Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pharmacokinetics and Pharmacological Properties of Chloroquine and Hydroxychloroquine in the Context of COVID-19 Infection.

Identifieur interne : 001096 ( Main/Corpus ); précédent : 001095; suivant : 001097

Pharmacokinetics and Pharmacological Properties of Chloroquine and Hydroxychloroquine in the Context of COVID-19 Infection.

Auteurs : Melanie R. Nicol ; Abhay Joshi ; Matthew L. Rizk ; Philip E. Sabato ; Radojka M. Savic ; David Wesche ; Jenny H. Zheng ; Jack Cook

Source :

RBID : pubmed:32687630

English descriptors

Abstract

Chloroquine and hydroxychloroquine are quinoline derivatives used to treat malaria. To date, these medications are not approved for the treatment of viral infections, and there are no well-controlled, prospective, randomized clinical studies or evidence to support their use in patients with coronavirus disease 2019 (COVID-19). Nevertheless, chloroquine and hydroxychloroquine are being studied alone or in combination with other agents to assess their effectiveness in the treatment or prophylaxis for COVID-19. The effective use of any medication involves an understanding of its pharmacokinetics, safety, and mechanism of action. This work provides basic clinical pharmacology information relevant for planning and initiating COVID-19 clinical studies with chloroquine or hydroxychloroquine, summarizes safety data from healthy volunteer studies, and summarizes safety data from phase II and phase II/III clinical studies in patients with uncomplicated malaria, including a phase II/III study in pediatric patients following administration of azithromycin and chloroquine in combination. In addition, this work presents data describing the proposed mechanisms of action against the severe acute respiratory distress syndrome coronavirus-2 and summarizes clinical efficacy to date.

DOI: 10.1002/cpt.1993
PubMed: 32687630
PubMed Central: PMC7404755

Links to Exploration step

pubmed:32687630

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pharmacokinetics and Pharmacological Properties of Chloroquine and Hydroxychloroquine in the Context of COVID-19 Infection.</title>
<author>
<name sortKey="Nicol, Melanie R" sort="Nicol, Melanie R" uniqKey="Nicol M" first="Melanie R" last="Nicol">Melanie R. Nicol</name>
<affiliation>
<nlm:affiliation>Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Joshi, Abhay" sort="Joshi, Abhay" uniqKey="Joshi A" first="Abhay" last="Joshi">Abhay Joshi</name>
<affiliation>
<nlm:affiliation>Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rizk, Matthew L" sort="Rizk, Matthew L" uniqKey="Rizk M" first="Matthew L" last="Rizk">Matthew L. Rizk</name>
<affiliation>
<nlm:affiliation>Quantitative Pharmacology and Pharmacometrics, Merck & Co Inc, Kenilworth, New Jersey, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sabato, Philip E" sort="Sabato, Philip E" uniqKey="Sabato P" first="Philip E" last="Sabato">Philip E. Sabato</name>
<affiliation>
<nlm:affiliation>Quantitative Pharmacology and Pharmacometrics, Merck & Co Inc, Kenilworth, New Jersey, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Savic, Radojka M" sort="Savic, Radojka M" uniqKey="Savic R" first="Radojka M" last="Savic">Radojka M. Savic</name>
<affiliation>
<nlm:affiliation>Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wesche, David" sort="Wesche, David" uniqKey="Wesche D" first="David" last="Wesche">David Wesche</name>
<affiliation>
<nlm:affiliation>Certara, Princeton, New Jersey, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jenny H" sort="Zheng, Jenny H" uniqKey="Zheng J" first="Jenny H" last="Zheng">Jenny H. Zheng</name>
<affiliation>
<nlm:affiliation>Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cook, Jack" sort="Cook, Jack" uniqKey="Cook J" first="Jack" last="Cook">Jack Cook</name>
<affiliation>
<nlm:affiliation>Clinical Pharmacology Department, Global Product Development, Pfizer Inc, Groton, Connecticut, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32687630</idno>
<idno type="pmid">32687630</idno>
<idno type="doi">10.1002/cpt.1993</idno>
<idno type="pmc">PMC7404755</idno>
<idno type="wicri:Area/Main/Corpus">001096</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001096</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pharmacokinetics and Pharmacological Properties of Chloroquine and Hydroxychloroquine in the Context of COVID-19 Infection.</title>
<author>
<name sortKey="Nicol, Melanie R" sort="Nicol, Melanie R" uniqKey="Nicol M" first="Melanie R" last="Nicol">Melanie R. Nicol</name>
<affiliation>
<nlm:affiliation>Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Joshi, Abhay" sort="Joshi, Abhay" uniqKey="Joshi A" first="Abhay" last="Joshi">Abhay Joshi</name>
<affiliation>
