Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives.

Identifieur interne : 000B58 ( Main/Corpus ); précédent : 000B57; suivant : 000B59

Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives.

Auteurs : Xiao-Lei Zhang ; Zhuo-Ming Li ; Jian-Tao Ye ; Jing Lu ; Lingyu Linda Ye ; Chun-Xiang Zhang ; Pei-Qing Liu ; Dayue D. Duan

Source :

RBID : pubmed:32968208

English descriptors

Abstract

The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing severe pandemic. Curative drugs specific for COVID-19 are currently lacking. Chloroquine phosphate and its derivative hydroxychloroquine, which have been used in the treatment and prevention of malaria and autoimmune diseases for decades, were found to inhibit SARS-CoV-2 infection with high potency in vitro and have shown clinical and virologic benefits in COVID-19 patients. Therefore, chloroquine phosphate was first used in the treatment of COVID-19 in China. Later, under a limited emergency-use authorization from the FDA, hydroxychloroquine in combination with azithromycin was used to treat COVID-19 patients in the USA, although the mechanisms of the anti-COVID-19 effects remain unclear. Preliminary outcomes from clinical trials in several countries have generated controversial results. The desperation to control the pandemic overrode the concerns regarding the serious adverse effects of chloroquine derivatives and combination drugs, including lethal arrhythmias and cardiomyopathy. The risks of these treatments have become more complex as a result of findings that COVID-19 is actually a multisystem disease. While respiratory symptoms are the major clinical manifestations, cardiovascular abnormalities, including arrhythmias, myocarditis, heart failure, and ischemic stroke, have been reported in a significant number of COVID-19 patients. Patients with preexisting cardiovascular conditions (hypertension, arrhythmias, etc.) are at increased risk of severe COVID-19 and death. From pharmacological and cardiovascular perspectives, therefore, the treatment of COVID-19 with chloroquine and its derivatives should be systematically evaluated, and patients should be routinely monitored for cardiovascular conditions to prevent lethal adverse events.

DOI: 10.1038/s41401-020-00519-x
PubMed: 32968208
PubMed Central: PMC7509225

Links to Exploration step

pubmed:32968208

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives.</title>
<author>
<name sortKey="Zhang, Xiao Lei" sort="Zhang, Xiao Lei" uniqKey="Zhang X" first="Xiao-Lei" last="Zhang">Xiao-Lei Zhang</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Zhuo Ming" sort="Li, Zhuo Ming" uniqKey="Li Z" first="Zhuo-Ming" last="Li">Zhuo-Ming Li</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Jian Tao" sort="Ye, Jian Tao" uniqKey="Ye J" first="Jian-Tao" last="Ye">Jian-Tao Ye</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jing" sort="Lu, Jing" uniqKey="Lu J" first="Jing" last="Lu">Jing Lu</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Lingyu Linda" sort="Ye, Lingyu Linda" uniqKey="Ye L" first="Lingyu Linda" last="Ye">Lingyu Linda Ye</name>
<affiliation>
<nlm:affiliation>Center for Phenomics of Traditional Chinese Medicine of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Chun Xiang" sort="Zhang, Chun Xiang" uniqKey="Zhang C" first="Chun-Xiang" last="Zhang">Chun-Xiang Zhang</name>
<affiliation>
<nlm:affiliation>Institute of Cardiovascular Research and the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Pei Qing" sort="Liu, Pei Qing" uniqKey="Liu P" first="Pei-Qing" last="Liu">Pei-Qing Liu</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China. liupq@mail.sysu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, Dayue D" sort="Duan, Dayue D" uniqKey="Duan D" first="Dayue D" last="Duan">Dayue D. Duan</name>
<affiliation>
<nlm:affiliation>Center for Phenomics of Traditional Chinese Medicine of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China. dduan@swmu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32968208</idno>
<idno type="pmid">32968208</idno>
<idno type="doi">10.1038/s41401-020-00519-x</idno>
<idno type="pmc">PMC7509225</idno>
<idno type="wicri:Area/Main/Corpus">000B58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives.</title>
<author>
