Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2.

Identifieur interne : 000F71 ( Main/Corpus ); précédent : 000F70; suivant : 000F72

In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2.

Auteurs : Rujuta R. Deshpande ; Arpita Pandey Tiwari ; Narendra Nyayanit ; Manisha Modak

Source :

RBID : pubmed:32758569

English descriptors

Abstract

SARS-CoV-2 has devastated the world with its rapid spread and fatality. The researchers across the globe are struggling hard to search a drug to treat this infection. Understanding the time constraint, the best approach is to study clinically approved drugs for control of this deadly pandemic of COVID 19. The repurposing of such drugs can be supported with the study of molecular interactions to enhance the possibility of application. The present work is a molecular docking study of proteins responsible for viral propagation namely 3Clpro, Nsp10/16, Spike protein, SARS protein receptor binding domain, Nsp 9 viral single strand binding protein and viral helicase. The protein through virus enters the host cell-human angiotensin-converting enzyme 2 (ACE2) receptor, is also used as a target for molecular docking. The docking was done with most discussed drugs for SARS-CoV-2 like Ritonavir, Lopinavir, Remdesivir, Chloroquine, Hydroxychloroquine (HCQ), routine antiviral drugs like Oseltamivir and Ribavirin. In addition, small molecules with anti-inflammatory actions like Mycophenolic acid (MPA), Pemirolast, Isoniazid and Eriodictyol were also tested. The generated data confirms the potential of Ritonavir, Lopinavir and Remdesivir as a therapeutic candidate against SARS-CoV-2. It is observed that Eriodictyol binds to almost all selected target proteins with good binding energy, suggesting its importance in treatment of COVID 19. Molecular interactions of Ritonavir, Lopinavir and Remdesivir against SARS-CoV-2 proteins enhanced their potential as a candidate drug for treatment of COVID-19. Eriodictyol had emerged as a new repurposing drug that can be used in COVID-19.

