Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role for antimalarials in the management of COVID-19.

Identifieur interne : 001120 ( Main/Corpus ); précédent : 001119; suivant : 001121

Role for antimalarials in the management of COVID-19.

Auteurs : Eva V. Schrezenmeier ; Gerd R. Burmester ; Kai-Uwe Eckardt ; Thomas Dörner

Source :

RBID : pubmed:32675717

English descriptors

Abstract

PURPOSE OF REVIEW

The current review highlights recent insights into direct antiviral effects by antimalarials against severe acute respiratory syndrome (SARS)-CoV-2 and other viruses and their potential indirect effects on the host by avoiding exaggerated immune responses (reduced cytokine release, Toll-like receptor response, antigen presentation related to lysosomal processing).

RECENT FINDINGS

Currently, there is a large debate on the use of antimalarials for prophylaxis and treatment of SARS-CoV-2-induced disease based on preclinical in-vitro data, small case series and extrapolation from earlier studies of their effect on intracellular pathogens, including many viruses. Hydroxychloroquine (HCQ) or chloroquine have not demonstrated robust efficacy in prior randomized controlled studies against several other viruses. In-vitro data indicate a reduced viral replication of SARS-CoV-2. Especially immunomodulatory effects of antimalarials might also contribute to a clinical efficacy. For SARS-CoV-2 various large studies will provide answers as to whether antimalarials have a place in prophylaxis or treatment of the acute virus infection with SARS-CoV-2 but compelling data are missing so far.

SUMMARY

In-vitro data provide a theoretical framework for an efficacy of antimalarials in SARS-CoV-2-induced disease but clinical proof is currently missing.