<name sortKey="Zhang, Xiao Lei" sort="Zhang, Xiao Lei" uniqKey="Zhang X" first="Xiao-Lei" last="Zhang">Xiao-Lei Zhang</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Zhuo Ming" sort="Li, Zhuo Ming" uniqKey="Li Z" first="Zhuo-Ming" last="Li">Zhuo-Ming Li</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Jian Tao" sort="Ye, Jian Tao" uniqKey="Ye J" first="Jian-Tao" last="Ye">Jian-Tao Ye</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jing" sort="Lu, Jing" uniqKey="Lu J" first="Jing" last="Lu">Jing Lu</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Lingyu Linda" sort="Ye, Lingyu Linda" uniqKey="Ye L" first="Lingyu Linda" last="Ye">Lingyu Linda Ye</name>
<affiliation>
<nlm:affiliation>Center for Phenomics of Traditional Chinese Medicine of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Chun Xiang" sort="Zhang, Chun Xiang" uniqKey="Zhang C" first="Chun-Xiang" last="Zhang">Chun-Xiang Zhang</name>
<affiliation>
<nlm:affiliation>Institute of Cardiovascular Research and the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Pei Qing" sort="Liu, Pei Qing" uniqKey="Liu P" first="Pei-Qing" last="Liu">Pei-Qing Liu</name>
<affiliation>
<nlm:affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China. liupq@mail.sysu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, Dayue D" sort="Duan, Dayue D" uniqKey="Duan D" first="Dayue D" last="Duan">Dayue D. Duan</name>
<affiliation>
<nlm:affiliation>Center for Phenomics of Traditional Chinese Medicine of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China. dduan@swmu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta pharmacologica Sinica</title>
<idno type="eISSN">1745-7254</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (pharmacology)</term>
<term>COVID-19 (MeSH)</term>
<term>Cardiovascular Diseases (complications)</term>
<term>Chloroquine (analogs & derivatives)</term>
<term>Chloroquine (pharmacology)</term>
<term>Chloroquine (therapeutic use)</term>
<term>Coronavirus Infections (complications)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Humans (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (complications)</term>
<term>Pneumonia, Viral (drug therapy)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>Cardiovascular Diseases</term>
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>COVID-19</term>
<term>Humans</term>
<term>Pandemics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing severe pandemic. Curative drugs specific for COVID-19 are currently lacking. Chloroquine phosphate and its derivative hydroxychloroquine, which have been used in the treatment and prevention of malaria and autoimmune diseases for decades, were found to inhibit SARS-CoV-2 infection with high potency in vitro and have shown clinical and virologic benefits in COVID-19 patients. Therefore, chloroquine phosphate was first used in the treatment of COVID-19 in China. Later, under a limited emergency-use authorization from the FDA, hydroxychloroquine in combination with azithromycin was used to treat COVID-19 patients in the USA, although the mechanisms of the anti-COVID-19 effects remain unclear. Preliminary outcomes from clinical trials in several countries have generated controversial results. The desperation to control the pandemic overrode the concerns regarding the serious adverse effects of chloroquine derivatives and combination drugs, including lethal arrhythmias and cardiomyopathy. The risks of these treatments have become more complex as a result of findings that COVID-19 is actually a multisystem disease. While respiratory symptoms are the major clinical manifestations, cardiovascular abnormalities, including arrhythmias, myocarditis, heart failure, and ischemic stroke, have been reported in a significant number of COVID-19 patients. Patients with preexisting cardiovascular conditions (hypertension, arrhythmias, etc.) are at increased risk of severe COVID-19 and death. From pharmacological and cardiovascular perspectives, therefore, the treatment of COVID-19 with chloroquine and its derivatives should be systematically evaluated, and patients should be routinely monitored for cardiovascular conditions to prevent lethal adverse events.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32968208</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>04</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1745-7254</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>41</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Acta pharmacologica Sinica</Title>
