Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High affinity interaction of Solanum tuberosum and Brassica juncea residue smoke water compounds with proteins involved in coronavirus infection.

Identifieur interne : 000F12 ( Main/Corpus ); précédent : 000F11; suivant : 000F13

High affinity interaction of Solanum tuberosum and Brassica juncea residue smoke water compounds with proteins involved in coronavirus infection.

Auteurs : Gaurav S. Dave ; Kalpna D. Rakholiya ; Mital J. Kaneria ; Bhemji P. Galvadiya ; Sudhanshu R. Vyas ; Vaktabhai H. Kanbi ; Manubhai P. Patel

Source :

RBID : pubmed:32779305

English descriptors

Abstract

The world is in an immediate need of treatment for coronavirus disease (COVID-19). Chronic exposure of hydroxychloroquine in the treatment of COVID-19 may have multiple adverse effects on human physiology, such as cardiac arrhythmias. Natural compounds need to be evaluated as treatment and preventive agents in coronavirus infection. A total of 30 compounds of Solanum tuberosum and Brassica juncea residue smoke water were selected for the virtual screening against SARS-CoV-1, SARS-CoV-2 and cellular proteins involved in the mechanism of infection. Docking analysis identified lead molecules with favorable binding energy, number of poses and hydrogen bond interactions, which indicates the effective modulation of ACE2 and TMPRSS2 receptors. Results indicated (a) curcumenol, (b) N-desmethylselegiline, (c) phentermine and (d) sphingolipid derivatives as a selective and potent candidates in comparison to hydroxychloroquine for COVID-19 treatment. Our in silico findings, therefore, warrant further in vitro validations of the selected compounds for the discovery of novel preventive and therapeutic drug against SARS-CoV-2 infection.

