Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies.

Identifieur interne : 000E32 ( Main/Curation ); précédent : 000E31; suivant : 000E33

Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies.

Auteurs : Nabajyoti Baildya [Inde] ; Narendra Nath Ghosh [Inde] ; Asoke P. Chattopadhyay [Inde]

Source :

RBID : pubmed:32834108

Abstract

The present work is an investigation to test hydroxychloroquine as an inhibitor for the COVID-19 main protease. Molecular docking studies revealed a high docking score and interaction energies and decent level of docking within the cavity in protease moiety. Molecular dynamics simulations also lead to the evaluation of conformational energies, average H-bonding distance, RMSD plots etc. Large RMSD fluctuations for the first 2 ns seem to provide the conformational and rotational changes associated with the drug molecule when it comes into the vicinity on the protease matrix. Snapshots of structural changes with respect to time vividly indicates that drug molecule has a profound impact on the binding sites as well as overall geometry of the protease moiety. On the whole, hydroxyxhloroquine confers good inhibitory response to COVID-19 main protease. We hope the present study should help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus.

DOI: 10.1016/j.molstruc.2020.128595
PubMed: 32834108
PubMed Central: PMC7266611

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32834108

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies.</title>
<author>
<name sortKey="Baildya, Nabajyoti" sort="Baildya, Nabajyoti" uniqKey="Baildya N" first="Nabajyoti" last="Baildya">Nabajyoti Baildya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Kalyani, Kalyani, 741235, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemistry, University of Kalyani, Kalyani, 741235</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Narendra Nath" sort="Ghosh, Narendra Nath" uniqKey="Ghosh N" first="Narendra Nath" last="Ghosh">Narendra Nath Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, 732103, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, 732103</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chattopadhyay, Asoke P" sort="Chattopadhyay, Asoke P" uniqKey="Chattopadhyay A" first="Asoke P" last="Chattopadhyay">Asoke P. Chattopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Kalyani, Kalyani, 741235, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemistry, University of Kalyani, Kalyani, 741235</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32834108</idno>
<idno type="pmid">32834108</idno>
<idno type="doi">10.1016/j.molstruc.2020.128595</idno>
<idno type="pmc">PMC7266611</idno>
<idno type="wicri:Area/Main/Corpus">000E32</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E32</idno>
<idno type="wicri:Area/Main/Curation">000E32</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies.</title>
<author>
<name sortKey="Baildya, Nabajyoti" sort="Baildya, Nabajyoti" uniqKey="Baildya N" first="Nabajyoti" last="Baildya">Nabajyoti Baildya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Kalyani, Kalyani, 741235, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemistry, University of Kalyani, Kalyani, 741235</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Narendra Nath" sort="Ghosh, Narendra Nath" uniqKey="Ghosh N" first="Narendra Nath" last="Ghosh">Narendra Nath Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, 732103, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, 732103</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chattopadhyay, Asoke P" sort="Chattopadhyay, Asoke P" uniqKey="Chattopadhyay A" first="Asoke P" last="Chattopadhyay">Asoke P. Chattopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Kalyani, Kalyani, 741235, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemistry, University of Kalyani, Kalyani, 741235</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular structure</title>
<idno type="ISSN">0022-2860</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present work is an investigation to test hydroxychloroquine as an inhibitor for the COVID-19 main protease. Molecular docking studies revealed a high docking score and interaction energies and decent level of docking within the cavity in protease moiety. Molecular dynamics simulations also lead to the evaluation of conformational energies, average H-bonding distance, RMSD plots etc. Large RMSD fluctuations for the first 2 ns seem to provide the conformational and rotational changes associated with the drug molecule when it comes into the vicinity on the protease matrix. Snapshots of structural changes with respect to time vividly indicates that drug molecule has a profound impact on the binding sites as well as overall geometry of the protease moiety. On the whole, hydroxyxhloroquine confers good inhibitory response to COVID-19 main protease. We hope the present study should help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32834108</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-2860</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1219</Volume>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular structure</Title>
<ISOAbbreviation>J Mol Struct</ISOAbbreviation>
</Journal>
<ArticleTitle>Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies.</ArticleTitle>
<Pagination>
<MedlinePgn>128595</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.molstruc.2020.128595</ELocationID>
<Abstract>
<AbstractText>The present work is an investigation to test hydroxychloroquine as an inhibitor for the COVID-19 main protease. Molecular docking studies revealed a high docking score and interaction energies and decent level of docking within the cavity in protease moiety. Molecular dynamics simulations also lead to the evaluation of conformational energies, average H-bonding distance, RMSD plots etc. Large RMSD fluctuations for the first 2 ns seem to provide the conformational and rotational changes associated with the drug molecule when it comes into the vicinity on the protease matrix. Snapshots of structural changes with respect to time vividly indicates that drug molecule has a profound impact on the binding sites as well as overall geometry of the protease moiety. On the whole, hydroxyxhloroquine confers good inhibitory response to COVID-19 main protease. We hope the present study should help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus.</AbstractText>
<CopyrightInformation>© 2020 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Baildya</LastName>
<ForeName>Nabajyoti</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Kalyani, Kalyani, 741235, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Narendra Nath</ForeName>
<Initials>NN</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, 732103, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chattopadhyay</LastName>
<ForeName>Asoke P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Kalyani, Kalyani, 741235, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Mol Struct</MedlineTA>
<NlmUniqueID>0141747</NlmUniqueID>
<ISSNLinking>0022-2860</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19 main chain protease</Keyword>
<Keyword MajorTopicYN="N">Hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">MD-Simulation</Keyword>
<Keyword MajorTopicYN="N">Molecular docking</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32834108</ArticleId>
<ArticleId IdType="doi">10.1016/j.molstruc.2020.128595</ArticleId>
<ArticleId IdType="pii">S0022-2860(20)30920-0</ArticleId>
<ArticleId IdType="pii">128595</ArticleId>
<ArticleId IdType="pmc">PMC7266611</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14408-14413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27911847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2016 Apr 21;120(15):3692-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27031562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Cent Sci. 2020 Mar 25;6(3):315-331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32226821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2011 Jul 15;32(9):2031-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21469158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Infect Dis J. 2005 Nov;24(11 Suppl):S223-7, discussion S226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16378050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2010 Jan 30;31(2):455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1966 Jan 8;1(7428):76-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4158999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Apr;55(4):105932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32145363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jun;55(6):105948</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32201353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2020 Mar 16;14(1):72-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Mar;55(3):105924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32081636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2014 Jan 16;118(2):547-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24341749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ophthalmology. 2016 Jun;123(6):1386-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26992838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Mar;55(3):105923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32070753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2006 May 4;49(9):2845-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640347</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000E32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32834108
   |texte=   Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:32834108" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021