<ISOAbbreviation>Acta Pharmacol Sin</ISOAbbreviation>
</Journal>
<ArticleTitle>Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives.</ArticleTitle>
<Pagination>
<MedlinePgn>1377-1386</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41401-020-00519-x</ELocationID>
<Abstract>
<AbstractText>The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing severe pandemic. Curative drugs specific for COVID-19 are currently lacking. Chloroquine phosphate and its derivative hydroxychloroquine, which have been used in the treatment and prevention of malaria and autoimmune diseases for decades, were found to inhibit SARS-CoV-2 infection with high potency in vitro and have shown clinical and virologic benefits in COVID-19 patients. Therefore, chloroquine phosphate was first used in the treatment of COVID-19 in China. Later, under a limited emergency-use authorization from the FDA, hydroxychloroquine in combination with azithromycin was used to treat COVID-19 patients in the USA, although the mechanisms of the anti-COVID-19 effects remain unclear. Preliminary outcomes from clinical trials in several countries have generated controversial results. The desperation to control the pandemic overrode the concerns regarding the serious adverse effects of chloroquine derivatives and combination drugs, including lethal arrhythmias and cardiomyopathy. The risks of these treatments have become more complex as a result of findings that COVID-19 is actually a multisystem disease. While respiratory symptoms are the major clinical manifestations, cardiovascular abnormalities, including arrhythmias, myocarditis, heart failure, and ischemic stroke, have been reported in a significant number of COVID-19 patients. Patients with preexisting cardiovascular conditions (hypertension, arrhythmias, etc.) are at increased risk of severe COVID-19 and death. From pharmacological and cardiovascular perspectives, therefore, the treatment of COVID-19 with chloroquine and its derivatives should be systematically evaluated, and patients should be routinely monitored for cardiovascular conditions to prevent lethal adverse events.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Zhang</LastName>
<ForeName>Xiao-Lei</ForeName>
<Initials>XL</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Li</LastName>
<ForeName>Zhuo-Ming</ForeName>
<Initials>ZM</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Jian-Tao</ForeName>
<Initials>JT</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Lingyu Linda</ForeName>
<Initials>LL</Initials>
<AffiliationInfo>
<Affiliation>Center for Phenomics of Traditional Chinese Medicine of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Chun-Xiang</ForeName>
<Initials>CX</Initials>
<AffiliationInfo>
<Affiliation>Institute of Cardiovascular Research and the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Pei-Qing</ForeName>
<Initials>PQ</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drug Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China. liupq@mail.sysu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Dayue D</ForeName>
<Initials>DD</Initials>
<AffiliationInfo>
<Affiliation>Center for Phenomics of Traditional Chinese Medicine of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China. dduan@swmu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acta Pharmacol Sin</MedlineTA>
<NlmUniqueID>100956087</NlmUniqueID>
<ISSNLinking>1671-4083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002318" MajorTopicYN="N">Cardiovascular Diseases</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="Y">complications</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="Y">complications</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="Y">complications</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">arrhythmias</Keyword>
<Keyword MajorTopicYN="N">cardiomyopathy</Keyword>
<Keyword MajorTopicYN="N">chloroquine</Keyword>
<Keyword MajorTopicYN="N">hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">toxicity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>31</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32968208</ArticleId>
<ArticleId IdType="doi">10.1038/s41401-020-00519-x</ArticleId>
<ArticleId IdType="pii">10.1038/s41401-020-00519-x</ArticleId>
