COVID-19 Mpro.

DOI: 10.1016/j.molstruc.2021.129979
PubMed: 33518801
PubMed Central: PMC7830318


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19.</title>
<author>
<name sortKey="Hussein, R K" sort="Hussein, R K" uniqKey="Hussein R" first="R K" last="Hussein">R K Hussein</name>
<affiliation wicri:level="1">
<nlm:affiliation>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623</wicri:regionArea>
<wicri:noRegion>Riyadh 11623</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elkhair, H M" sort="Elkhair, H M" uniqKey="Elkhair H" first="H M" last="Elkhair">H M Elkhair</name>
<affiliation wicri:level="1">
<nlm:affiliation>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623</wicri:regionArea>
<wicri:noRegion>Riyadh 11623</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics, Al Neelain University, P. O. Box 12702, Khartoum 11121, Sudan.</nlm:affiliation>
<country xml:lang="fr">Soudan</country>
<wicri:regionArea>Department of Physics, Al Neelain University, P. O. Box 12702, Khartoum 11121</wicri:regionArea>
<wicri:noRegion>Khartoum 11121</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33518801</idno>
<idno type="pmid">33518801</idno>
<idno type="doi">10.1016/j.molstruc.2021.129979</idno>
<idno type="pmc">PMC7830318</idno>
<idno type="wicri:Area/Main/Corpus">000419</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000419</idno>
<idno type="wicri:Area/Main/Curation">000419</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000419</idno>
<idno type="wicri:Area/Main/Exploration">000419</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19.</title>
<author>
<name sortKey="Hussein, R K" sort="Hussein, R K" uniqKey="Hussein R" first="R K" last="Hussein">R K Hussein</name>
<affiliation wicri:level="1">
<nlm:affiliation>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623</wicri:regionArea>
<wicri:noRegion>Riyadh 11623</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elkhair, H M" sort="Elkhair, H M" uniqKey="Elkhair H" first="H M" last="Elkhair">H M Elkhair</name>
<affiliation wicri:level="1">
<nlm:affiliation>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623</wicri:regionArea>
<wicri:noRegion>Riyadh 11623</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics, Al Neelain University, P. O. Box 12702, Khartoum 11121, Sudan.</nlm:affiliation>
<country xml:lang="fr">Soudan</country>
<wicri:regionArea>Department of Physics, Al Neelain University, P. O. Box 12702, Khartoum 11121</wicri:regionArea>
<wicri:noRegion>Khartoum 11121</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular structure</title>
<idno type="ISSN">0022-2860</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vast amount of research has been recently conducted to discover drugs for efficacious treatment of corona virus disease 2019 (COVID-19). The ambiguity about using Chloroquine/ Hydroxychloroquine to treat this illness was a springboard towards new methods for improving the adequacy of these drugs. The effective treatment of COVID-19 using Zinc complexes as add-on to Chloroquine/ Hydroxychloroquine has received major attention in this context. The current studies have shed a light on molecular docking and molecular dynamics methodologies as powerful techniques in establishing therapeutic strategies to combat COVID-19 pandemic. We are proposing some zinc compounds coordination to Chloroquine/ Hydroxychloroquine in order to enhance their activity. The molecular docking calculations showed that Zn(QC)Cl2(H2O) has the least binding energy -7.70 Kcal /mol then Zn(HQC)Cl2(H2O) -7.54 Kcal /mol. The recorded hydrogen bonds were recognized in the strongest range of H Bond category distances. Identification of binding site interactions revealed that the interaction of Zn(QC)Cl2(H2O)with the protease of COVID-19 results in three hydrogen bonds, while Zn(HQC)Cl2(H2O) exhibited a strong binding to the main protease receptor by forming eight hydrogen bonds. The dynamic behavior of the proposed complexes was revealed by molecular dynamics simulations. The outcomes obtained from Molecular dynamics calculations approved the stability of Mpro-Zn(CQ/HCQ)Cl2H2O systems. These findings recommend Zn (CQ) Cl2H2O and Zn (HCQ) Cl2H2O as potential inhibitors for COVID-19 Mpro.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33518801</PMID>
<DateRevised>
<Year>2021</Year>
<Month>02</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-2860</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1231</Volume>
<PubDate>
<Year>2021</Year>
<Month>May</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular structure</Title>
<ISOAbbreviation>J Mol Struct</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19.</ArticleTitle>
<Pagination>
<MedlinePgn>129979</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.molstruc.2021.129979</ELocationID>
<Abstract>
<AbstractText>Vast amount of research has been recently conducted to discover drugs for efficacious treatment of corona virus disease 2019 (COVID-19). The ambiguity about using Chloroquine/ Hydroxychloroquine to treat this illness was a springboard towards new methods for improving the adequacy of these drugs. The effective treatment of COVID-19 using Zinc complexes as add-on to Chloroquine/ Hydroxychloroquine has received major attention in this context. The current studies have shed a light on molecular docking and molecular dynamics methodologies as powerful techniques in establishing therapeutic strategies to combat COVID-19 pandemic. We are proposing some zinc compounds coordination to Chloroquine/ Hydroxychloroquine in order to enhance their activity. The molecular docking calculations showed that Zn(QC)Cl2(H2O) has the least binding energy -7.70 Kcal /mol then Zn(HQC)Cl2(H2O) -7.54 Kcal /mol. The recorded hydrogen bonds were recognized in the strongest range of H Bond category distances. Identification of binding site interactions revealed that the interaction of Zn(QC)Cl2(H2O)with the protease of COVID-19 results in three hydrogen bonds, while Zn(HQC)Cl2(H2O) exhibited a strong binding to the main protease receptor by forming eight hydrogen bonds. The dynamic behavior of the proposed complexes was revealed by molecular dynamics simulations. The outcomes obtained from Molecular dynamics calculations approved the stability of Mpro-Zn(CQ/HCQ)Cl2H2O systems. These findings recommend Zn (CQ) Cl2H2O and Zn (HCQ) Cl2H2O as potential inhibitors for COVID-19 Mpro.</AbstractText>
