Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydroxychloroquine: mechanism of action inhibiting SARS-CoV2 entry.

Identifieur interne : 000E50 ( Main/Corpus ); précédent : 000E49; suivant : 000E51

Hydroxychloroquine: mechanism of action inhibiting SARS-CoV2 entry.

Auteurs : Zixuan Yuan ; Mahmud Arif Pavel ; Hao Wang ; Scott B. Hansen

Source :

RBID : pubmed:32817933

Abstract

Background

SARS-coronavirus 2 (SARS-CoV-2) is currently causing a worldwide pandemic. Potential drugs identified for the treatment of SARS-CoV-2 infection include chloroquine (CQ), its derivative hydroxychloroquine (HCQ), and the anesthetic propofol. Their mechanism of action in SARS-CoV-2 infection is poorly understood. Recently, anesthetics, both general and local, were shown to disrupt ordered lipid domains. These same lipid domains recruit the SARS-CoV-2 surface receptor angiotensin converting enzyme 2 (ACE2) to an endocytic entry point and their disruption by cholesterol depletion decreases ACE2 recruitment and viral entry.

Methods

Viral entry was determined using a SARS-CoV-2 pseudovirus (SARS2-PV) and a luciferase reporter gene expressed by the virus after treatment of the cells with 50 μM propofol, tetracaine, HCQ, and erythromycin. HCQ disruption of monosialotetrahexosylganglioside1 (GM1) lipid rafts, phosphatidylinositol 4,5-bisphosphate (PIP

Results

Propofol, tetracaine, and HCQ inhibit SARS2-PV viral entry. HCQ directly perturbs both GM1 lipid rafts and PIP

Conclusions

We conclude HCQ is an anesthetic-like compound that disrupts GM1 lipid rafts similar to propofol and other local or general anesthetics. Furthermore, we conclude disruption of GM1 raft function, and not the concentration of GM1 raft molecules, governs the antiviral properties of HCQ. HCQ disruption of the membrane appears to also disrupt the production of host defense peptide, hence an antimicrobial such as erythromycin could be an important combined treatment. Nonetheless erythromycin has anti-SARS-CoV-2 activity and may combine with HCQ to reduce infection.

