Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Approach to the mechanism of action of hydroxychloroquine on SARS-CoV-2: a molecular docking study.

Identifieur interne : 001116 ( Main/Corpus ); précédent : 001115; suivant : 001117

Approach to the mechanism of action of hydroxychloroquine on SARS-CoV-2: a molecular docking study.

Auteurs : Ismail Cel K ; Arzu Onay-Bes Kc ; Gulgun Ayhan-Kilcig L

Source :

RBID : pubmed:32677545

Abstract

We aimed to analyze the interactions of both hydroxychloroquine and chloroquine with SARS-CoV-2 and identify their possible role for the prevention/treatment of COVID-19 by molecular docking studies. Protein crystal structures of SARS-CoV-2 and ACE2, the compounds hydroxychloroquine and chloroquine, and other ligand structures were minimized by OPLS3 force field. Glide Standard Precision and Extra Precision docking are performed and MM-GBSA values ​​are calculated. Molecular docking studies showed that hydroxychloroquine and chloroquine do not interact with SARS-CoV-2 proteins, but bind to the amino acids ASP350, ASP382, ALA348, PHE40 and PHE390 on the ACE2 allosteric site rather than the ACE2 active site. Our results showed that neither hydroxychloroquine and chloroquine bind to the active site of ACE2. However, both molecules prevent the binding of SARS-CoV-2 spike protein to ACE2 by interacting with the allosteric site. This result can help ACE2 inhibitor drug development studies to prevent viruses entering the cell by attaching spike protein to ACE2. Communicated by Ramaswamy H. Sarma.