<nlm:affiliation>Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rizk, Matthew L" sort="Rizk, Matthew L" uniqKey="Rizk M" first="Matthew L" last="Rizk">Matthew L. Rizk</name>
<affiliation>
<nlm:affiliation>Quantitative Pharmacology and Pharmacometrics, Merck & Co Inc, Kenilworth, New Jersey, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sabato, Philip E" sort="Sabato, Philip E" uniqKey="Sabato P" first="Philip E" last="Sabato">Philip E. Sabato</name>
<affiliation>
<nlm:affiliation>Quantitative Pharmacology and Pharmacometrics, Merck & Co Inc, Kenilworth, New Jersey, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Savic, Radojka M" sort="Savic, Radojka M" uniqKey="Savic R" first="Radojka M" last="Savic">Radojka M. Savic</name>
<affiliation>
<nlm:affiliation>Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wesche, David" sort="Wesche, David" uniqKey="Wesche D" first="David" last="Wesche">David Wesche</name>
<affiliation>
<nlm:affiliation>Certara, Princeton, New Jersey, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jenny H" sort="Zheng, Jenny H" uniqKey="Zheng J" first="Jenny H" last="Zheng">Jenny H. Zheng</name>
<affiliation>
<nlm:affiliation>Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cook, Jack" sort="Cook, Jack" uniqKey="Cook J" first="Jack" last="Cook">Jack Cook</name>
<affiliation>
<nlm:affiliation>Clinical Pharmacology Department, Global Product Development, Pfizer Inc, Groton, Connecticut, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Clinical pharmacology and therapeutics</title>
<idno type="eISSN">1532-6535</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Age Factors (MeSH)</term>
<term>Aging (MeSH)</term>
<term>Antiviral Agents (administration & dosage)</term>
<term>Antiviral Agents (adverse effects)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>COVID-19 (drug therapy)</term>
<term>Chloroquine (adverse effects)</term>
<term>Chloroquine (pharmacokinetics)</term>
<term>Chloroquine (pharmacology)</term>
<term>Chloroquine (therapeutic use)</term>
<term>Clinical Trials, Phase II as Topic (MeSH)</term>
<term>Clinical Trials, Phase III as Topic (MeSH)</term>
<term>Drug Interactions (MeSH)</term>
<term>Drug Therapy, Combination (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (adverse effects)</term>
<term>Hydroxychloroquine (pharmacokinetics)</term>
<term>Hydroxychloroquine (pharmacology)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Liver Failure (epidemiology)</term>
<term>Malaria (drug therapy)</term>
<term>Prospective Studies (MeSH)</term>
<term>Renal Insufficiency (epidemiology)</term>
<term>SARS-CoV-2 (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Antiviral Agents</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
<term>Malaria</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Liver Failure</term>
<term>Renal Insufficiency</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Age Factors</term>
<term>Aging</term>
<term>Clinical Trials, Phase II as Topic</term>
<term>Clinical Trials, Phase III as Topic</term>
<term>Drug Interactions</term>
<term>Drug Therapy, Combination</term>
<term>Humans</term>
<term>Prospective Studies</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chloroquine and hydroxychloroquine are quinoline derivatives used to treat malaria. To date, these medications are not approved for the treatment of viral infections, and there are no well-controlled, prospective, randomized clinical studies or evidence to support their use in patients with coronavirus disease 2019 (COVID-19). Nevertheless, chloroquine and hydroxychloroquine are being studied alone or in combination with other agents to assess their effectiveness in the treatment or prophylaxis for COVID-19. The effective use of any medication involves an understanding of its pharmacokinetics, safety, and mechanism of action. This work provides basic clinical pharmacology information relevant for planning and initiating COVID-19 clinical studies with chloroquine or hydroxychloroquine, summarizes safety data from healthy volunteer studies, and summarizes safety data from phase II and phase II/III clinical studies in patients with uncomplicated malaria, including a phase II/III study in pediatric patients following administration of azithromycin and chloroquine in combination. In addition, this work presents data describing the proposed mechanisms of action against the severe acute respiratory distress syndrome coronavirus-2 and summarizes clinical efficacy to date.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32687630</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>12</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-6535</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Clinical pharmacology and therapeutics</Title>
<ISOAbbreviation>Clin Pharmacol Ther</ISOAbbreviation>
</Journal>