<ArticleId IdType="pmc">PMC7509225</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Song Y, Zhang M, Yin L, Wang K, Zhou Y, Zhou M, et al. COVID-19 treatment: close to a cure? - A rapid review of pharmacotherapies for the novel coronavirus. Int J Antimicrob Agents. 2020;56:106080. https://doi.org/10.1016/j.ijantimicag.2020.106080 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.106080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. https://doi.org/10.1038/s41421-020-0156-0 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41421-020-0156-0</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69.</Citation>
</Reference>
<Reference>
<Citation>Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71:732–9.</Citation>
</Reference>
<Reference>
<Citation>Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–71.</Citation>
</Reference>
<Reference>
<Citation>Chen X, Geiger JD. Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cell Signal. 2020;109706;1–8. https://doi.org/10.1016/j.cellsig.2020.109706 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.cellsig.2020.109706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;105949:1–6. https://doi.org/10.1016/j.ijantimicag.2020.105949 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.105949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Sevestre J, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis. 2020;34:101663.</Citation>
</Reference>
<Reference>
<Citation>Gao J, Hu S. Update on use of chloroquine/hydroxychloroquine to treat coronavirus disease 2019 (COVID-19). Biosci Trends. 2020;14:156–8.</Citation>
</Reference>
<Reference>
<Citation>Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14:72–3.</Citation>
</Reference>
<Reference>
<Citation>Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96:729–46.</Citation>
</Reference>
<Reference>
<Citation>Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY. Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci. 2010;51:6030–7.</Citation>
</Reference>
<Reference>
<Citation>Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5:e00293. https://doi.org/10.1002/prp2.293 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/prp2.293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct. 2016;34:191–6.</Citation>
</Reference>
<Reference>
<Citation>Farias KJ, Machado PR, Muniz JA, Imbeloni AA, da Fonseca BA. Antiviral activity of chloroquine against dengue virus type 2 replication in Aotus monkeys. Viral Immunol. 2015;28:161–9.</Citation>
</Reference>
<Reference>
<Citation>Wang LF, Lin YS, Huang NC, Yu CY, Tsai WL, Chen JJ, et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J Interferon Cytokine Res. 2015;35:143–56.</Citation>
</Reference>
<Reference>
<Citation>Romanelli F, Smith KM, Hoven AD. Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity. Curr Pharmacol Des. 2004;10:2643–8.</Citation>
</Reference>
<Reference>
<Citation>Savarino A, Gennero L, Sperber K, Boelaert JR. The anti-HIV-1 activity of chloroquine. J Clin Virol. 2001;20:131–5.</Citation>
</Reference>
<Reference>
<Citation>Paton NI, Lee L, Xu Y, Ooi EE, Cheung YB, Archuleta S, et al. Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. Lancet Infect Dis. 2011;11:677–83.</Citation>
</Reference>
<Reference>
<Citation>Dowall SD, Bosworth A, Watson R, Bewley K, Taylor I, Rayner E, et al. Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J Gen Virol. 2015;96:3484–92.</Citation>
</Reference>
<Reference>
<Citation>Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Van RM, et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother. 2009;53:3416–21.</Citation>
</Reference>
<Reference>
<Citation>Jang CH, Choi JH, Byun MS, Jue DM. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxf). 2006;45:703–10.</Citation>
</Reference>
<Reference>
<Citation>Picot S, Peyron F, Vuillez JP, Polack B, Ambroise-Thomas P. Chloroquine inhibits tumor necrosis factor production by human macrophages in vitro. J Infect Dis. 1991;164:830. https://doi.org/10.1093/infdis/164.4.830 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/infdis/164.4.830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>van den Borne BE, Dijkmans BA, de Rooij HH, le CS, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol. 1997;24:55–60.</Citation>
</Reference>
<Reference>
<Citation>Sperber K, Quraishi H, Kalb TH, Panja A, Stecher V, Mayer L. Selective regulation of cytokine secretion by hydroxychloroquine: inhibition of interleukin 1 alpha (IL-1-alpha) and IL-6 in human monocytes and T cells. J Rheumatol. 1993;20:803–8.</Citation>