DOI: 10.1016/j.ejphar.2020.173430
PubMed: 32758569
PubMed Central: PMC7398085

Links to Exploration step

pubmed:32758569

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2.</title>
<author>
<name sortKey="Deshpande, Rujuta R" sort="Deshpande, Rujuta R" uniqKey="Deshpande R" first="Rujuta R" last="Deshpande">Rujuta R. Deshpande</name>
<affiliation>
<nlm:affiliation>PGRC, Department of Zoology, Modern College, Shivajinagar, Pune, India. Electronic address: rujuta.rd@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tiwari, Arpita Pandey" sort="Tiwari, Arpita Pandey" uniqKey="Tiwari A" first="Arpita Pandey" last="Tiwari">Arpita Pandey Tiwari</name>
<affiliation>
<nlm:affiliation>Department of Stem Cell and Regenerative Medicine, Center for Interdisciplinary Research, D.Y. Patil Education Society (Institution Deemed to be University), Kolhapur, India. Electronic address: arpitaptiwari@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nyayanit, Narendra" sort="Nyayanit, Narendra" uniqKey="Nyayanit N" first="Narendra" last="Nyayanit">Narendra Nyayanit</name>
<affiliation>
<nlm:affiliation>Department of Zoology, Sir Parashurambhau College, Pune, India. Electronic address: nyayanitnv@yahoo.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Modak, Manisha" sort="Modak, Manisha" uniqKey="Modak M" first="Manisha" last="Modak">Manisha Modak</name>
<affiliation>
<nlm:affiliation>Department of Zoology, Sir Parashurambhau College, Pune, India. Electronic address: manisha_ms@yahoo.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32758569</idno>
<idno type="pmid">32758569</idno>
<idno type="doi">10.1016/j.ejphar.2020.173430</idno>
<idno type="pmc">PMC7398085</idno>
<idno type="wicri:Area/Main/Corpus">000F71</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2.</title>
<author>
<name sortKey="Deshpande, Rujuta R" sort="Deshpande, Rujuta R" uniqKey="Deshpande R" first="Rujuta R" last="Deshpande">Rujuta R. Deshpande</name>
<affiliation>
<nlm:affiliation>PGRC, Department of Zoology, Modern College, Shivajinagar, Pune, India. Electronic address: rujuta.rd@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tiwari, Arpita Pandey" sort="Tiwari, Arpita Pandey" uniqKey="Tiwari A" first="Arpita Pandey" last="Tiwari">Arpita Pandey Tiwari</name>
<affiliation>
<nlm:affiliation>Department of Stem Cell and Regenerative Medicine, Center for Interdisciplinary Research, D.Y. Patil Education Society (Institution Deemed to be University), Kolhapur, India. Electronic address: arpitaptiwari@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nyayanit, Narendra" sort="Nyayanit, Narendra" uniqKey="Nyayanit N" first="Narendra" last="Nyayanit">Narendra Nyayanit</name>
<affiliation>
<nlm:affiliation>Department of Zoology, Sir Parashurambhau College, Pune, India. Electronic address: nyayanitnv@yahoo.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Modak, Manisha" sort="Modak, Manisha" uniqKey="Modak M" first="Manisha" last="Modak">Manisha Modak</name>
<affiliation>
<nlm:affiliation>Department of Zoology, Sir Parashurambhau College, Pune, India. Electronic address: manisha_ms@yahoo.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">European journal of pharmacology</title>
<idno type="eISSN">1879-0712</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (metabolism)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Betacoronavirus (drug effects)</term>
<term>Betacoronavirus (metabolism)</term>
<term>Computer Simulation (MeSH)</term>
<term>Drug Repositioning (MeSH)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antiviral Agents</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Drug Repositioning</term>
<term>Molecular Docking Simulation</term>
<term>Protein Conformation</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">SARS-CoV-2 has devastated the world with its rapid spread and fatality. The researchers across the globe are struggling hard to search a drug to treat this infection. Understanding the time constraint, the best approach is to study clinically approved drugs for control of this deadly pandemic of COVID 19. The repurposing of such drugs can be supported with the study of molecular interactions to enhance the possibility of application. The present work is a molecular docking study of proteins responsible for viral propagation namely 3Clpro, Nsp10/16, Spike protein, SARS protein receptor binding domain, Nsp 9 viral single strand binding protein and viral helicase. The protein through virus enters the host cell-human angiotensin-converting enzyme 2 (ACE2) receptor, is also used as a target for molecular docking. The docking was done with most discussed drugs for SARS-CoV-2 like Ritonavir, Lopinavir, Remdesivir, Chloroquine, Hydroxychloroquine (HCQ), routine antiviral drugs like Oseltamivir and Ribavirin. In addition, small molecules with anti-inflammatory actions like Mycophenolic acid (MPA), Pemirolast, Isoniazid and Eriodictyol were also tested. The generated data confirms the potential of Ritonavir, Lopinavir and Remdesivir as a therapeutic candidate against SARS-CoV-2. It is observed that Eriodictyol binds to almost all selected target proteins with good binding energy, suggesting its importance in treatment of COVID 19. Molecular interactions of Ritonavir, Lopinavir and Remdesivir against SARS-CoV-2 proteins enhanced their potential as a candidate drug for treatment of COVID-19. Eriodictyol had emerged as a new repurposing drug that can be used in COVID-19.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32758569</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0712</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>886</Volume>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>European journal of pharmacology</Title>
<ISOAbbreviation>Eur J Pharmacol</ISOAbbreviation>
</Journal>
<ArticleTitle>In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2.</ArticleTitle>
<Pagination>
<MedlinePgn>173430</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0014-2999(20)30522-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ejphar.2020.173430</ELocationID>
<Abstract>
