Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?

Identifieur interne : 001291 ( Main/Corpus ); précédent : 001290; suivant : 001292

Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?

Auteurs : Christian Bailly ; Gérard Vergoten

Source :

RBID : pubmed:32592716

English descriptors

Abstract

Safe and efficient drugs to combat the current COVID-19 pandemic are urgently needed. In this context, we have analyzed the anti-coronavirus potential of the natural product glycyrrhizic acid (GLR), a drug used to treat liver diseases (including viral hepatitis) and specific cutaneous inflammation (such as atopic dermatitis) in some countries. The properties of GLR and its primary active metabolite glycyrrhetinic acid are presented and discussed. GLR has shown activities against different viruses, including SARS-associated Human and animal coronaviruses. GLR is a non-hemolytic saponin and a potent immuno-active anti-inflammatory agent which displays both cytoplasmic and membrane effects. At the membrane level, GLR induces cholesterol-dependent disorganization of lipid rafts which are important for the entry of coronavirus into cells. At the intracellular and circulating levels, GLR can trap the high mobility group box 1 protein and thus blocks the alarmin functions of HMGB1. We used molecular docking to characterize further and discuss both the cholesterol- and HMG box-binding functions of GLR. The membrane and cytoplasmic effects of GLR, coupled with its long-established medical use as a relatively safe drug, make GLR a good candidate to be tested against the SARS-CoV-2 coronavirus, alone and in combination with other drugs. The rational supporting combinations with (hydroxy)chloroquine and tenofovir (two drugs active against SARS-CoV-2) is also discussed. Based on this analysis, we conclude that GLR should be further considered and rapidly evaluated for the treatment of patients with COVID-19.

DOI: 10.1016/j.pharmthera.2020.107618
PubMed: 32592716
PubMed Central: PMC7311916