</Reference>
<Reference>
<Citation>Chandler LC, Barnard AR, Caddy SL, Patricio MI, McClements ME, Fu H, et al. Enhancement of adeno-associated virus-mediated gene therapy using hydroxychloroquine in murine and human tissues. Mol Ther Methods Clin Dev. 2019;14:77–89.</Citation>
</Reference>
<Reference>
<Citation>Hong Z, Jiang Z, Liangxi W, Guofu D, Ping L, Yongling L, et al. Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release. Int Immunopharmacol. 2004;4:223–34.</Citation>
</Reference>
<Reference>
<Citation>Zhu X, Pan Y, Li Y, Jiang Y, Shang H, Gowda DC, et al. Targeting Toll-like receptors by chloroquine protects mice from experimental cerebral malaria. Int Immunopharmacol. 2012;13:392–7.</Citation>
</Reference>
<Reference>
<Citation>Yasuda H, Leelahavanichkul A, Tsunoda S, Dear JW, Takahashi Y, Ito S, et al. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am J Physiol Ren Physiol. 2008;294:F1050–8.</Citation>
</Reference>
<Reference>
<Citation>Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig. 2018;38:653–71.</Citation>
</Reference>
<Reference>
<Citation>Chatre C, Roubille F, Vernhet H, Jorgensen C, Pers YM. Cardiac complications attributed to chloroquine and hydroxychloroquine: a systematic review of the literature. Drug Saf. 2018;41:919–31.</Citation>
</Reference>
<Reference>
<Citation>Pukrittayakamee S, Tarning J, Jittamala P, Charunwatthana P, Lawpoolsri S, Lee SJ, et al. Pharmacokinetic interactions between primaquine and chloroquine. Antimicrob Agents Chemother. 2014;58:3354–9.</Citation>
</Reference>
<Reference>
<Citation>Mzayek F, Deng H, Mather FJ, Wasilevich EC, Liu H, Hadi CM, et al. Randomized dose-ranging controlled trial of AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers. PLoS Clin Trials. 2007;2:e6.</Citation>
</Reference>
<Reference>
<Citation>Ursing J, Rombo L, Eksborg S, Larson L, Bruvoll A, Tarning J, et al. High-dose chloroquine for uncomplicated plasmodium falciparum malaria is well tolerated and causes similar QT interval prolongation as standard-dose chloroquine in children. Antimicrob Agents Chemother. 2020;64:e01846–19.</Citation>
</Reference>
<Reference>
<Citation>Sanson C, Schombert B, Filoche-Romme B, Partiseti M, Bohme GA. Electrophysiological and pharmacological characterization of human inwardly rectifying Kir2.1 channels on an automated patch-clamp platform. Assay Drug Dev Technol. 2019;17:89–99.</Citation>
</Reference>
<Reference>
<Citation>El HA, McPate MJ, Zhang Y, Zhang H, Hancox JC. Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome. J Mol Cell Cardiol. 2009;47:743–7.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez-Menchaca AA, Navarro-Polanco RA, Ferrer-Villada T, Rupp J, Sachse FB, Tristani-Firouzi M, et al. The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc Natl Acad Sci U S A. 2008;105:1364–8.</Citation>
</Reference>
<Reference>
<Citation>Noujaim SF, Stuckey JA, Ponce-Balbuena D, Ferrer-Villada T, Lopez-Izquierdo A, Pandit S, et al. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. FASEB J. 2010;24:4302–12.</Citation>
</Reference>
<Reference>
<Citation>Vicente J, Zusterzeel R, Johannesen L, Ochoa-Jimenez R, Mason JW, Sanabria C, et al. Assessment of multi-ion channel block in a phase I randomized study design: results of the CiPA phase I ECG biomarker validation study. Clin Pharmacol Ther. 2019;105:943–53.</Citation>
</Reference>
<Reference>
<Citation>Traebert M, Dumotier B, Meister L, Hoffmann P, Dominguez-Estevez M, Suter W. Inhibition of hERG K
<sup>+</sup>
currents by antimalarial drugs in stably transfected HEK293 cells. Eur J Pharmacol. 2004;484:41–8.</Citation>
</Reference>
<Reference>
<Citation>Wagner M, Riepe KG, Eberhardt E, Volk T. Open channel block of the fast transient outward K
<sup>+</sup>
current by primaquine and chloroquine in rat left ventricular cardiomyocytes. Eur J Pharmacol. 2010;647:13–20.</Citation>
</Reference>
<Reference>
<Citation>Ponce-Balbuena D, Rodriguez-Menchaca AA, Lopez-Izquierdo A, Ferrer T, Kurata HT, Nichols CG, et al. Molecular mechanisms of chloroquine inhibition of heterologously expressed Kir6.2/SUR2A channels. Mol Pharmacol. 2012;82:803–13.</Citation>
</Reference>
<Reference>
<Citation>Noujaim SF, Stuckey JA, Ponce-Balbuena D, Ferrer-Villada T, Lopez-Izquierdo A, Pandit SV, et al. Structural bases for the different anti-fibrillatory effects of chloroquine and quinidine. Cardiovasc Res. 2011;89:862–9.</Citation>