DOI: 10.1097/BOR.0000000000000731
PubMed: 32675717

Links to Exploration step

pubmed:32675717

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role for antimalarials in the management of COVID-19.</title>
<author>
<name sortKey="Schrezenmeier, Eva V" sort="Schrezenmeier, Eva V" uniqKey="Schrezenmeier E" first="Eva V" last="Schrezenmeier">Eva V. Schrezenmeier</name>
<affiliation>
<nlm:affiliation>Department of Medicine/Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Berlin Institute of Health.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burmester, Gerd R" sort="Burmester, Gerd R" uniqKey="Burmester G" first="Gerd R" last="Burmester">Gerd R. Burmester</name>
<affiliation>
<nlm:affiliation>Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eckardt, Kai Uwe" sort="Eckardt, Kai Uwe" uniqKey="Eckardt K" first="Kai-Uwe" last="Eckardt">Kai-Uwe Eckardt</name>
<affiliation>
<nlm:affiliation>Department of Medicine/Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dorner, Thomas" sort="Dorner, Thomas" uniqKey="Dorner T" first="Thomas" last="Dörner">Thomas Dörner</name>
<affiliation>
<nlm:affiliation>Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Deutsches Rheumaforschungszentrum Berlin (DRFZ), Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32675717</idno>
<idno type="pmid">32675717</idno>
<idno type="doi">10.1097/BOR.0000000000000731</idno>
<idno type="wicri:Area/Main/Corpus">001120</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001120</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role for antimalarials in the management of COVID-19.</title>
<author>
<name sortKey="Schrezenmeier, Eva V" sort="Schrezenmeier, Eva V" uniqKey="Schrezenmeier E" first="Eva V" last="Schrezenmeier">Eva V. Schrezenmeier</name>
<affiliation>
<nlm:affiliation>Department of Medicine/Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Berlin Institute of Health.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burmester, Gerd R" sort="Burmester, Gerd R" uniqKey="Burmester G" first="Gerd R" last="Burmester">Gerd R. Burmester</name>
<affiliation>
<nlm:affiliation>Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eckardt, Kai Uwe" sort="Eckardt, Kai Uwe" uniqKey="Eckardt K" first="Kai-Uwe" last="Eckardt">Kai-Uwe Eckardt</name>
<affiliation>
<nlm:affiliation>Department of Medicine/Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dorner, Thomas" sort="Dorner, Thomas" uniqKey="Dorner T" first="Thomas" last="Dörner">Thomas Dörner</name>
<affiliation>
<nlm:affiliation>Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Deutsches Rheumaforschungszentrum Berlin (DRFZ), Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current opinion in rheumatology</title>
<idno type="eISSN">1531-6963</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antimalarials (therapeutic use)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Betacoronavirus (drug effects)</term>
<term>COVID-19 (MeSH)</term>
<term>Chloroquine (therapeutic use)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>SARS-CoV-2 (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antimalarials</term>
<term>Antiviral Agents</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>COVID-19</term>
<term>Humans</term>
<term>Pandemics</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>PURPOSE OF REVIEW</b>
</p>
<p>The current review highlights recent insights into direct antiviral effects by antimalarials against severe acute respiratory syndrome (SARS)-CoV-2 and other viruses and their potential indirect effects on the host by avoiding exaggerated immune responses (reduced cytokine release, Toll-like receptor response, antigen presentation related to lysosomal processing).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECENT FINDINGS</b>
</p>
<p>Currently, there is a large debate on the use of antimalarials for prophylaxis and treatment of SARS-CoV-2-induced disease based on preclinical in-vitro data, small case series and extrapolation from earlier studies of their effect on intracellular pathogens, including many viruses. Hydroxychloroquine (HCQ) or chloroquine have not demonstrated robust efficacy in prior randomized controlled studies against several other viruses. In-vitro data indicate a reduced viral replication of SARS-CoV-2. Especially immunomodulatory effects of antimalarials might also contribute to a clinical efficacy. For SARS-CoV-2 various large studies will provide answers as to whether antimalarials have a place in prophylaxis or treatment of the acute virus infection with SARS-CoV-2 but compelling data are missing so far.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>SUMMARY</b>
</p>
<p>In-vitro data provide a theoretical framework for an efficacy of antimalarials in SARS-CoV-2-induced disease but clinical proof is currently missing.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32675717</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1531-6963</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Current opinion in rheumatology</Title>
<ISOAbbreviation>Curr Opin Rheumatol</ISOAbbreviation>
</Journal>
<ArticleTitle>Role for antimalarials in the management of COVID-19.</ArticleTitle>
<Pagination>
<MedlinePgn>449-457</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1097/BOR.0000000000000731</ELocationID>
<Abstract>
<AbstractText Label="PURPOSE OF REVIEW">The current review highlights recent insights into direct antiviral effects by antimalarials against severe acute respiratory syndrome (SARS)-CoV-2 and other viruses and their potential indirect effects on the host by avoiding exaggerated immune responses (reduced cytokine release, Toll-like receptor response, antigen presentation related to lysosomal processing).</AbstractText>
<AbstractText Label="RECENT FINDINGS">Currently, there is a large debate on the use of antimalarials for prophylaxis and treatment of SARS-CoV-2-induced disease based on preclinical in-vitro data, small case series and extrapolation from earlier studies of their effect on intracellular pathogens, including many viruses. Hydroxychloroquine (HCQ) or chloroquine have not demonstrated robust efficacy in prior randomized controlled studies against several other viruses. In-vitro data indicate a reduced viral replication of SARS-CoV-2. Especially immunomodulatory effects of antimalarials might also contribute to a clinical efficacy. For SARS-CoV-2 various large studies will provide answers as to whether antimalarials have a place in prophylaxis or treatment of the acute virus infection with SARS-CoV-2 but compelling data are missing so far.</AbstractText>