Links to Exploration step

pubmed:32592716

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?</title>
<author>
<name sortKey="Bailly, Christian" sort="Bailly, Christian" uniqKey="Bailly C" first="Christian" last="Bailly">Christian Bailly</name>
<affiliation>
<nlm:affiliation>OncoWitan, Lille, Wasquehal 59290, France. Electronic address: christian.bailly@oncowitan.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vergoten, Gerard" sort="Vergoten, Gerard" uniqKey="Vergoten G" first="Gérard" last="Vergoten">Gérard Vergoten</name>
<affiliation>
<nlm:affiliation>University of Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, ICPAL, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32592716</idno>
<idno type="pmid">32592716</idno>
<idno type="doi">10.1016/j.pharmthera.2020.107618</idno>
<idno type="pmc">PMC7311916</idno>
<idno type="wicri:Area/Main/Corpus">001291</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001291</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?</title>
<author>
<name sortKey="Bailly, Christian" sort="Bailly, Christian" uniqKey="Bailly C" first="Christian" last="Bailly">Christian Bailly</name>
<affiliation>
<nlm:affiliation>OncoWitan, Lille, Wasquehal 59290, France. Electronic address: christian.bailly@oncowitan.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vergoten, Gerard" sort="Vergoten, Gerard" uniqKey="Vergoten G" first="Gérard" last="Vergoten">Gérard Vergoten</name>
<affiliation>
<nlm:affiliation>University of Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, ICPAL, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pharmacology & therapeutics</title>
<idno type="eISSN">1879-016X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alarmins (drug effects)</term>
<term>Betacoronavirus (MeSH)</term>
<term>COVID-19 (MeSH)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Drug Therapy, Combination (MeSH)</term>
<term>Glycyrrhizic Acid (pharmacology)</term>
<term>Glycyrrhizic Acid (therapeutic use)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Membrane Microdomains (drug effects)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Tenofovir (therapeutic use)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Alarmins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Membrane Microdomains</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glycyrrhizic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Glycyrrhizic Acid</term>
<term>Hydroxychloroquine</term>
<term>Tenofovir</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Betacoronavirus</term>
<term>COVID-19</term>
<term>Drug Therapy, Combination</term>
<term>Humans</term>
<term>Molecular Docking Simulation</term>
<term>Pandemics</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Safe and efficient drugs to combat the current COVID-19 pandemic are urgently needed. In this context, we have analyzed the anti-coronavirus potential of the natural product glycyrrhizic acid (GLR), a drug used to treat liver diseases (including viral hepatitis) and specific cutaneous inflammation (such as atopic dermatitis) in some countries. The properties of GLR and its primary active metabolite glycyrrhetinic acid are presented and discussed. GLR has shown activities against different viruses, including SARS-associated Human and animal coronaviruses. GLR is a non-hemolytic saponin and a potent immuno-active anti-inflammatory agent which displays both cytoplasmic and membrane effects. At the membrane level, GLR induces cholesterol-dependent disorganization of lipid rafts which are important for the entry of coronavirus into cells. At the intracellular and circulating levels, GLR can trap the high mobility group box 1 protein and thus blocks the alarmin functions of HMGB1. We used molecular docking to characterize further and discuss both the cholesterol- and HMG box-binding functions of GLR. The membrane and cytoplasmic effects of GLR, coupled with its long-established medical use as a relatively safe drug, make GLR a good candidate to be tested against the SARS-CoV-2 coronavirus, alone and in combination with other drugs. The rational supporting combinations with (hydroxy)chloroquine and tenofovir (two drugs active against SARS-CoV-2) is also discussed. Based on this analysis, we conclude that GLR should be further considered and rapidly evaluated for the treatment of patients with COVID-19.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32592716</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-016X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>214</Volume>
<PubDate>
<Year>2020</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>Pharmacology & therapeutics</Title>
<ISOAbbreviation>Pharmacol Ther</ISOAbbreviation>
</Journal>
<ArticleTitle>Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?</ArticleTitle>
<Pagination>
<MedlinePgn>107618</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0163-7258(20)30148-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.pharmthera.2020.107618</ELocationID>
<Abstract>
<AbstractText>Safe and efficient drugs to combat the current COVID-19 pandemic are urgently needed. In this context, we have analyzed the anti-coronavirus potential of the natural product glycyrrhizic acid (GLR), a drug used to treat liver diseases (including viral hepatitis) and specific cutaneous inflammation (such as atopic dermatitis) in some countries. The properties of GLR and its primary active metabolite glycyrrhetinic acid are presented and discussed. GLR has shown activities against different viruses, including SARS-associated Human and animal coronaviruses. GLR is a non-hemolytic saponin and a potent immuno-active anti-inflammatory agent which displays both cytoplasmic and membrane effects. At the membrane level, GLR induces cholesterol-dependent disorganization of lipid rafts which are important for the entry of coronavirus into cells. At the intracellular and circulating levels, GLR can trap the high mobility group box 1 protein and thus blocks the alarmin functions of HMGB1. We used molecular docking to characterize further and discuss both the cholesterol- and HMG box-binding functions of GLR. The membrane and cytoplasmic effects of GLR, coupled with its long-established medical use as a relatively safe drug, make GLR a good candidate to be tested against the SARS-CoV-2 coronavirus, alone and in combination with other drugs. The rational supporting combinations with (hydroxy)chloroquine and tenofovir (two drugs active against SARS-CoV-2) is also discussed. Based on this analysis, we conclude that GLR should be further considered and rapidly evaluated for the treatment of patients with COVID-19.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bailly</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>OncoWitan, Lille, Wasquehal 59290, France. Electronic address: christian.bailly@oncowitan.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vergoten</LastName>
<ForeName>Gérard</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>University of Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, ICPAL, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Pharmacol Ther</MedlineTA>
<NlmUniqueID>7905840</NlmUniqueID>
<ISSNLinking>0163-7258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000067531">Alarmins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6FO62043WK</RegistryNumber>
<NameOfSubstance UI="D019695">Glycyrrhizic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>99YXE507IL</RegistryNumber>
<NameOfSubstance UI="D000068698">Tenofovir</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000067531" MajorTopicYN="N">Alarmins</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004359" MajorTopicYN="N">Drug Therapy, Combination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019695" MajorTopicYN="N">Glycyrrhizic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021962" MajorTopicYN="N">Membrane Microdomains</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000068698" MajorTopicYN="N">Tenofovir</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">Cholesterol</Keyword>
<Keyword MajorTopicYN="Y">Coronavirus</Keyword>
<Keyword MajorTopicYN="Y">Glycyrrhizin</Keyword>
<Keyword MajorTopicYN="Y">HMGB1</Keyword>
<Keyword MajorTopicYN="Y">Natural product</Keyword>
</KeywordList>
<CoiStatement>Declaration of Competing Interest The authors declare no conflict of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32592716</ArticleId>
<ArticleId IdType="pii">S0163-7258(20)30148-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.pharmthera.2020.107618</ArticleId>