DOI: 10.1002/ptr.6796
PubMed: 32779305
PubMed Central: PMC7436924

Links to Exploration step

pubmed:32779305

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High affinity interaction of Solanum tuberosum and Brassica juncea residue smoke water compounds with proteins involved in coronavirus infection.</title>
<author>
<name sortKey="Dave, Gaurav S" sort="Dave, Gaurav S" uniqKey="Dave G" first="Gaurav S" last="Dave">Gaurav S. Dave</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rakholiya, Kalpna D" sort="Rakholiya, Kalpna D" uniqKey="Rakholiya K" first="Kalpna D" last="Rakholiya">Kalpna D. Rakholiya</name>
<affiliation>
<nlm:affiliation>Department of Biosciences (UGC-CAS), Saurashtra University, Rajkot, 360005, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaneria, Mital J" sort="Kaneria, Mital J" uniqKey="Kaneria M" first="Mital J" last="Kaneria">Mital J. Kaneria</name>
<affiliation>
<nlm:affiliation>Department of Biosciences (UGC-CAS), Saurashtra University, Rajkot, 360005, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galvadiya, Bhemji P" sort="Galvadiya, Bhemji P" uniqKey="Galvadiya B" first="Bhemji P" last="Galvadiya">Bhemji P. Galvadiya</name>
<affiliation>
<nlm:affiliation>Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vyas, Sudhanshu R" sort="Vyas, Sudhanshu R" uniqKey="Vyas S" first="Sudhanshu R" last="Vyas">Sudhanshu R. Vyas</name>
<affiliation>
<nlm:affiliation>Aspee College of Home Science and Nutrition, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanbi, Vaktabhai H" sort="Kanbi, Vaktabhai H" uniqKey="Kanbi V" first="Vaktabhai H" last="Kanbi">Vaktabhai H. Kanbi</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Manubhai P" sort="Patel, Manubhai P" uniqKey="Patel M" first="Manubhai P" last="Patel">Manubhai P. Patel</name>
<affiliation>
<nlm:affiliation>Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32779305</idno>
<idno type="pmid">32779305</idno>
<idno type="doi">10.1002/ptr.6796</idno>
<idno type="pmc">PMC7436924</idno>
<idno type="wicri:Area/Main/Corpus">000F12</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F12</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High affinity interaction of Solanum tuberosum and Brassica juncea residue smoke water compounds with proteins involved in coronavirus infection.</title>
<author>
<name sortKey="Dave, Gaurav S" sort="Dave, Gaurav S" uniqKey="Dave G" first="Gaurav S" last="Dave">Gaurav S. Dave</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rakholiya, Kalpna D" sort="Rakholiya, Kalpna D" uniqKey="Rakholiya K" first="Kalpna D" last="Rakholiya">Kalpna D. Rakholiya</name>
<affiliation>
<nlm:affiliation>Department of Biosciences (UGC-CAS), Saurashtra University, Rajkot, 360005, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaneria, Mital J" sort="Kaneria, Mital J" uniqKey="Kaneria M" first="Mital J" last="Kaneria">Mital J. Kaneria</name>
<affiliation>
<nlm:affiliation>Department of Biosciences (UGC-CAS), Saurashtra University, Rajkot, 360005, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galvadiya, Bhemji P" sort="Galvadiya, Bhemji P" uniqKey="Galvadiya B" first="Bhemji P" last="Galvadiya">Bhemji P. Galvadiya</name>
<affiliation>
<nlm:affiliation>Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vyas, Sudhanshu R" sort="Vyas, Sudhanshu R" uniqKey="Vyas S" first="Sudhanshu R" last="Vyas">Sudhanshu R. Vyas</name>
<affiliation>
<nlm:affiliation>Aspee College of Home Science and Nutrition, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanbi, Vaktabhai H" sort="Kanbi, Vaktabhai H" uniqKey="Kanbi V" first="Vaktabhai H" last="Kanbi">Vaktabhai H. Kanbi</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Manubhai P" sort="Patel, Manubhai P" uniqKey="Patel M" first="Manubhai P" last="Patel">Manubhai P. Patel</name>
<affiliation>
<nlm:affiliation>Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Phytotherapy research : PTR</title>
<idno type="eISSN">1099-1573</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angiotensin-Converting Enzyme 2 (metabolism)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>COVID-19 (drug therapy)</term>
<term>Computer Simulation (MeSH)</term>
<term>Hydroxychloroquine (pharmacology)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Mustard Plant (MeSH)</term>
<term>Phytochemicals (pharmacology)</term>
<term>SARS Virus (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Serine Endopeptidases (metabolism)</term>
<term>Smoke (MeSH)</term>
<term>Solanum tuberosum (MeSH)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Angiotensin-Converting Enzyme 2</term>
<term>Serine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Hydroxychloroquine</term>
<term>Phytochemicals</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Molecular Docking Simulation</term>
<term>Mustard Plant</term>
<term>SARS Virus</term>
<term>SARS-CoV-2</term>
<term>Smoke</term>
<term>Solanum tuberosum</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The world is in an immediate need of treatment for coronavirus disease (COVID-19). Chronic exposure of hydroxychloroquine in the treatment of COVID-19 may have multiple adverse effects on human physiology, such as cardiac arrhythmias. Natural compounds need to be evaluated as treatment and preventive agents in coronavirus infection. A total of 30 compounds of Solanum tuberosum and Brassica juncea residue smoke water were selected for the virtual screening against SARS-CoV-1, SARS-CoV-2 and cellular proteins involved in the mechanism of infection. Docking analysis identified lead molecules with favorable binding energy, number of poses and hydrogen bond interactions, which indicates the effective modulation of ACE2 and TMPRSS2 receptors. Results indicated (a) curcumenol, (b) N-desmethylselegiline, (c) phentermine and (d) sphingolipid derivatives as a selective and potent candidates in comparison to hydroxychloroquine for COVID-19 treatment. Our in silico findings, therefore, warrant further in vitro validations of the selected compounds for the discovery of novel preventive and therapeutic drug against SARS-CoV-2 infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32779305</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>01</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1099-1573</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2020</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Phytotherapy research : PTR</Title>
<ISOAbbreviation>Phytother Res</ISOAbbreviation>
</Journal>
<ArticleTitle>High affinity interaction of Solanum tuberosum and Brassica juncea residue smoke water compounds with proteins involved in coronavirus infection.</ArticleTitle>
<Pagination>
<MedlinePgn>3400-3410</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ptr.6796</ELocationID>
<Abstract>
<AbstractText>The world is in an immediate need of treatment for coronavirus disease (COVID-19). Chronic exposure of hydroxychloroquine in the treatment of COVID-19 may have multiple adverse effects on human physiology, such as cardiac arrhythmias. Natural compounds need to be evaluated as treatment and preventive agents in coronavirus infection. A total of 30 compounds of Solanum tuberosum and Brassica juncea residue smoke water were selected for the virtual screening against SARS-CoV-1, SARS-CoV-2 and cellular proteins involved in the mechanism of infection. Docking analysis identified lead molecules with favorable binding energy, number of poses and hydrogen bond interactions, which indicates the effective modulation of ACE2 and TMPRSS2 receptors. Results indicated (a) curcumenol, (b) N-desmethylselegiline, (c) phentermine and (d) sphingolipid derivatives as a selective and potent candidates in comparison to hydroxychloroquine for COVID-19 treatment. Our in silico findings, therefore, warrant further in vitro validations of the selected compounds for the discovery of novel preventive and therapeutic drug against SARS-CoV-2 infection.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dave</LastName>
<ForeName>Gaurav S</ForeName>
<Initials>GS</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5317-9217</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rakholiya</LastName>
<ForeName>Kalpna D</ForeName>
<Initials>KD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biosciences (UGC-CAS), Saurashtra University, Rajkot, 360005, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaneria</LastName>
<ForeName>Mital J</ForeName>