<ArticleTitle>Pharmacokinetics and Pharmacological Properties of Chloroquine and Hydroxychloroquine in the Context of COVID-19 Infection.</ArticleTitle>
<Pagination>
<MedlinePgn>1135-1149</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cpt.1993</ELocationID>
<Abstract>
<AbstractText>Chloroquine and hydroxychloroquine are quinoline derivatives used to treat malaria. To date, these medications are not approved for the treatment of viral infections, and there are no well-controlled, prospective, randomized clinical studies or evidence to support their use in patients with coronavirus disease 2019 (COVID-19). Nevertheless, chloroquine and hydroxychloroquine are being studied alone or in combination with other agents to assess their effectiveness in the treatment or prophylaxis for COVID-19. The effective use of any medication involves an understanding of its pharmacokinetics, safety, and mechanism of action. This work provides basic clinical pharmacology information relevant for planning and initiating COVID-19 clinical studies with chloroquine or hydroxychloroquine, summarizes safety data from healthy volunteer studies, and summarizes safety data from phase II and phase II/III clinical studies in patients with uncomplicated malaria, including a phase II/III study in pediatric patients following administration of azithromycin and chloroquine in combination. In addition, this work presents data describing the proposed mechanisms of action against the severe acute respiratory distress syndrome coronavirus-2 and summarizes clinical efficacy to date.</AbstractText>
<CopyrightInformation>© 2020 The Authors Clinical Pharmacology & Therapeutics © 2020 American Society for Clinical Pharmacology and Therapeutics.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nicol</LastName>
<ForeName>Melanie R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Joshi</LastName>
<ForeName>Abhay</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rizk</LastName>
<ForeName>Matthew L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Quantitative Pharmacology and Pharmacometrics, Merck & Co Inc, Kenilworth, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sabato</LastName>
<ForeName>Philip E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Quantitative Pharmacology and Pharmacometrics, Merck & Co Inc, Kenilworth, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Savic</LastName>
<ForeName>Radojka M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wesche</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Certara, Princeton, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Jenny H</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cook</LastName>
<ForeName>Jack</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Clinical Pharmacology Department, Global Product Development, Pfizer Inc, Groton, Connecticut, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Pfizer Inc</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Clin Pharmacol Ther</MedlineTA>
<NlmUniqueID>0372741</NlmUniqueID>
<ISSNLinking>0009-9236</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000367" MajorTopicYN="N">Age Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017322" MajorTopicYN="N">Clinical Trials, Phase II as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017326" MajorTopicYN="N">Clinical Trials, Phase III as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004347" MajorTopicYN="N">Drug Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004359" MajorTopicYN="N">Drug Therapy, Combination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017093" MajorTopicYN="N">Liver Failure</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008288" MajorTopicYN="N">Malaria</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051437" MajorTopicYN="N">Renal Insufficiency</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32687630</ArticleId>
<ArticleId IdType="doi">10.1002/cpt.1993</ArticleId>
<ArticleId IdType="pmc">PMC7404755</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gao, J., Tian, Z. & Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14, 72-73 (2020).</Citation>
</Reference>
<Reference>
<Citation>Yao, X. et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 71,732-739 (2020). https://doi.org/10.1093/cid/ciaa237.</Citation>
</Reference>
<Reference>
<Citation>Gautret, P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 56,105949 (2020). https://doi.org/10.1016/j.ijant​imicag.2020.105949.</Citation>
</Reference>
<Reference>
<Citation>Ohrt, C., Willingmyre, G.D., Lee, P., Knirsch, C. & Milhous, W. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 46, 2518-2524 (2002).</Citation>
</Reference>
<Reference>
<Citation>Kent, G. & al-Abadie, M. Factors affecting responses on Dermatology Life Quality Index items among vitiligo sufferers. Clin. Exp. Dermatol. 21, 330-333 (1996).</Citation>
</Reference>
<Reference>