<ArticleId IdType="pmc">PMC7311916</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2018 Oct 22;8(1):15568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30348944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhongguo Zhong Yao Za Zhi. 2018 Dec;43(24):4759-4764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30717515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2020 Jan 30;21(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32019145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2014 Mar;141(3):347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24220159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2019 Oct 15;29(20):126645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31519375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2012 Jun 4;111:27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22513095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 1988 Dec 11;10(6):289-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3250333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Apr;12(4):1311-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8467791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Appl Biochem. 2019 Nov;66(6):1024-1030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31545873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Pharmacother. 2017 Nov;95:670-678</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28886526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Aug 24;20(17):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31450620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Med. 2018 Oct;42(4):2020-2030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30066834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Medchemcomm. 2019 Jul 26;10(10):1819-1827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31814955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharm Sin B. 2020 May;10(5):766-788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32292689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2014;2014:872139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24963489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pharm Res. 2018 Apr;41(4):409-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29532412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ethnopharmacol. 2020 Jan 30;247:112226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31574343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biodivers. 2010 Mar;7(3):677-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20232336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Food. 2020 Jan;23(1):12-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31874059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 2018 Aug 24;81(8):1734-1744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30063346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Biomed Anal. 2015;111:28-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25854854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Ther. 2020;14(1):58-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32147628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2003 Jun;59(1):41-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12834859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2014 Jan 24;9:635-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24493924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2017 Sep 21;8(9):e3055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28933787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatol Res. 2002 May;23(1):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2020 Jan 29;68(4):1051-1063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31910005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 1994 Oct;21(4):601-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7814808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2020 Jul;84:106578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32416454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Pharm Bull. 1998 Dec;21(12):1282-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jan 12;12(1):e0170123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28081264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2015 May;65(1):177-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25660970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Dec 2;14(12):e0224517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31790411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2014 Nov;134(11):2719-2727</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2014 Jun;281(11):2543-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24698106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2019 May;23(5):3495-3504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30821111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Clin Microbiol Infect Dis. 2020 Jul;39(7):1209-1220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32328850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 1994 Jan;23(1):63-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8141593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Therapie. 2020 Jul - Aug;75(4):363-370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32473812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomed. 2020 Mar 19;91(1):161-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32191676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Khim. 2008 May-Jun;54(3):301-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18712086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2017 Dec;162(12):3753-3767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28884395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2019 Feb;100(2):156-165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30484759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jun;55(6):105995</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32335281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Funct. 2016 Jul 13;7(7):3017-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27326537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vet Res. 2017 Dec 27;61(4):405-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29978102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 May;55(5):105938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2019 Jun;103(12):4813-4823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31055652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 May;55(5):105960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32251731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Nov 30;4(12):3440-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Pharm Bull (Tokyo). 2019;67(6):534-539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31155558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 2020 Jan 1;34(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31789888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2013 Aug 1;86(3):410-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23707973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochem Anal. 2020 Jan 17;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31953885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharm. 2016 Mar 7;13(3):699-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26808002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2020 Mar 16;14(1):72-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Des Devel Ther. 2019 Oct 16;13:3579-3589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31802846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2016 Sep;38:267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27318792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Res. 2018 May;83(5):1049-1056</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29329282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2008 Jul;79(1):6-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Afr J Tradit Complement Altern Med. 2012 Apr 02;9(3):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23983372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chin Med Assoc. 2019 May;82(5):368-374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30920421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformation. 2012;8(23):1147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23275711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2020 Jan;24(2):1319-1331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31769590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol C Toxicol Pharmacol. 2019 Nov;225:108585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31398390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2018 Apr 3;34(13):3971-3980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29546991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Stroke Res. 2020 Oct;11(5):967-982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31872339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2020 Jan;24(1):214-226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31657123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2009 Aug;83(2):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2019 Jun;91(6):949-957</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30698826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Transl Gastroenterol. 2017 Jun 29;8(6):e104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28662023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISRN Pharmacol. 2013 Jul 30;2013:849412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23984091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 18;8(7):e68992</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23874843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2005 Mar;5(3):571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15683852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytother Res. 2018 Dec;32(12):2323-2339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30117204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Zhejiang Univ Sci B. 2018 Oct.;19(10):785-795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30269446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bone Miner Metab. 2013 May;31(3):262-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23274351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2018 Nov 1;122(43):9938-9946</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30299964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 1996 May;30(2-3):171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8783808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2004 Feb;61(2):111-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2020 Apr 24;12(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32344708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2016 Sep;111:534-544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27378565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Sep 17;23(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30227687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2013 Apr;35(4):348-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23563799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gastroenterol. 