</Reference>
<Reference>
<Citation>Lopez-Izquierdo A, Ponce-Balbuena D, Ferrer T, Sachse FB, Tristani-Firouzi M, Sanchez-Chapula JA. Chloroquine blocks a mutant Kir2.1 channel responsible for short QT syndrome and normalizes repolarization properties in silico. Cell Physiol Biochem. 2009;24:153–60.</Citation>
</Reference>
<Reference>
<Citation>Liu CF, Liu QH, Liu EL, Zhai XW, Zhang L, Luo TE, et al. Activation of I
<sub>K1</sub>
channel by zacopride attenuates left ventricular remodeling in rats with myocardial infarction. J Cardiovasc Pharmacol. 2014;64:345–56.</Citation>
</Reference>
<Reference>
<Citation>Liu QH, Qiao X, Zhang LJ, Wang J, Zhang L, Zhai XW, et al. I
<sub>K1</sub>
channel agonist zacopride alleviates cardiac hypertrophy and failure via alterations in calcium dyshomeostasis and electrical remodeling in rats. Front Pharmacol. 2019;10:929. https://doi.org/10.3389/fphar.2019.00929 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/fphar.2019.00929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Borsini F, Crumb W, Pace S, Ubben D, Wible B, Yan GX, et al. In vitro cardiovascular effects of dihydroartemisin-piperaquine combination compared with other antimalarials. Antimicrob Agents Chemother. 2012;56:3261–70.</Citation>
</Reference>
<Reference>
<Citation>Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001;104:569–80.</Citation>
</Reference>
<Reference>
<Citation>Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. Aging and Autophagy in the Heart. Circ Res. 2016;118:1563–76.</Citation>
</Reference>
<Reference>
<Citation>Ryter SW, Bhatia D, Choi ME. Autophagy: a lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid Redox Signal. 2019;30:138–59.</Citation>
</Reference>
<Reference>
<Citation>Abdellatif M, Ljubojevic-Holzer S, Madeo F, Sedej S. Autophagy in cardiovascular health and disease. Prog Mol Biol Transl Sci. 2020;172:87–106.</Citation>
</Reference>
<Reference>
<Citation>Bonam SR, Muller S, Bayry J, Klionsky DJ. Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine. Autophagy. 2020;1–7</Citation>
</Reference>
<Reference>
<Citation>Yan Y, Finkel T. Autophagy as a regulator of cardiovascular redox homeostasis. Free Radic Biol Med. 2017;109:108–13.</Citation>
</Reference>
<Reference>
<Citation>Jimenez RE, Kubli DA, Gustafsson AB. Autophagy and mitophagy in the myocardium: therapeutic potential and concerns. Br J Pharmacol. 2014;171:1907–16.</Citation>
</Reference>
<Reference>
<Citation>Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta. 2015;1852:252–61.</Citation>
</Reference>
<Reference>
<Citation>Chaanine AH, Gordon RE, Nonnenmacher M, Kohlbrenner E, Benard L, Hajjar RJ. High-dose chloroquine is metabolically cardiotoxic by inducing lysosomes and mitochondria dysfunction in a rat model of pressure overload hypertrophy. Physiol Rep. 2015;3:e12413. https://doi.org/10.14814/phy2.12413 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.14814/phy2.12413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhang H, Yin Y, Liu Y, Zou G, Huang H, Qian P, et al. Necroptosis mediated by impaired autophagy flux contributes to adverse ventricular remodeling after myocardial infarction. Biochem Pharmacol. 2020;175:113915.</Citation>
</Reference>
<Reference>
<Citation>Bartlett JJ, Trivedi PC, Pulinilkunnil T. Autophagic dysregulation in doxorubicin cardiomyopathy. J Mol Cell Cardiol. 2017;104:1–8.</Citation>
</Reference>
<Reference>
<Citation>Fu S, Chen L, Wu Y, Tang Y, Tang L, Zhong Y, et al. Gastrodin pretreatment alleviates myocardial ischemia/reperfusion injury through promoting autophagic flux. Biochem Biophys Res Commun. 2018;503:2421–8.</Citation>
</Reference>
<Reference>
<Citation>Liu S, Chen S, Li M, Zhang B, Shen P, Liu P, et al. Autophagy activation attenuates angiotensin II-induced cardiac fibrosis. Arch Biochem Biophys. 2016;590:37–47.</Citation>
</Reference>
<Reference>
<Citation>Zhang J, Nadtochiy SM, Urciuoli WR, Brookes PS. The cardioprotective compound cloxyquin uncouples mitochondria and induces autophagy. Am J Physiol Heart Circ Physiol. 2016;310:H29–38.</Citation>
</Reference>
<Reference>
<Citation>Zuo Z, Zuo PF, Sheng ZL, Wang X, Ding JD, Ma GS. Tetramethylprazine attenuates myocardial ischemia/reperfusion injury through modulation of autophagy. Life Sci. 2019;239:117016.</Citation>