<AbstractText Label="SUMMARY">In-vitro data provide a theoretical framework for an efficacy of antimalarials in SARS-CoV-2-induced disease but clinical proof is currently missing.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schrezenmeier</LastName>
<ForeName>Eva V</ForeName>
<Initials>EV</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine/Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Berlin Institute of Health.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burmester</LastName>
<ForeName>Gerd R</ForeName>
<Initials>GR</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eckardt</LastName>
<ForeName>Kai-Uwe</ForeName>
<Initials>KU</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine/Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dörner</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Deutsches Rheumaforschungszentrum Berlin (DRFZ), Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Opin Rheumatol</MedlineTA>
<NlmUniqueID>9000851</NlmUniqueID>
<ISSNLinking>1040-8711</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000962">Antimalarials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000962" MajorTopicYN="N">Antimalarials</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32675717</ArticleId>
<ArticleId IdType="doi">10.1097/BOR.0000000000000731</ArticleId>
<ArticleId IdType="pii">00002281-202009000-00010</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label nonrandomized clinical trial. Travel Med Infect Dis 2020; 34:101663doi: 10.1016/j.tmaid.2020.101663. PMID: 32289548.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.tmaid.2020.101663.</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14:72–73.</Citation>
</Reference>
<Reference>
<Citation>Kim AHJ, Sparks JA, Liew JW, et al. A rush to judgment? Rapid reporting and dissemination of results and its consequences regarding the use of hydroxychloroquine for COVID-19. Ann Intern Med 2020; 172:819–821.</Citation>
</Reference>
<Reference>
<Citation>Pasoto SG, Ribeiro AC, Bonfa E. Update on infections and vaccinations in systemic lupus erythematosus and Sjogren's syndrome. Curr Opin Rheumatol 2014; 26:528–537.</Citation>
</Reference>
<Reference>
<Citation>Schrezenmeier E, Dorner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 2020; 16:155–166.</Citation>
</Reference>
<Reference>
<Citation>Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55:105938.</Citation>
</Reference>
<Reference>
<Citation>Mulloy B, Hogwood J, Gray E, et al. Pharmacology of heparin and related drugs. Pharmacol Rev 2016; 68:76–141.</Citation>
</Reference>
<Reference>
<Citation>Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2:69.</Citation>
</Reference>
<Reference>
<Citation>Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of nCoV. Biochem Biophys Res Commun 2020; 525:135–140.</Citation>
</Reference>
<Reference>
<Citation>Lukassen S, Lorenz Chua R, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020; 39:e105114.</Citation>
</Reference>
<Reference>
<Citation>McChesney EW, Banks WF Jr, Fabian RJ. Tissue distribution of chloroquine, hydroxychloroquine, and desethylchloroquine in the rat. Toxicol Appl Pharmacol 1967; 10:501–513.</Citation>
</Reference>
<Reference>
<Citation>Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; ciaa237doi: 10.1093/cid/ciaa237. Online ahead of print. PMID: 32150618.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/cid/ciaa237.</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30:269–271.</Citation>
</Reference>
<Reference>
<Citation>Miller SE, Mathiasen S, Bright NA, et al. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev Cell 2015; 33:163–175.</Citation>
</Reference>
<Reference>
<Citation>Hu TY, Frieman M, Wolfram J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotechnol 2020; 15:247–249.</Citation>
</Reference>
<Reference>
<Citation>Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for (2019-nCoV) acute respiratory disease. Lancet 2020; 395:e30–e31.</Citation>
</Reference>
<Reference>
<Citation>Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6:16.</Citation>
</Reference>
<Reference>
<Citation>Mingo RM, Simmons JA, Shoemaker CJ, et al. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step. J Virol 2015; 89:2931–2943.</Citation>
</Reference>
<Reference>
<Citation>Mehta P, McAuley DF, Brown M, et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395:1033–1034.</Citation>
</Reference>
<Reference>
<Citation>Dixon JS, Pickup ME, Bird HA, et al. Biochemical indices of response to hydroxychloroquine and sodium aurothiomalate in rheumatoid arthritis. Ann Rheum Dis 1981; 40:480–488.</Citation>
</Reference>
<Reference>
<Citation>Willis R, Seif AM, McGwin G Jr, et al. Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: data from LUMINA (LXXV), a multiethnic US cohort. Lupus 2012; 21:830–835.</Citation>
</Reference>
<Reference>
<Citation>Yang M, Cao L, Xie M, et al. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem Pharmacol 2013; 86:410–418.</Citation>
</Reference>
<Reference>
<Citation>Ferro F, Elefante E, Baldini C, et al. COVID-19: the new challenge for rheumatologists. Clin Exp Rheumatol 2020; 38:175–180.</Citation>
</Reference>
<Reference>
<Citation>Picot S, Marty A, Bienvenu AL, et al. Coalition: advocacy for prospective clinical trials to test the postexposure potential of hydroxychloroquine against COVID-19. One Health 2020; 9:100131.</Citation>
</Reference>
<Reference>
<Citation>Uzelac I, Iravanian S, Ashikaga H, et al. Fatal arrhythmias: another reason why doctors remain cautious about chloroquine/hydroxychloroquine for treating COVID-19. Heart Rhythm 2020.</Citation>
</Reference>
<Reference>
<Citation>Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol 2020.</Citation>
</Reference>
<Reference>
<Citation>Fiehn C, Ness T, Weseloh C, et al. Safety management in treatment with antimalarials in rheumatology. Interdisciplinary recommendations on the basis of a systematic literature review. Z Rheumatol 2020.</Citation>