2009;44(6):577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19352587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gastroenterol. 2010 Feb;45(2):195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19760134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Biomembr. 2017 Dec;1859(12):2516-2525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28947142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Med. 2019 Jul;44(1):253-261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31115551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2018 Jan 15;2018:6916797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29568761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Malar J. 2014 Jan 29;13:36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24472224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2015 Dec 15;6(40):42541-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26637810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Drugs. 2019 May 22;17(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31121891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Res Opin. 2017 Feb;33(2):279-287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27786567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell J. 2016 Jul-Sep;18(2):135-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Commun. 2013 Mar;8(3):415-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathobiology. 2002-2003;70(4):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pharm. 2019 Nov 25;571:118693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31525442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biochem Biophys. 2012 Jan;62(1):137-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21874590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comb Chem High Throughput Screen. 2017;20(3):215-234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28024463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Feb 7;9(1):1587</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30733510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2019 Apr 9;511(3):665-670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30826057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2017 Mar 22;65(11):2394-2405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28267916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale Res Lett. 2018 Oct 16;13(1):324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30327946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2017 Jul 11;9(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28696396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2003 Jan-Feb;85(1-2):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12765776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflammopharmacology. 2015 Oct;23(5):231-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26246395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18974890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2018 Nov 21;10(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30469357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2020 Apr;16(13):e1906206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32077621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2007 Jan;81(1):100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16935945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem Struct Biol. 2017;107:37-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28215228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Physiol Biochem. 2019;53(1):242-257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31313540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Pharmacol Physiol. 2006 Jul;33(7):612-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16789928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2018 Oct;43(10):1914-1926</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30206804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2019 Mar 27;67(12):3323-3332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30832473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 19;6(1):e16145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21283827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Neurosci. 2020 Feb 19;11(4):485-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31972087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2015 Jan 1;125:291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25524220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Feb;18(2):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Deliv. 2016 Jun;23(5):1623-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26786787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 2020 Feb 10;51(1):10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32041637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Microbiol Immunol. 2010 Nov;199(4):291-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e19705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21611183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Mar 06;20(3):4337-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25756651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Nov 14;91(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28956766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Ther. 2013;18(8):997-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23872789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2013 Apr 15;21(8):2387-2395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23454223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 1989 Jun-Jul;11(5-6):255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2572198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pharm. 2019 Mar 25;559:271-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30690130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cosmet Sci. 2019 Aug;41(4):325-331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31166601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2020;27(36):6219-6243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31612817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2020 Jul 15;253:117592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32222463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 2011 May;125(1-2):129-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21236343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2006 May 10;537(1-3):166-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Postgrad Med. 2020 Sep;132(7):604-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32496926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2020 Aug;85:106675</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32531711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2019 Apr;231:129-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30955800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2020 Feb 28;94(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31896588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2017 Feb 28;7:56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28293544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2017 Jun 29;8(6):e2909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28661479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1689-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2019 Mar 25;10:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30971913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2015 Aug;120:122-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26055123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Pharmacol. 2020 Jul;60(7):815-825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32441805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharm. 2019 Jul 1;16(7):3188-3198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31198045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2014 Dec;5(12):912-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25311841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Chin Med. 2020;48(1):17-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31931596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 May 24;14(5):e0217578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31125383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Jan 1;1040:47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27907868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 Nov 15;392(Pt 1):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16053446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Trop. 2019 Jun;194:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30871990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2018 Nov 26;9(12):1164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30478280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Exp Biol Med. 2008 Aug;146(2):206-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19145319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Ther. 2017 Nov 22;11(5):246-252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29070744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2017 Jul;48:67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28476015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2019 Nov;22:102099</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31648039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2019 Jun;144:210-226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31022523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2018 Jul;28(4):e1973</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29709097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2017 Jul 1;27(13):3019-3025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28527823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Dec;1858(12):3131-3140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27718370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2018 Nov 1;353:250-257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29366745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Apr;55(4):105944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32179150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Dermatol Res. 2019 Mar;311(2):131-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30506356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 1987 Feb;7(2):99-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3034150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Sep;86(17):9122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22696656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2015 Apr 27;54(18):5408-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25759108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytother Res. 2017 Nov;31(11):1635-1650</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28833680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mini Rev Med Chem. 2019;19(10):826-832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30659537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diagn Pathol. 