<Citation>Eleftheriadou, V., Thomas, K., Ravenscroft, J., Whitton, M., Batchelor, J. & Williams, H. Feasibility, double-blind, randomised, placebo-controlled, multi-centre trial of hand-held NB-UVB phototherapy for the treatment of vitiligo at home (HI-Light trial: Home Intervention of Light therapy). Trials 15, 51 (2014).</Citation>
</Reference>
<Reference>
<Citation>Ette, E.I., Essien, E.E., Thomas, W.O. & Brown-Awala, E.A. Pharmacokinetics of chloroquine and some of its metabolites in healthy volunteers: a single dose study. J. Clin. Pharmacol. 29, 457-462 (1989).</Citation>
</Reference>
<Reference>
<Citation>Ette, E.I., Brown-Awala, E.A. & Essien, E.E. Chloroquine elimination in humans: effect of low-dose cimetidine. J. Clin. Pharmacol. 27, 813-816 (1987).</Citation>
</Reference>
<Reference>
<Citation>Essien, E.E., Ette, E.I., Thomas, W.O. & Brown-Awala, E.A. Chloroquine disposition in hypersensitive and non-hypersensitive subjects and its significance in chloroquine-induced pruritus. Eur. J. Drug Metab. Pharmacokinet. 14, 71-77 (1989).</Citation>
</Reference>
<Reference>
<Citation>Augustijns, P. & Verbeke, N. Stereoselective pharmacokinetic properties of chloroquine and de-ethyl-chloroquine in humans. Clin. Pharmacokinet. 24, 259-269 (1993).</Citation>
</Reference>
<Reference>
<Citation>de Vries, P.J., Oosterhuis, B. & Van Boxtel, C.J. Single-dose pharmacokinetics of chloroquine and its main metabolite in healthy volunteers. Drug Investig. 8, 143-149 (1994).</Citation>
</Reference>
<Reference>
<Citation>Nsimba, S.E. et al. Comparative in vitro and in vivo study of a sugar-coated chloroquine preparation marketed in Tanzania versus an ordinary brand. J. Clin. Pharm. Ther. 26, 43-48 (2001).</Citation>
</Reference>
<Reference>
<Citation>Onyeji, C.O. & Ogunbona, F.A. Pharmacokinetic aspects of chloroquine-induced pruritus: influence of dose and evidence for varied extent of metabolism of the drug. Eur. J. Pharm. Sci. 13, 195-201 (2001).</Citation>
</Reference>
<Reference>
<Citation>Pukrittayakamee, S. et al. Pharmacokinetic interactions between primaquine and chloroquine. Antimicrob. Agents Chemother. 58, 3354-3359 (2014).</Citation>
</Reference>
<Reference>
<Citation>Tett, S.E., Cutler, D.J., Day, R.O. & Brown, K.F. A dose-ranging study of the pharmacokinetics of hydroxy-chloroquine following intravenous administration to healthy volunteers. Br. J. Clin. Pharmacol. 26, 303-313 (1988).</Citation>
</Reference>
<Reference>
<Citation>Tett, S.E., Cutler, D.J., Day, R.O. & Brown, K.F. Bioavailability of hydroxychloroquine tablets in healthy volunteers. Br. J. Clin. Pharmacol. 27, 771-779 (1989).</Citation>
</Reference>
<Reference>
<Citation>Ducharme, J., Fieger, H., Ducharme, M.P., Khalil, S.K. & Wainer, I.W. Enantioselective disposition of hydroxychloroquine after a single oral dose of the racemate to healthy subjects. Br. J. Clin. Pharmacol. 40, 127-133 (1995).</Citation>
</Reference>
<Reference>
<Citation>Lim, H.-S. et al. Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax. Antimicrob. Agents Chemother. 53, 1468-1475 (2009).</Citation>
</Reference>
<Reference>
<Citation>Rainsford, K.D., Parke, A.L., Clifford-Rashotte, M. & Kean, W.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharamacology 23, 231-269 (2015).</Citation>
</Reference>
<Reference>
<Citation>Frisk-Holmberg, M., Bergqvist, Y. & Domeij-Nyberg, B. Steady state disposition of chloroquine in patients with rheumatoid disease. Eur. J. Clin. Pharmacol. 24, 837-839 (1983).</Citation>
</Reference>
<Reference>
<Citation>Frisk-Holmberg, M., Bergqvist, Y., Termond, E. & Domeij-Nyberg, B. The single dose kinetics of chloroquine and its major metabolite desethylchloroquine in healthy subjects. Eur. J. Clin. Pharmacol. 26, 521-530 (1984).</Citation>
</Reference>
<Reference>
<Citation>Gustafsson, L.L. et al. Disposition of chloroquine in man after single intravenous and oral doses. Br. J. Clin. Pharmacol. 15, 471-479 (1983).</Citation>
</Reference>
<Reference>
<Citation>Edwards, G., Looareesuwan, S., Davies, A.J., Wattanagoon, Y., Phillips, R.E. & Warrell, D.A. Pharmacokinetics of chloroquine in Thais: plasma and red-cell concentrations following an intravenous infusion to healthy subjects and patients with Plasmodium vivax malaria. Br. J. Clin. Pharmacol. 25, 477-485 (1988).</Citation>
</Reference>
<Reference>
<Citation>Wetsteyn, J.C., De Vries, P.J., Oosterhuis, B. & Van Boxtel, C.J. The pharmacokinetics of three multiple dose regimens of chloroquine: implications for malaria chemoprophylaxis. Br. J. Clin. Pharmacol. 39, 696-699 (1995).</Citation>
</Reference>
<Reference>
<Citation>McLachlan, A.J., Tett, S.E., Cutler, D.J. & Day, R.O. Bioavailability of hydroxychloroquine tablets in patients with rheumatoid arthritis. Br. J. Rheumatol. 33, 235-239 (1994).</Citation>
</Reference>
<Reference>