<Initials>MJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4498-6003</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biosciences (UGC-CAS), Saurashtra University, Rajkot, 360005, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Galvadiya</LastName>
<ForeName>Bhemji P</ForeName>
<Initials>BP</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vyas</LastName>
<ForeName>Sudhanshu R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Aspee College of Home Science and Nutrition, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kanbi</LastName>
<ForeName>Vaktabhai H</ForeName>
<Initials>VH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Manubhai P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>CBSH, SDAU</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Phytother Res</MedlineTA>
<NlmUniqueID>8904486</NlmUniqueID>
<ISSNLinking>0951-418X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064209">Phytochemicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012906">Smoke</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.23</RegistryNumber>
<NameOfSubstance UI="C000705307">ACE2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.23</RegistryNumber>
<NameOfSubstance UI="D000085962">Angiotensin-Converting Enzyme 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C421305">TMPRSS2 protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000085962" MajorTopicYN="N">Angiotensin-Converting Enzyme 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009149" MajorTopicYN="Y">Mustard Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064209" MajorTopicYN="N">Phytochemicals</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012906" MajorTopicYN="Y">Smoke</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="Y">Solanum tuberosum</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">molecular docking</Keyword>
<Keyword MajorTopicYN="N">phytoconstituents</Keyword>
<Keyword MajorTopicYN="N">smoke water</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32779305</ArticleId>
<ArticleId IdType="doi">10.1002/ptr.6796</ArticleId>
<ArticleId IdType="pmc">PMC7436924</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2020 Mar 26;382(13):1199-1207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31995857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Mar 06;16(3):5180-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25756376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cosmet Dermatol. 2018 Dec;17(6):1254-1261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29297991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(9):4122-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Jan 8;11(1):95-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29275165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jun;92(6):618-631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32108359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2019 Jul 16;55(58):8478-8481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31268101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):271-280.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2009 Jul;297(1):L84-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19411314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Pharmacol Ther. 1994 Dec;56(6 Pt 2):742-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7995016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Mar 30;6(3):e18107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21479205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2008 May;189(5):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18071673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharm Sin B. 2020 May;10(5):766-788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32292689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(2):1293-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2020 Jun;178:104793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32283108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2017 Mar 8;65(9):1941-1951</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28157307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Toxicol (Phila). 2006;44(2):173-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16615675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 21;7(1):6171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28733584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):281-292.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32155444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2009 Nov 1;19(21):6042-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19796943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology (Reading). 2010 May;156(Pt 5):1556-1564</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20150239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytother Res. 2020 Dec;34(12):3400-3410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32779305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2020 May - Jun;22(4-5):221-225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32199943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Rev Allergy Immunol. 2012 Apr;42(2):145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fundam Appl Toxicol. 1996 Aug;32(2):278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8921331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1997 Aug 28;337(9):581-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9271479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cosmet Sci. 2007 Jun;29(3):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18489348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Synapse. 2000 May;36(2):102-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10767057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2017 Mar 29;8:378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28400772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2020 Jul 15;253:117592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32222463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2020 Apr 8;27(4):671-680.e2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32183941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Aust. 2020 Mar 17;:MA20013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32226946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Data Brief. 2018 Oct 04;21:343-350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30364802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2020 Apr;5(4):536-544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32123347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Iran J Basic Med Sci. 2019 Mar;22(3):225-237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31156781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EFSA J. 2018 Apr 25;16(4):e05226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32625865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 2014 Sep;97(9):5383-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25022686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(10):5608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Med Chem. 2013 Nov;69:735-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1969 Mar;18(3):659-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5772596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Med Chem. 2013 Apr;62:410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23385092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Dec 29;279(3):751-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Funct. 2015 Nov;6(11):3550-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26301513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Nov;120:1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28945988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anesthesiology. 2016 Nov;125(5):943-951</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27541316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest New Drugs. 1996;13(4):285-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8824346</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000F12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32779305
   |texte=   High affinity interaction of Solanum tuberosum and Brassica juncea residue smoke water compounds with proteins involved in coronavirus infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32779305" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021