KEY POINTS


DOI: 10.1101/2020.08.13.250217
PubMed: 32817933
PubMed Central: PMC7430563

Links to Exploration step

pubmed:32817933

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydroxychloroquine: mechanism of action inhibiting SARS-CoV2 entry.</title>
<author>
<name sortKey="Yuan, Zixuan" sort="Yuan, Zixuan" uniqKey="Yuan Z" first="Zixuan" last="Yuan">Zixuan Yuan</name>
</author>
<author>
<name sortKey="Pavel, Mahmud Arif" sort="Pavel, Mahmud Arif" uniqKey="Pavel M" first="Mahmud Arif" last="Pavel">Mahmud Arif Pavel</name>
</author>
<author>
<name sortKey="Wang, Hao" sort="Wang, Hao" uniqKey="Wang H" first="Hao" last="Wang">Hao Wang</name>
</author>
<author>
<name sortKey="Hansen, Scott B" sort="Hansen, Scott B" uniqKey="Hansen S" first="Scott B" last="Hansen">Scott B. Hansen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32817933</idno>
<idno type="pmid">32817933</idno>
<idno type="doi">10.1101/2020.08.13.250217</idno>
<idno type="pmc">PMC7430563</idno>
<idno type="wicri:Area/Main/Corpus">000E50</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hydroxychloroquine: mechanism of action inhibiting SARS-CoV2 entry.</title>
<author>
<name sortKey="Yuan, Zixuan" sort="Yuan, Zixuan" uniqKey="Yuan Z" first="Zixuan" last="Yuan">Zixuan Yuan</name>
</author>
<author>
<name sortKey="Pavel, Mahmud Arif" sort="Pavel, Mahmud Arif" uniqKey="Pavel M" first="Mahmud Arif" last="Pavel">Mahmud Arif Pavel</name>
</author>
<author>
<name sortKey="Wang, Hao" sort="Wang, Hao" uniqKey="Wang H" first="Hao" last="Wang">Hao Wang</name>
</author>
<author>
<name sortKey="Hansen, Scott B" sort="Hansen, Scott B" uniqKey="Hansen S" first="Scott B" last="Hansen">Scott B. Hansen</name>
</author>
</analytic>
<series>
<title level="j">bioRxiv : the preprint server for biology</title>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Background</b>
</p>
<p>SARS-coronavirus 2 (SARS-CoV-2) is currently causing a worldwide pandemic. Potential drugs identified for the treatment of SARS-CoV-2 infection include chloroquine (CQ), its derivative hydroxychloroquine (HCQ), and the anesthetic propofol. Their mechanism of action in SARS-CoV-2 infection is poorly understood. Recently, anesthetics, both general and local, were shown to disrupt ordered lipid domains. These same lipid domains recruit the SARS-CoV-2 surface receptor angiotensin converting enzyme 2 (ACE2) to an endocytic entry point and their disruption by cholesterol depletion decreases ACE2 recruitment and viral entry.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Methods</b>
</p>
<p>Viral entry was determined using a SARS-CoV-2 pseudovirus (SARS2-PV) and a luciferase reporter gene expressed by the virus after treatment of the cells with 50 μM propofol, tetracaine, HCQ, and erythromycin. HCQ disruption of monosialotetrahexosylganglioside1 (GM1) lipid rafts, phosphatidylinositol 4,5-bisphosphate (PIP </p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Results</b>
</p>
<p>Propofol, tetracaine, and HCQ inhibit SARS2-PV viral entry. HCQ directly perturbs both GM1 lipid rafts and PIP </p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Conclusions</b>
</p>
<p>We conclude HCQ is an anesthetic-like compound that disrupts GM1 lipid rafts similar to propofol and other local or general anesthetics. Furthermore, we conclude disruption of GM1 raft function, and not the concentration of GM1 raft molecules, governs the antiviral properties of HCQ. HCQ disruption of the membrane appears to also disrupt the production of host defense peptide, hence an antimicrobial such as erythromycin could be an important combined treatment. Nonetheless erythromycin has anti-SARS-CoV-2 activity and may combine with HCQ to reduce infection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY POINTS</b>
</p>
<p></p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32817933</PMID>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>bioRxiv : the preprint server for biology</Title>
<ISOAbbreviation>bioRxiv</ISOAbbreviation>
</Journal>
<ArticleTitle>Hydroxychloroquine: mechanism of action inhibiting SARS-CoV2 entry.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">2020.08.13.250217</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1101/2020.08.13.250217</ELocationID>
<Abstract>
<AbstractText Label="Background" NlmCategory="UNASSIGNED">SARS-coronavirus 2 (SARS-CoV-2) is currently causing a worldwide pandemic. Potential drugs identified for the treatment of SARS-CoV-2 infection include chloroquine (CQ), its derivative hydroxychloroquine (HCQ), and the anesthetic propofol. Their mechanism of action in SARS-CoV-2 infection is poorly understood. Recently, anesthetics, both general and local, were shown to disrupt ordered lipid domains. These same lipid domains recruit the SARS-CoV-2 surface receptor angiotensin converting enzyme 2 (ACE2) to an endocytic entry point and their disruption by cholesterol depletion decreases ACE2 recruitment and viral entry.</AbstractText>
<AbstractText Label="Methods" NlmCategory="UNASSIGNED">Viral entry was determined using a SARS-CoV-2 pseudovirus (SARS2-PV) and a luciferase reporter gene expressed by the virus after treatment of the cells with 50 μM propofol, tetracaine, HCQ, and erythromycin. HCQ disruption of monosialotetrahexosylganglioside1 (GM1) lipid rafts, phosphatidylinositol 4,5-bisphosphate (PIP
<sub>2</sub>
) domains, and ACE2 receptor at nanoscale distances was monitored by direct stochastic reconstruction microscopy (dSTORM). Cells were fixed, permeabilized, and then labeled with either fluorescent cholera toxin B (CTxB) or antibody and then fixed again prior to imaging. Cluster analysis of dSTORM images was used to determine size and number and cross pair correlation was used to determine trafficking of endogenously expressed ACE2 in and out of lipid domains.</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">Propofol, tetracaine, and HCQ inhibit SARS2-PV viral entry. HCQ directly perturbs both GM1 lipid rafts and PIP
<sub>2</sub>
domains. GM1 rafts increased in size and number similar to anesthetic disruption of lipid rafts; PIP
<sub>2</sub>
domains decreased in size and number. HCQ blocked both GM1 and PIP
<sub>2</sub>
domains ability to attract and cluster ACE2.</AbstractText>
<AbstractText Label="Conclusions" NlmCategory="UNASSIGNED">We conclude HCQ is an anesthetic-like compound that disrupts GM1 lipid rafts similar to propofol and other local or general anesthetics. Furthermore, we conclude disruption of GM1 raft function, and not the concentration of GM1 raft molecules, governs the antiviral properties of HCQ. HCQ disruption of the membrane appears to also disrupt the production of host defense peptide, hence an antimicrobial such as erythromycin could be an important combined treatment. Nonetheless erythromycin has anti-SARS-CoV-2 activity and may combine with HCQ to reduce infection.</AbstractText>
<AbstractText Label="KEY POINTS" NlmCategory="CONCLUSIONS">
<i>Question:</i>
What is the molecular basis for antiviral activity of hydroxychloroquine and propofol?
<i>Findings:</i>
Hydroxychloroquine disrupt lipid rafts similar to local and general anesthetics.
<i>Meaning:</i>
Since lipids cluster ACE2 and facilitate viral entry, hydroxychloroquine and anesthetics appear to inhibit viral entry by disrupting the lipid clustering and ACE2 localization.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Zixuan</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pavel</LastName>
<ForeName>Mahmud Arif</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0003-1966-7940</Identifier>
</Author>
<Author ValidYN="Y">
<LastName>Hansen</LastName>