<Citation>McLachlan, A.J., Tett, S.E., Cutler, D.J. & Day, R.O. Absorption and in vivo dissolution of hydroxycholoroquine in fed subjects assessed using deconvolution techniques. Br. J. Clin. Pharmacol. 36, 405-411 (1993).</Citation>
</Reference>
<Reference>
<Citation>Tett, S., Day, R. & Cutler, D. Hydroxychloroquine relative bioavailability: within subject reproducibility. Br. J. Clin. Pharmacol. 41, 244-246 (1996).</Citation>
</Reference>
<Reference>
<Citation>Carmichael, S.J., Beal, J., Day, R.O. & Tett, S.E. Combination therapy with methotrexate and hydroxychloroquine for rheumatoid arthritis increases exposure to methotrexate. Rheumatol. 29, 2077-2083 (2002).</Citation>
</Reference>
<Reference>
<Citation>Fan, H.-W., Ma, Z.-X., Chen, J., Yang, X.-Y., Cheng, J.-L. & Li, Y.-B. Pharmacokinetics and bioequivalence study of hydroxychloroquine sulfate tablets in Chinese healthy volunteers by LC-MS/MS. Rheumatol. Ther. 2, 183-195 (2015).</Citation>
</Reference>
<Reference>
<Citation>McLachlan, A.J., Tett, S.E., Cutler, D.J. & Day, R.O. Disposition of the enantiomers of hydroxychloroquine in patients with rheumatoid arthritis following multiple doses of the racemate. Br. J. Clin. Pharmacol. 36, 78-81 (1993).</Citation>
</Reference>
<Reference>
<Citation>Walker, O., Birkett, D.J., Alván, G., Gustafsson, L.L. & Sjöqvist, F. Characterization of chloroquine plasma protein binding in man. Br. J. Clin. Pharmacol. 15, 375-377 (1983).</Citation>
</Reference>
<Reference>
<Citation>Ofori-Adjei, D., Ericsson, O., Lindström, B. & Sjöqvist, F. Protein binding of chloroquine enantiomers and desethylchloroquine. Br. J. Clin. Pharmacol. 22, 356-358 (1986).</Citation>
</Reference>
<Reference>
<Citation>Akintonwa, A., Gbajumo, S.A. & Mabadeje, A.F. Placental and milk transfer of chloroquine in humans. Ther. Drug Monit. 10, 147-149 (1988).</Citation>
</Reference>
<Reference>
<Citation>Ette, E.I., Essien, E.E., Ogonor, J.I. & Brown-Awala, E.A. Chloroquine in human milk. J. Clin. Pharmacol. 27, 499-502 (1987).</Citation>
</Reference>
<Reference>
<Citation>McLachlan, A.J., Cutler, D.J. & Tett, S.E. Plasma protein binding of the enantiomers of hydroxychloroquine and metabolites. Eur. J. Clin. Pharmacol. 44, 481-484 (1993).</Citation>
</Reference>
<Reference>
<Citation>Furst, D.E. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 5 (suppl. 1), S11-15 (1996).</Citation>
</Reference>
<Reference>
<Citation>Nation, R.L., Hackett, L.P., Dusci, L.J. & Ilett, K.F. Excretion of hydroxychloroquine in human milk. Br. J. Clin. Pharmacol. 17, 368-369 (1984).</Citation>
</Reference>
<Reference>
<Citation>Østensen, M., Brown, N.D., Chiang, P.K. & Aarbakke, J. Hydroxychloroquine in human breast milk. Eur. J. Clin. Pharmacol. 28, 357 (1985).</Citation>
</Reference>
<Reference>
<Citation>Peng, W., Liu, R., Zhang, L., Fu, Q., Mei, D. & Du, X. Breast milk concentration of hydroxychloroquine in Chinese lactating women with connective tissue diseases. Eur. J. Clin. Pharmacol. 75, 1547-1553 (2019).</Citation>
</Reference>
<Reference>
<Citation>Ducharme, J. & Farinotti, R. Clinical pharmacokinetics and metabolism of chloroquine. Clin. Pharmacokinet. 31, 257-274 (1996).</Citation>
</Reference>
<Reference>
<Citation>Projean, D. et al. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab. Dispos. 31, 748-754 (2003).</Citation>
</Reference>
<Reference>
<Citation>Kiang, T.K.L., Wilby, K.J. & Ensom, M.H.H. (Eds.), Drug interaction potential of antimalarial drugs based on known metabolic properties of antimalarials. In Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials 17-25. Switzerland: (Springer, 2015).</Citation>
</Reference>
<Reference>
<Citation>Kiang, T.K.L., Wilby, K.J. & Ensom, M.H.H. (Eds.), Pharmacokinetic drug interactions affecting antimalarials. In Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials 27-55. Switzerland: (Springer, 2015).</Citation>
</Reference>
<Reference>
<Citation>Kiang, T.K.L., Wilby, K.J. & Ensom, M.H.H. (Eds.), Effects of antimalarials on the pharmacokinetics of co-administered antimalarials. In Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials 87-117. Switzerland: (Springer, 2015).</Citation>
</Reference>
<Reference>
<Citation>Kiang, T.K., Wilby, K.J. & Ensom, M.H. (Eds.), Effects of antimalarials on the pharmacokinetics of co-administered drugs. In Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials 57-85. Switzerland: (Springer, 2015).</Citation>
</Reference>
<Reference>
<Citation>Adjepon-Yamoah, K.K., Woolhouse, N.M. & Prescott, L.F. The effect of chloroquine on paracetamol disposition and kinetics. Br. J. Clin. Pharmacol. 21, 322-324 (1986).</Citation>
</Reference>
<Reference>
<Citation>Back, D.J., Breckenridge, A.M., Grimmer, S.F., Orme, M.L. & Purba, H.S.Pharmacokinetics of oral contraceptive steroids following the administration of the antimalarial drugs primaquine and chloroquine. Contraception 30, 289-295 (1984).</Citation>