</Reference>
<Reference>
<Citation>Qiao SG, Sun Y, Sun B, Wang A, Qiu J, Hong L, et al. Sevoflurane postconditioning protects against myocardial ischemia/reperfusion injury by restoring autophagic flux via an NO-dependent mechanism. Acta Pharmacol Sin. 2019;40:35–45.</Citation>
</Reference>
<Reference>
<Citation>Yan J, Yan JY, Wang YX, Ling YN, Song XD, Wang SY, et al. Spermidine-enhanced autophagic flux improves cardiac dysfunction following myocardial infarction by targeting the AMPK/mTOR signalling pathway. Br J Pharmacol. 2019;176:3126–42.</Citation>
</Reference>
<Reference>
<Citation>Yu T, Liu D, Gao M, Yang P, Zhang M, Song F, et al. Dexmedetomidine prevents septic myocardial dysfunction in rats via activation of alpha7nAChR and PI3K/Akt- mediated autophagy. Biomed Pharmacother. 2019;120:109231.</Citation>
</Reference>
<Reference>
<Citation>Guo L, Xu JM, Mo XY. Ischemic postconditioning regulates cardiomyocyte autophagic activity following ischemia/reperfusion injury. Mol Med Rep. 2015;12:1169–76.</Citation>
</Reference>
<Reference>
<Citation>Wu X, Zheng D, Qin Y, Liu Z, Zhang G, Zhu X, et al. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux. Biochem Biophys Res Commun. 2017;492:262–8.</Citation>
</Reference>
<Reference>
<Citation>Murphy KR, Baggett B, Cooper LL, Lu Y, Uchi J, Sedivy JM, et al. Enhancing autophagy diminishes aberrant Ca
<sup>2+</sup>
homeostasis and arrhythmogenesis in aging rabbit hearts. Front Physiol. 2019;10:1277.</Citation>
</Reference>
<Reference>
<Citation>Cameron MC, Word AP, Dominguez A. Hydroxychloroquine-induced fatal toxic epidermal necrolysis complicated by angioinvasive rhizopus. Dermatol Online J. 2014;20:13030.</Citation>
</Reference>
<Reference>
<Citation>Volpe A, Marchetta A, Caramaschi P, Biasi D, Bambara LM, Arcaro G. Hydroxychloroquine-induced DRESS syndrome. Clin Rheumatol. 2008;27:537–9.</Citation>
</Reference>
<Reference>
<Citation>Li C, Zu S, Deng YQ, Li D, Parvatiyar K, Quanquin N, et al. Azithromycin protects against Zika virus infection by upregulating virus-induced type I and III interferon responses. Antimicrob Agents Chemother. 2019;63:e00394–19.</Citation>
</Reference>
<Reference>
<Citation>Tran DH, Sugamata R, Hirose T, Suzuki S, Noguchi Y, Sugawara A, et al. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process. J Antibiot. 2019;72:759–68.</Citation>
</Reference>
<Reference>
<Citation>Ersoy B, Aktan B, Kilic K, Sakat MS, Sipal S. The anti-inflammatory effects of erythromycin, clarithromycin, azithromycin and roxithromycin on histamine-induced otitis media with effusion in guinea pigs. J Laryngol Otol. 2018;132:579–83.</Citation>
</Reference>
<Reference>
<Citation>Mosquera RA, De Jesus-Rojas W, Stark JM, Yadav A, Jon CK, Atkins CL, et al. Role of prophylactic azithromycin to reduce airway inflammation and mortality in a RSV mouse infection model. Pediatr Pulmonol. 2018;53:567–74.</Citation>
</Reference>
<Reference>
<Citation>Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012;366:1881–90.</Citation>
</Reference>
<Reference>
<Citation>Zhang M, Xie M, Li S, Gao Y, Xue S, Huang H, et al. Electrophysiologic studies on the risks and potential mechanism underlying the proarrhythmic nature of azithromycin. Cardiovasc Toxicol. 2017;17:434–40.</Citation>
</Reference>
<Reference>
<Citation>Maisch NM, Kochupurackal JG, Sin J. Azithromycin and the risk of cardiovascular complications. J Pharm Pract. 2014;27:496–500.</Citation>
</Reference>
<Reference>
<Citation>van den Broek MPH, Mohlmann JE, Abeln BGS, Liebregts M, van Dijk VF, van de Garde EMW. Chloroquine-induced QTc prolongation in COVID-19 patients. Neth Heart J. 2020;28:406–9.</Citation>
</Reference>
<Reference>
<Citation>Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;e201834. https://doi.org/10.1001/jamacardio.2020.1834 .</Citation>
</Reference>
<Reference>
<Citation>Chorin E, Dai M, Shulman E, Wadhwani L, Bar-Cohen R, Barbhaiya C, et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med. 2020;26:808–9.</Citation>
</Reference>
<Reference>
<Citation>Sofola OA, Olude IO, Adegoke F. The effect of chronic chloroquine toxicity on blood pressure of rats. J Trop Med Hyg. 1981;84:249–52.</Citation>
</Reference>
<Reference>
<Citation>Arafa MH, Mohammad NS, Atteia HH. Rho-Kinase inhibitors ameliorate diclofenac-induced cardiotoxicity in chloroquine-treated adjuvant arthritic rats. Life Sci. 2020;254:117605.</Citation>