<CopyrightInformation>© 2021 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hussein</LastName>
<ForeName>R K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Elkhair</LastName>
<ForeName>H M</ForeName>
<Initials>HM</Initials>
<AffiliationInfo>
<Affiliation>Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics department, P.O. Box 90950, Riyadh 11623, Saudi Arabia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Physics, Al Neelain University, P. O. Box 12702, Khartoum 11121, Sudan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>01</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Mol Struct</MedlineTA>
<NlmUniqueID>0141747</NlmUniqueID>
<ISSNLinking>0022-2860</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Chloroquine</Keyword>
<Keyword MajorTopicYN="N">Hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">Molecular dynamics</Keyword>
<Keyword MajorTopicYN="N">Zinc complexes: molecular docking</Keyword>
</KeywordList>
<CoiStatement>I have no conflicts of interest to disclose.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2021</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>01</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>5</Hour>
<Minute>51</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33518801</ArticleId>
<ArticleId IdType="doi">10.1016/j.molstruc.2021.129979</ArticleId>
<ArticleId IdType="pii">S0022-2860(21)00110-1</ArticleId>
<ArticleId IdType="pmc">PMC7830318</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>J Antimicrob Chemother. 2020 Jul 1;75(7):1667-1670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32196083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Immunol Infect. 2020 Jun;53(3):425-435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32414646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e48264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23110223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Dec;30(16):2785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19399780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Jan 10;18(2):508-519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28076793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Clin Pharmacol. 2000 Jun;49(6):549-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10848718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflammopharmacology. 2015 Oct;23(5):231-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26246395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Struct. 2020 Nov 5;1219:128595</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32834108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2005 Aug;99(8):1630-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Reumatologia. 2018;56(3):164-173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30042604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Jul 30;23(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30061498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jun 18;382(25):2411-2418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32379955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infez Med. 2020 Ahead of print Jun 1;28(2):192-197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32335560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2013 Aug 1;23(15):4453-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23777781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Signal Transduct Target Ther. 2020 May 9;5(1):67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32388537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care. 2020 May 8;24(1):210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32384908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):33-8, 27-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2013 Jul;9(7):1119-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23670050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2016 Jan 12;12(1):405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26631602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Res. 2012 Jul;111(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22411634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 May - Jun;35:101735</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32387694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Hypotheses. 2020 Sep;142:109815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32408070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1781-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 Jun;215:108448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32353634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Malar J. 2014 Dec 03;13:471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25470995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2018 Feb;48:93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29149726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2009 Sep 24;52(18):5712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19719084</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Arabie saoudite</li>
<li>Soudan</li>
</country>
</list>
<tree>
<country name="Arabie saoudite">
<noRegion>
<name sortKey="Hussein, R K" sort="Hussein, R K" uniqKey="Hussein R" first="R K" last="Hussein">R K Hussein</name>
</noRegion>
<name sortKey="Elkhair, H M" sort="Elkhair, H M" uniqKey="Elkhair H" first="H M" last="Elkhair">H M Elkhair</name>
</country>
<country name="Soudan">
<noRegion>
<name sortKey="Elkhair, H M" sort="Elkhair, H M" uniqKey="Elkhair H" first="H M" last="Elkhair">H M Elkhair</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000332 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000332 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33518801
   |texte=   Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33518801" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021