</Reference>
<Reference>
<Citation>Miller, A.K. et al. Pharmacokinetic interactions and safety evaluations of coadministered tafenoquine and chloroquine in healthy subjects. Br. J. Clin. Pharmacol. 76, 858-867 (2013).</Citation>
</Reference>
<Reference>
<Citation>Cook, J.A., Randinitis, E.J., Bramson, C.R. & Wesche, D.L. Lack of a pharmacokinetic interaction between azithromycin and chloroquine. Am. J. Trop. Med. Hyg. 74, 407-412 (2006).</Citation>
</Reference>
<Reference>
<Citation>Raina, R.K., Bano, G., Amla, V., Kapoor, V. & Gupta, K.L. The effect of aspirin, paracetamol and analgin on pharmacokinetics of chloroquine. Indian J. Physiol. Pharmacol. 37, 229-231 (1993).</Citation>
</Reference>
<Reference>
<Citation>Rengelshausen, J. et al. Pharmacokinetic interaction of chloroquine and methylene blue combination against malaria. Eur. J. Clin. Pharmacol. 60, 709-715 (2004).</Citation>
</Reference>
<Reference>
<Citation>Mahmoud, B.M. Significant reduction in chloroquine bioavailablity following coadministration with the Sudanese beverages aradaib, karkadi and lemon. J. Antimicrob. Chemother. 33, 1005-1009 (1994).</Citation>
</Reference>
<Reference>
<Citation>Kalia, S. & Dutz, J.P. New concepts in antimalarial use and mode of action in dermatology. Dermatol. Ther. 20, 160-174 (2007).</Citation>
</Reference>
<Reference>
<Citation>Masimirembwa, C.M., Gustafsson, L.L., Dahl, M.L., Abdi, Y.A. & Hasler, J.A. Lack of effect of chloroquine on the debrisoquine (CYP2D6 and S-mephenytoin (CYP2C19) hydroxylation phenotypes. Br. J. Clin. Pharmacol. 41, 344-346 (1996).</Citation>
</Reference>
<Reference>
<Citation>Tfelt-Hansen, P., Ågesen, F.N., Pavbro, A. & Tfelt-Hansen, J. Pharmacokinetic variability of drugs used for prophylactic treatment of migraine. CNS Drugs 31, 389-403 (2017).</Citation>
</Reference>
<Reference>
<Citation>Mehnert, J.M. et al. A phase I trial of MK-2206 and hydroxychloroquine in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 84, 899-907 (2019).</Citation>
</Reference>
<Reference>
<Citation>Krishna, S. & White, N.J. Pharmacokinetics of quinine, chloroquine and amodiaquine. Clin. Pharmacokinet. 30, 263-299 (1996).</Citation>
</Reference>
<Reference>
<Citation>White, N. & Looareesuwan, S. Cerebral malaria. In Kennedy P., Johnson R. (Eds.), Infections of the nervous system pp. 118-44. London, England: Elsevier, (1987).</Citation>
</Reference>
<Reference>
<Citation>Miller, D.R., Khalil, S.K. & Nygard, G.A. Steady-state pharmacokinetics of hydroxychloroquine in rheumatoid arthritis patients. DICP 25, 1302-1305 (1991).</Citation>
</Reference>
<Reference>
<Citation>Obua, C. et al. Population pharmacokinetics of chloroquine and sulfadoxine and treatment response in children with malaria: suggestions for an improved dose regimen. Br. J. Clin. Pharmacol. 65, 493-501 (2008).</Citation>
</Reference>
<Reference>
<Citation>Karunajeewa, H.A. et al. Pharmacokinetics of chloroquine and monodesethylchloroquine in pregnancy. Antimicrob. Agents Chemother. 54, 1186-1192 (2010).</Citation>
</Reference>
<Reference>
<Citation>Höglund, R., Moussavi, Y., Ruengweerayut, R., Cheomung, A., Äbelö, A. & Na-Bangchang, K. Population pharmacokinetics of a three-day chloroquine treatment in patients with Plasmodium vivax infection on the Thai-Myanmar border. Malar. J. 15, 129 (2016).</Citation>
</Reference>
<Reference>
<Citation>Carmichael, S.J., Charles, B. & Tett, S.E. Population pharmacokinetics of hydroxychloroquine in patients with rheumatoid arthritis. Ther. Drug Monit. 25, 671-681 (2003).</Citation>
</Reference>
<Reference>
<Citation>Morita, S., Takahashi, T., Yoshida, Y. & Yokota, N. Population pharmacokinetics of hydroxychloroquine in Japanese patients with cutaneous or systemic lupus erythematosus. Ther. Drug Monit. 38, 259-267 (2016).</Citation>
</Reference>
<Reference>
<Citation>Balevic, S.J., Green, T.P., Clowse, M.E.B., Eudy, A.M., Schanberg, L.E. & Cohen-Wolkowiez, M. Pharmacokinetics of hydroxychloroquine in pregnancies with rheumatic diseases. Clin. Pharmacokinet. 58, 525-533 (2019).</Citation>
</Reference>
<Reference>
<Citation>Lukassen, S. et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39, e105114 (2020).</Citation>
</Reference>
<Reference>
<Citation>Polak, S., Tylutki, Z., Holbrook, M. & Wiśniowska, B. Better prediction of the local concentration-effect relationship: the role of physiologically based pharmacokinetics and quantitative systems pharmacology and toxicology in the evolution of model-informed drug discovery and development. Drug Discov. Today 24, 1344-1354 (2019).</Citation>
</Reference>
<Reference>
<Citation>Collins, K.P., Jackson, K.M. & Gustafson, D.L. Hydroxychloroquine: a physiologically-based pharmacokinetic model in the context of cancer-related autophagy modulation. J. Pharmacol. Exp. Ther. 365, 447-459 (2018).</Citation>