DOI: 10.1080/07391102.2020.1792993
PubMed: 32677545
PubMed Central: PMC7441757

Links to Exploration step

pubmed:32677545

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Approach to the mechanism of action of hydroxychloroquine on SARS-CoV-2: a molecular docking study.</title>
<author>
<name sortKey="Cel K, Ismail" sort="Cel K, Ismail" uniqKey="Cel K I" first="Ismail" last="Cel K">Ismail Cel K</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Onay Bes Kc, Arzu" sort="Onay Bes Kc, Arzu" uniqKey="Onay Bes Kc A" first="Arzu" last="Onay-Bes Kc">Arzu Onay-Bes Kc</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ayhan Kilcig L, Gulgun" sort="Ayhan Kilcig L, Gulgun" uniqKey="Ayhan Kilcig L G" first="Gulgun" last="Ayhan-Kilcig L">Gulgun Ayhan-Kilcig L</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32677545</idno>
<idno type="pmid">32677545</idno>
<idno type="doi">10.1080/07391102.2020.1792993</idno>
<idno type="pmc">PMC7441757</idno>
<idno type="wicri:Area/Main/Corpus">001116</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001116</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Approach to the mechanism of action of hydroxychloroquine on SARS-CoV-2: a molecular docking study.</title>
<author>
<name sortKey="Cel K, Ismail" sort="Cel K, Ismail" uniqKey="Cel K I" first="Ismail" last="Cel K">Ismail Cel K</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Onay Bes Kc, Arzu" sort="Onay Bes Kc, Arzu" uniqKey="Onay Bes Kc A" first="Arzu" last="Onay-Bes Kc">Arzu Onay-Bes Kc</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ayhan Kilcig L, Gulgun" sort="Ayhan Kilcig L, Gulgun" uniqKey="Ayhan Kilcig L G" first="Gulgun" last="Ayhan-Kilcig L">Gulgun Ayhan-Kilcig L</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biomolecular structure & dynamics</title>
<idno type="eISSN">1538-0254</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We aimed to analyze the interactions of both hydroxychloroquine and chloroquine with SARS-CoV-2 and identify their possible role for the prevention/treatment of COVID-19 by molecular docking studies. Protein crystal structures of SARS-CoV-2 and ACE2, the compounds hydroxychloroquine and chloroquine, and other ligand structures were minimized by OPLS3 force field. Glide Standard Precision and Extra Precision docking are performed and MM-GBSA values ​​are calculated. Molecular docking studies showed that hydroxychloroquine and chloroquine do not interact with SARS-CoV-2 proteins, but bind to the amino acids ASP350, ASP382, ALA348, PHE40 and PHE390 on the ACE2 allosteric site rather than the ACE2 active site. Our results showed that neither hydroxychloroquine and chloroquine bind to the active site of ACE2. However, both molecules prevent the binding of SARS-CoV-2 spike protein to ACE2 by interacting with the allosteric site. This result can help ACE2 inhibitor drug development studies to prevent viruses entering the cell by attaching spike protein to ACE2. Communicated by Ramaswamy H. Sarma.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32677545</PMID>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1538-0254</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Journal of biomolecular structure & dynamics</Title>
<ISOAbbreviation>J Biomol Struct Dyn</ISOAbbreviation>
</Journal>
<ArticleTitle>Approach to the mechanism of action of hydroxychloroquine on SARS-CoV-2: a molecular docking study.</ArticleTitle>
<Pagination>
<MedlinePgn>1-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/07391102.2020.1792993</ELocationID>
<Abstract>
<AbstractText>We aimed to analyze the interactions of both hydroxychloroquine and chloroquine with SARS-CoV-2 and identify their possible role for the prevention/treatment of COVID-19 by molecular docking studies. Protein crystal structures of SARS-CoV-2 and ACE2, the compounds hydroxychloroquine and chloroquine, and other ligand structures were minimized by OPLS3 force field. Glide Standard Precision and Extra Precision docking are performed and MM-GBSA values ​​are calculated. Molecular docking studies showed that hydroxychloroquine and chloroquine do not interact with SARS-CoV-2 proteins, but bind to the amino acids ASP350, ASP382, ALA348, PHE40 and PHE390 on the ACE2 allosteric site rather than the ACE2 active site. Our results showed that neither hydroxychloroquine and chloroquine bind to the active site of ACE2. However, both molecules prevent the binding of SARS-CoV-2 spike protein to ACE2 by interacting with the allosteric site. This result can help ACE2 inhibitor drug development studies to prevent viruses entering the cell by attaching spike protein to ACE2. Communicated by Ramaswamy H. Sarma.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Celı K</LastName>
<ForeName>Ismail</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Onay-Besı Kcı</LastName>
<ForeName>Arzu</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ayhan-Kilcigı L</LastName>
<ForeName>Gulgun</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Biomol Struct Dyn</MedlineTA>
<NlmUniqueID>8404176</NlmUniqueID>
<ISSNLinking>0739-1102</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ACE2</Keyword>
<Keyword MajorTopicYN="N">Hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">chloroquine</Keyword>
<Keyword MajorTopicYN="N">molecular docking</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32677545</ArticleId>
<ArticleId IdType="doi">10.1080/07391102.2020.1792993</ArticleId>
<ArticleId IdType="pmc">PMC7441757</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Jan;72(1):783-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9420287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2020 Jul 1;75(7):1667-1670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32196083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jun;92(6):595-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32100877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6(1):16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33731711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2019 Jun;26(6):481-489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31160783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1991 Jul;88(1):351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2056129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2004 Dec;44(6):903-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15492138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2003 Dec 1;66(11):2201-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Mar 27;367(6485):1444-1448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32132184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Jun 26;368(6498):1499-1504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32358203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2018;14(8):1435-1455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29940786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Med Res. 2020 Aug;51(6):482-491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32493627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2020 May;177:104762</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32147496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2020 Mar 16;14(1):72-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Arthritis Rheum. 1993 Oct;23(2 Suppl 1):82-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8278823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005 Aug 22;2:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Mar;55(3):105923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32070753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 23;279(17):17996-8007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14754895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Apr 20;43(15):4538-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078100</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001116 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001116 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32677545
   |texte=   Approach to the mechanism of action of hydroxychloroquine on SARS-CoV-2: a molecular docking study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32677545" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021