2014 May 29;9:102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Affect Disord. 2020 Mar 15;265:247-254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32090748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2020 Feb 25;10(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32106571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Deliv. 2018 Nov;25(1):1213-1223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29791258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Health Res Policy. 2020 Mar 2;5:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32226823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Sep 27;14(9):e0222369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31560698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jun 14;361(9374):2045-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12814717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 May 2;369(2):344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18279660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dokl Biochem Biophys. 2018 Jul;481(1):228-231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30168067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Cell Biol. 2012 Jan;31(1):114-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22074129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Animals (Basel). 2019 Aug 07;9(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31394812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Heart Assoc. 2018 Oct 2;7(19):e008596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30371306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr 15;6(4):e1000862</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20419158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Funct. 2017 Jan 25;8(1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27918043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2013 Jan 10;56(1):97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23199028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2007 Jan;9(1):96-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Jun 19;8(1):9365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29921924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Chromatogr. 2017 Dec;31(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28623864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Crit Care. 2020 Jun;57:279-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32173110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2019 Sep 30;24(19):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31574981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2018 Aug 1;369(1):112-119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29763588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Physiol Anim Nutr (Berl). 2020 Mar;104(2):637-644</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31898833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2017 Jun;162(6):1467-1476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28175983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Transl Res. 2019 Apr 15;11(4):2042-2055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31105816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Spectrochim Acta A Mol Biomol Spectrosc. 2020 Jun 15;234:118245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32179463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Dermatol. 2020 Jun;21(3):307-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32277351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharm Sci. 2017 Aug 30;106:313-327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28627473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Thorac Dis. 2019 Apr;11(4):1287-1302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31179071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Ther Res Clin Exp. 2004 Jan;65(1):26-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24936101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2017 Mar 19;9(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28335505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2016 Nov 15;7(46):75064-75080</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27634894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Aug;79(15):9862-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16014947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2016 Nov 1;147:459-466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27580071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 24;8(9):e74761</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24086367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 May;55(5):105955</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32234468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Jul 15;9(1):10243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31308447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Pharm Bull. 2001 Aug;24(8):906-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11510483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2019 Apr;231:63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30955825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 1990 Jun;31(2):155-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2167349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhongguo Zhong Yao Za Zhi. 2016 May;41(10):1916-1920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28895343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Sep 11;10(1):4116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31511522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2015 Dec 10;134:657-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26428169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Apr;1828(4):1271-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23333324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2005 Feb 24;48(4):1256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15715493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Exp Biol Med. 2013 Nov;156(1):63-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24319730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2019 Apr;234(4):4597-4607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30203548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Oct;92(10):2200-2204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32458502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2007 Apr;14(4):431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem. 2018 May 15;248:128-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29329835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jun;1840(6):1755-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Chromatogr. 2020 Apr;34(4):e4788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31899545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ScientificWorldJournal. 2015;2015:731765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25654135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2004 Sep;31(1):69-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15288617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2009 Jun;38(3):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19468938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2019 May 28;18(1):95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31138208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2011 Nov;54(11):1011-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22173307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2017 Oct;210:153-161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29103685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Transl Med. 2011 Jul 18;9:112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2018 Jul;60:9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29702284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Feb;1848(2):434-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Jan 29;27(5):757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19041358</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001291 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001291 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32592716
   |texte=   Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32592716" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021