</Reference>
<Reference>
<Citation>Munster, T. et al. Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum. 46, 1460-1469 (2002).</Citation>
</Reference>
<Reference>
<Citation>Ding, H.J., Denniston, A.K., Rao, V.K. & Gordon, C. Hydroxychloroquine-related retinal toxicity. Rheumatology (Oxford) 55, 957-967 (2016).</Citation>
</Reference>
<Reference>
<Citation>Vicente, J. et al. Assessment of multi-ion channel block in a phase I randomized study design: results of the CiPA phase I ECG biomarker validation study. Clin. Pharm. Ther. 105, 943-953 (2019).</Citation>
</Reference>
<Reference>
<Citation>Borba, M. et al. Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: Preliminary safety results of a randomized, double-blinded, phase IIb clinical trial (CloroCOVID-19 Study). Jama Netw Open 3, e208857 (2020).</Citation>
</Reference>
<Reference>
<Citation>Newton-Cheh, C., Lin, A.E., Baggish, A.L. & Wang, H. Case 11-2011: a 47-year-old man with systemic lupus erythematosus and heart failure. N. Engl. J. Med. 364, 1450-1460 (2011).</Citation>
</Reference>
<Reference>
<Citation>Radke, J.B., Kingery, J.M., Maakestad, J. & Krasowski, M.D. Diagnostic pitfalls and laboratory test interference after hydroxychloroquine intoxication: A case report. Toxicol. Rep. 6, 1040-1046 (2019).</Citation>
</Reference>
<Reference>
<Citation>de Olano, J., Howland, M.A., Su, M.K., Hoffman, R.S. & Biary, R. Toxicokinetics of hydroxychloroquine following a massive overdose. Am. J. Emerg. Med. 37, 2264.e5-2264.e8 (2019).</Citation>
</Reference>
<Reference>
<Citation>Chen, C.-Y., Wang, F.-L. & Lin, C.-C. Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin. Toxicol. (Phila.) 44, 173-175 (2006).</Citation>
</Reference>
<Reference>
<Citation>Kandan, S.R. & Saha, M. Severe primary hypothyroidism presenting with torsades de pointes. Case Rep. 2012, bcr1220115306 (2012).</Citation>
</Reference>
<Reference>
<Citation>Gunja, N. et al. Survival after massive hydroxychloroquine overdose. Anaesth. Intensive Care 37, 130-133 (2009).</Citation>
</Reference>
<Reference>
<Citation>Costedoat-Chalumeau, N. et al. Heart conduction disorders related to antimalarials toxicity: an analysis of electrocardiograms in 85 patients treated with hydroxychloroquine for connective tissue diseases. Rheumatology (Oxford) 46, 808-810 (2007).</Citation>
</Reference>
<Reference>
<Citation>Chorin, E. et al. The QT interval in patients with SARSs-CoV-2 infection treated with hydroxychloroquine/azithromycin. Nat Med. 26, 808-809 (2020).</Citation>
</Reference>
<Reference>
<Citation>Jallouli, M. et al. Determinants of hydroxychloroquine blood concentration variations in systemic lupus erythematosus. Arthritis Rheumatol. 67, 2176-2184 (2015).</Citation>
</Reference>
<Reference>
<Citation>Marmor, M.F., Kellner, U., Lai, T.Y., Melles, R.B. & Mieler, W.F. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Opthalmology 123, 1386-1394 (2016).</Citation>
</Reference>
<Reference>
<Citation>Schmid-Ott, G. et al. Stigmatization experience, coping and sense of coherence in vitiligo patients. J. Eur. Acad. Dermatol. Venereol. 21, 456-461 (2007).</Citation>
</Reference>
<Reference>
<Citation>Sehrawat, M., Arora, T.C., Chauhan, A., Kar, H.K., Poonia, A. & Jairath, V. Correlation of vitamin D levels with pigmentation in vitiligo patients treated with NBUVB therapy. ISRN Dermatol. 2014, 493213 (2014).</Citation>
</Reference>
<Reference>
<Citation>Saeki, H. et al. Guidelines for management of atopic dermatitis. J. Dermatol. 36, 563-577 (2009).</Citation>
</Reference>
<Reference>
<Citation>Law, I. et al. Transfer of chloroquine and desethylchloroquine across the placenta and into milk in Melanesian mothers. Br. J. Clin. Pharm. 65, 674-679 (2008).</Citation>
</Reference>
<Reference>
<Citation>Essien, E.E. & Afamefuna, G.C. Chloroquine and its metabolites in human cord blood, neonatal blood, and urine after maternal medication. Clin. Chem. 28, 1148-1152 (1982).</Citation>
</Reference>
<Reference>
<Citation>ASTCT. ASTCT response to COVID-19 </Citation>
</Reference>
<Reference>
<Citation>WHO. World Health Organization Guidelines for the treatment of malaria. Geneva, Switzerland: World Health Organization, (2015). https://www.who.int/malar​ia/publi​catio​ns/atoz/97892​41549​127/en/</Citation>
</Reference>
<Reference>
<Citation>Ogunbona, F.A., Onyeji, C.O., Bolaji, O.O. & Torimiro, S.E. Excretion of chloroquine and desethylchloroquine in human milk. Br. J. Clin. Pharmacol. 23, 473-476 (1987).</Citation>
</Reference>
<Reference>
<Citation>Transfer of drugs and other chemicals into human milk. Pediatrics 108, 776-789 (2001).</Citation>
</Reference>
<Reference>
<Citation>Sammaritano, L.R. et al. 2020 American college of rheumatology guideline for the management of reproductive health in rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 72, 529-556 (2020).</Citation>