<ForeName>Scott B</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">0000-0003-0086-9753</Identifier>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 NS112534</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D000076942">Preprint</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>bioRxiv</MedlineTA>
<NlmUniqueID>101680187</NlmUniqueID>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32817933</ArticleId>
<ArticleId IdType="doi">10.1101/2020.08.13.250217</ArticleId>
<ArticleId IdType="pmc">PMC7430563</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13757-13766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32467161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxf Open Immunol. 2020;1(1):iqaa001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33047740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Emerg Med. 2020 Jul 9;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32712236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Dec 15;7:13873</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27976674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2015 Feb;15(2):104-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25614320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2020 Oct 15;75(11):2231-2232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32451547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2018 Jun 8;15(1):41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29884197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 May;1851(5):620-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25633344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Microbes New Infect. 2020 Jun 06;38:100709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33088574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8876229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Aug 28;477(7365):495-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21874019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Biomembr. 2020 Jan 1;1862(1):183091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31672538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2020 Apr;21(4):225-245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31848472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(19):10628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anesth Analg. 2019 Oct;129(4):973-982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31124840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jan 12;12(1):e0170123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28081264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2010 Sep;36(3):646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20150207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2020 Jul 8;16(7):e1008656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32639985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jun;582(7810):18-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32488162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 1987 Mar;36(2):213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2435182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mediators Inflamm. 2012;2012:649570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22719178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anaesthesiol Clin Pharmacol. 2015 Oct-Dec;31(4):450-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26702198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Aug;97:396-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32623082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 May;55(5):105960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32251731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2019 Sep;44(9):795-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31060927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2016 May 25;8(340):340ra72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27225182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 23;479(7374):552-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22020284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EBioMedicine. 2020 Oct;60:102976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32971472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2015 Feb;45(2):428-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25359346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Jun;78(6):3605-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6115382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2016 Dec 4;428(24 Pt A):4739-4748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27720722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2019 Mar 5;116(5):893-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30773293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Surg. 2020 Apr;76:71-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32112977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Endocrinol (Lausanne). 2020 Sep 17;11:582870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33042029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Netw Open. 2020 Apr 24;3(4):e208857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32330277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anesthesiology. 2020 Jun;132(6):1371-1381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32282427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anesthesiology. 2000 Sep;93(3):858-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10969322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2018;62(4):1495-1506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29504537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2020 Jul 10;12(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32664429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Sep;585(7826):584-587</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32698191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Jan 6;160(1):113-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12515826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 1;327(5961):46-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2017 Aug 16;139(32):10944-10947</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28774176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2007 Jan;9(1):96-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Jun 12;368(6496):1166-1167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32527806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Crit Care. 2020 Jun;57:279-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32173110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Sep;585(7826):588-590</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32698190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 02;10(7):e0131291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26135924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Nov 19;383(21):2041-2052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32706953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):271-280.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Opt Express. 2011 Aug 1;19(16):15009-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21934862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 1991 Oct;35(2):142-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1662706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Drug Investig. 2020 Aug;40(8):683-686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32533455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32817933
   |texte=   Hydroxychloroquine: mechanism of action inhibiting SARS-CoV2 entry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32817933" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021