</Reference>
<Reference>
<Citation>Chen ZHJ, Zhang Z, Jiang S, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv 2020; doi:10.1101/2020.03.22.20040758.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.03.22.20040758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chen JLD, Liu L, Liu P, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ 2020; doi:10.33785/j.issn.1008-9292.2020.03.03.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.33785/j.issn.1008-9292.2020.03.03</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molina JMDC, Le Goff J, Mela-Lima B, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 2020; 50:384.</Citation>
</Reference>
<Reference>
<Citation>Mahevas M, Tran VT, Roumier M, et al. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: results of a study using routinely collected data to emulate a target trial. medRxiv 2020; doi:10.1101/2020.04.10.20060699.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.10.20060699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Al-Bari MA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 2015; 70:1608–1621.</Citation>
</Reference>
<Reference>
<Citation>Galatas B, Nhamussua L, Candrinho B, et al. In-vivo efficacy of chloroquine to clear asymptomatic infections in Mozambican adults: a randomized, placebo-controlled trial with implications for elimination strategies. Sci Rep 2017; 7:1356.</Citation>
</Reference>
<Reference>
<Citation>Raoult D, Houpikian P, Tissot Dupont H, et al. Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med 1999; 159:167–173.</Citation>
</Reference>
<Reference>
<Citation>Fenollar F, Puechal X, Raoult D. Whipple's disease. N Engl J Med 2007; 356:55–66.</Citation>
</Reference>
<Reference>
<Citation>D’Alessandro S, Scaccabarozzi D, Signorini L, et al. The use of antimalarial drugs against viral infection. Microorganisms 2020; 8:85doi: 10.3390/microorganisms8010085. PMID: 31936284.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3390/microorganisms8010085.</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Savarino A. Use of chloroquine in viral diseases. Lancet Infect Dis 2011; 11:653–654.</Citation>
</Reference>
<Reference>
<Citation>Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 2017; 5:e00293.</Citation>
</Reference>
<Reference>
<Citation>Dyall J, Gross R, Kindrachuk J, et al. Middle East respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies. Drugs 2017; 77:1935–1966.</Citation>
</Reference>
<Reference>
<Citation>Keyaerts E, Vijgen L, Maes P, et al. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004; 323:264–268.</Citation>
</Reference>
<Reference>
<Citation>Cong Y, Hart BJ, Gross R, et al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS One 2018; 13:e0194868.</Citation>
</Reference>
<Reference>
<Citation>de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014; 58:4875–4884.</Citation>
</Reference>
<Reference>
<Citation>Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495:251–254.</Citation>
</Reference>
<Reference>
<Citation>Gierer S, Bertram S, Kaup F, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 2013; 87:5502–5511.</Citation>
</Reference>
<Reference>
<Citation>Goldman FD, Gilman AL, Hollenback C, et al. Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood 2000; 95:3460–3466.</Citation>
</Reference>
<Reference>
<Citation>Chiang G, Sassaroli M, Louie M, et al. Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine. Clin Ther 1996; 18:1080–1092.</Citation>
</Reference>
<Reference>
<Citation>Sperber K, Chiang G, Chen H, et al. Comparison of hydroxychloroquine with zidovudine in asymptomatic patients infected with human immunodeficiency virus type 1. Clin Ther 1997; 19:913–923.</Citation>
</Reference>
<Reference>
<Citation>Sperber K, Louie M, Kraus T, et al. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin Ther 1995; 17:622–636.</Citation>
</Reference>
<Reference>
<Citation>Piconi S, Parisotto S, Rizzardini G, et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood 2011; 118:3263–3272.</Citation>
</Reference>
<Reference>
<Citation>Jacobson JM, Bosinger SE, Kang M, et al. The effect of chloroquine on immune activation and interferon signatures associated with HIV-1. AIDS Res Hum Retroviruses 2016; 32:636–647.</Citation>
</Reference>
<Reference>
<Citation>Routy JP, Angel JB, Patel M, et al. Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med 2015; 16:48–56.</Citation>
</Reference>
<Reference>
<Citation>Paton NI, Goodall RL, Dunn DT, et al. Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA 2012; 308:353–361.</Citation>
</Reference>
<Reference>
<Citation>Ooi EE, Chew JS, Loh JP, Chua RC. In vitro inhibition of human influenza A virus replication by chloroquine. Virol J 2006; 3:39.</Citation>
</Reference>
<Reference>
<Citation>Di Trani L, Savarino A, Campitelli L, et al. Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses. Virol J 2007; 4:39.</Citation>
</Reference>
<Reference>
<Citation>Wu L, Dai J, Zhao X, et al. Chloroquine enhances replication of influenza A virus A/WSN/33 (H1N1) in dose-, time-, and MOI-dependent manners in human lung epithelial cells A549. J Med Virol 2015; 87:1096–1103.</Citation>
</Reference>
<Reference>
<Citation>Paton NI, Lee L, Xu Y, et al. Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. Lancet Infect Dis 2011; 11:677–683.</Citation>
</Reference>
<Reference>
<Citation>Tricou V, Minh NN, Van TP, et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 2010; 4:e785.</Citation>
</Reference>
<Reference>
<Citation>Borges MC, Castro LA, Fonseca BA. Chloroquine use improves dengue-related symptoms. Mem Inst Oswaldo Cruz 2013; 108:596–599.</Citation>
</Reference>
<Reference>
<Citation>De Lamballerie X, Boisson V, Reynier JC, et al. On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis 2008; 8:837–839.</Citation>
</Reference>
<Reference>
<Citation>Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct 2016; 34:191–196.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001120 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001120 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32675717
   |texte=   Role for antimalarials in the management of COVID-19.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32675717" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021