</Reference>
<Reference>
<Citation>Costedoat-Chalumeau, N. et al. Evidence of transplacental passage of hydroxychloroquine in humans. Arthritis Rheum. 46, 1123-1124 (2002).</Citation>
</Reference>
<Reference>
<Citation>Clowse, M.E.B., Magder, L., Witter, F. & Petri, M. Hydroxychloroquine in lupus pregnancy. Arthritis Rheum. 54, 3640-3647 (2006).</Citation>
</Reference>
<Reference>
<Citation>Costedoat-Chalumeau, N. et al. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases: a study of one hundred thirty-three cases compared with a control group. Arthritis Rheum. 48, 3207-3211 (2003).</Citation>
</Reference>
<Reference>
<Citation>Arentz, M. et al. Characteristics and outcomes of 21 critically Ill patients With COVID-19 in Washington State. JAMA 323, 1612-1614 (2020).</Citation>
</Reference>
<Reference>
<Citation>Vincent, M.J. et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2, 69 (2005).</Citation>
</Reference>
<Reference>
<Citation>Al-Bari, M.A.A.Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother. 70, 1608-1621 (2015).</Citation>
</Reference>
<Reference>
<Citation>Ben-Zvi, I., Kivity, S., Langevitz, P. & Shoenfeld, Y. Hydroxychloroquine: from malaria to autoimmunity. Clin. Rev. All. Immunol. 42, 145-153 (2012).</Citation>
</Reference>
<Reference>
<Citation>Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269-271 (2020).</Citation>
</Reference>
<Reference>
<Citation>Liu, J. et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 6, 16 (2020).</Citation>
</Reference>
<Reference>
<Citation>Touret, F. et al. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep. 10, 13093 (2020).</Citation>
</Reference>
<Reference>
<Citation>Centers for Disease Control and Prevention (CDC). Information for Clinicians on Investigational Therapeutics for Patients with COVID-19 (Clinical Care) </Citation>
</Reference>
<Reference>
<Citation>Garcia-Cremades, M. et al. Optimizing hydroxychloroquine dosing for patients with COVID-19: An integrative modeling approach for effective drug repurposing. Clin. Pharmacol. Ther. 108, 253-263 (2020).</Citation>
</Reference>
<Reference>
<Citation>Fan, J. et al. Connecting hydroxychloroquine in vitro antiviral activity to in vivo concentration for prediction of antiviral effect: a critical step in treating COVID-19 patients. Clin. Infect. Dis. (2020). https://doi.org/10.1093/cid/ciaa623.</Citation>
</Reference>
<Reference>
<Citation>Perinel, S. et al. Towards optimization of hydroxychloroquine dosing in intensive care unit COVID-19 patients. Clin. Infect. Dis. (2020). https://doi.org/10.1093/cid/ciaa394.</Citation>
</Reference>
<Reference>
<Citation>Huang, M. et al. Treating COVID-19 with chloroquine. J. Mol. Cell Biol. 12, 322-325 (2020).</Citation>
</Reference>
<Reference>
<Citation>Hernandez, A.V., Roman, Y.M., Pasupuleti, V. Barboza, J.J. & White, C.M. Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: a living systematic review. Ann. Intern. Med. (2020) . https://doi.org/10.7326/M20-2496.</Citation>
</Reference>
<Reference>
<Citation>Pastick, K.A. et al. Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19). Open Forum Infect. Dis. 7, ofaa130 (2020).</Citation>
</Reference>
<Reference>
<Citation>Gautret, P. et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med. Infect. Dis. 34, 101663 (2020).</Citation>
</Reference>
<Reference>
<Citation>Geleris, J. et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N. Engl. J. Med. 382, 2411-2418 (2020).</Citation>
</Reference>
<Reference>
<Citation>Rosenberg, E.S. et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA 323, 2493-2502 (2020).</Citation>
</Reference>
<Reference>
<Citation>Tang, W. et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ 369, m1849 (2020).</Citation>
</Reference>
<Reference>
<Citation>Chen, J. et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J. Zhejiang Univ. (Med Sci) 49, 215-219 (2020).</Citation>
</Reference>
<Reference>
<Citation>Boulware, D.R. et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N. Engl. J. Med. 383, 517-525 (2020). https://doi.org/10.1056/NEJMo​a2016638</Citation>
</Reference>
<Reference>
<Citation>Bhimraj, A. et al. Infectious diseases society of America guidelines on the treatment and management of patients with COVID-19. Clin. Infect. Dis. ciaa478 (2020). https://doi.org/10.1093/cid/ciaa478</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001096 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001096 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32687630
   |texte=   Pharmacokinetics and Pharmacological Properties of Chloroquine and Hydroxychloroquine in the Context of COVID-19 Infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32687630" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021