<AbstractText>SARS-CoV-2 has devastated the world with its rapid spread and fatality. The researchers across the globe are struggling hard to search a drug to treat this infection. Understanding the time constraint, the best approach is to study clinically approved drugs for control of this deadly pandemic of COVID 19. The repurposing of such drugs can be supported with the study of molecular interactions to enhance the possibility of application. The present work is a molecular docking study of proteins responsible for viral propagation namely 3Clpro, Nsp10/16, Spike protein, SARS protein receptor binding domain, Nsp 9 viral single strand binding protein and viral helicase. The protein through virus enters the host cell-human angiotensin-converting enzyme 2 (ACE2) receptor, is also used as a target for molecular docking. The docking was done with most discussed drugs for SARS-CoV-2 like Ritonavir, Lopinavir, Remdesivir, Chloroquine, Hydroxychloroquine (HCQ), routine antiviral drugs like Oseltamivir and Ribavirin. In addition, small molecules with anti-inflammatory actions like Mycophenolic acid (MPA), Pemirolast, Isoniazid and Eriodictyol were also tested. The generated data confirms the potential of Ritonavir, Lopinavir and Remdesivir as a therapeutic candidate against SARS-CoV-2. It is observed that Eriodictyol binds to almost all selected target proteins with good binding energy, suggesting its importance in treatment of COVID 19. Molecular interactions of Ritonavir, Lopinavir and Remdesivir against SARS-CoV-2 proteins enhanced their potential as a candidate drug for treatment of COVID-19. Eriodictyol had emerged as a new repurposing drug that can be used in COVID-19.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deshpande</LastName>
<ForeName>Rujuta R</ForeName>
<Initials>RR</Initials>
<AffiliationInfo>
<Affiliation>PGRC, Department of Zoology, Modern College, Shivajinagar, Pune, India. Electronic address: rujuta.rd@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tiwari</LastName>
<ForeName>Arpita Pandey</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Department of Stem Cell and Regenerative Medicine, Center for Interdisciplinary Research, D.Y. Patil Education Society (Institution Deemed to be University), Kolhapur, India. Electronic address: arpitaptiwari@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nyayanit</LastName>
<ForeName>Narendra</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoology, Sir Parashurambhau College, Pune, India. Electronic address: nyayanitnv@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Modak</LastName>
<ForeName>Manisha</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoology, Sir Parashurambhau College, Pune, India. Electronic address: manisha_ms@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Eur J Pharmacol</MedlineTA>
<NlmUniqueID>1254354</NlmUniqueID>
<ISSNLinking>0014-2999</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="Y">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058492" MajorTopicYN="Y">Drug Repositioning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="Y">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID 19</Keyword>
<Keyword MajorTopicYN="N">Drug repurposing</Keyword>
<Keyword MajorTopicYN="N">Molecular docking</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32758569</ArticleId>
<ArticleId IdType="pii">S0014-2999(20)30522-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.ejphar.2020.173430</ArticleId>
<ArticleId IdType="pmc">PMC7398085</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Immunol. 2020 May;17(5):554</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32024976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jun 20;350(1):15-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Cent Sci. 2020 Mar 25;6(3):315-331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32226821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2011 Feb 15;81(4):544-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 16;6:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Metab Syndr. 2020 May - Jun;14(3):241-246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32247211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Immunol Infect. 2020 Jun;53(3):404-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32173241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2017 Jul 1;18(4):682-697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27296652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res Perspect. 2017 Jan 23;5(1):e00293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2012 Aug 8;60(31):7652-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22809065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharm Sin B. 2020 May;10(5):766-788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32292689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 May 7;382(19):1787-1799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32187464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2016 Sep 29;3(1):237-261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27578435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 01;9(10):e109180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25271834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Aug;89(16):8416-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26041293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2017 May;15(5):483-492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28286997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Ther Med. 2015 Dec;10(6):2259-2266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26668626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Nov 04;6(11):e1001176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21079686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pharm Res. 2011 Apr;34(4):671-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21544733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2020 Mar 17;94(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31996437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Allergy. 1992 Jun;68(6):488-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1610024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2016 Nov;22(11):919-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27692879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2010 Jan 30;31(2):455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005 Aug 22;2:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Apr 24;368(6489):409-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32198291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29860391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Jan 10;11(1):222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31924756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 May;7(5):e1002059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Med. 2011 Aug;43(5):375-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2020 Mar 11;10(1):4481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32161317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2019;1878:243-261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30378081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 2010 Apr;76(6):589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19941260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29126136</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000F71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32758569
   |texte=   In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32758569" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021