</Reference>
<Reference>
<Citation>Somer M, Kallio J, Pesonen U, Pyykko K, Huupponen R, Scheinin M. Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br J Clin Pharmacol. 2000;49:549–54.</Citation>
</Reference>
<Reference>
<Citation>Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.</Citation>
</Reference>
<Reference>
<Citation>Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17:259–60.</Citation>
</Reference>
<Reference>
<Citation>Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–9.</Citation>
</Reference>
<Reference>
<Citation>Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA. 2020. https://doi.org/10.1001/jama.2020.2648 .</Citation>
</Reference>
<Reference>
<Citation>Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.</Citation>
</Reference>
<Reference>
<Citation>Boukhris M, Hillani A, Moroni F, Annabi MS, Addad F, Ribeiro MH, et al. Cardiovascular implications of the COVID-19 pandemic: a global perspective. Can J Cardiol. 2020;36:1068–80.</Citation>
</Reference>
<Reference>
<Citation>Labo N, Ohnuki H, Tosato G. Vasculopathy and coagulopathy associated with SARS-CoV-2 infection. Cells. 2020;9:1583. https://doi.org/10.3390/cells9071583 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3390/cells9071583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mondal R, Lahiri D, Deb S, Bandyopadhyay D, Shome G, Sarkar S, et al. COVID-19: are we dealing with a multisystem vasculopathy in disguise of a viral infection? J Thromb Thrombolysis. 2020; 1–13. https://doi.org/10.1007/s11239-020-02210-8 .</Citation>
</Reference>
<Reference>
<Citation>Albini A, Di GG, Noonan DM, Lombardo M. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies. Intern Emerg Med. 2020;15:759–66.</Citation>
</Reference>
<Reference>
<Citation>Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116:1097–100.</Citation>
</Reference>
<Reference>
<Citation>Lippi G, Wong J, Henry BM. Hypertension and its severity or mortality in Coronavirus Disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med. 2020;130:304–9.</Citation>
</Reference>
<Reference>
<Citation>Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;63:390–1.</Citation>
</Reference>
<Reference>
<Citation>Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020;58:1131–4.</Citation>
</Reference>
<Reference>
<Citation>Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1–8. https://doi.org/10.1001/jamacardio.2020.1017 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jamacardio.2020.1017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1–6. https://doi.org/10.1001/jamacardio.2020.1096 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jamacardio.2020.1096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wu Q, Zhou L, Sun X, Yan Z, Hu C, Wu J, et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep. 2017;7:9110.</Citation>
</Reference>
<Reference>
<Citation>Antonio GE, Wong KT, Hui DS, Wu A, Lee N, Yuen EH, et al. Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology. 2003;228:810–5.</Citation>
</Reference>
<Reference>
<Citation>Hong N, Du XK. Avascular necrosis of bone in severe acute respiratory syndrome. Clin Radiol. 2004;59:602–8.</Citation>
</Reference>
<Reference>
<Citation>Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185–92.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63:364–74.</Citation>
</Reference>
<Reference>
<Citation>Liang JW, Reynolds AS, Reilly K, Lay C, Kellner CP, Shigematsu T, et al. COVID-19 and decompressive hemicraniectomy for acute ischemic stroke. Stroke. 2020;51:e215–18.</Citation>
</Reference>
<Reference>
<Citation>Reddy ST, Garg T, Shah C, Nascimento FA, Imran R, Kan P, et al. Cerebrovascular disease in patients with COVID-19: a review of the literature and case series. Case Rep. Neurol. 2020;12:199–209.</Citation>
</Reference>
<Reference>
<Citation>Saggese CE, Del BC, Di Ruzza MR, Magarelli M, Gandini R, Plocco M. COVID-19 and stroke: casual or causal role? Cerebrovasc Dis. 2020;49:341–4.</Citation>
</Reference>
<Reference>
<Citation>Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–8.</Citation>
</Reference>
<Reference>
<Citation>Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020;55:1–8.</Citation>
</Reference>
<Reference>
<Citation>Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia – a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020;14:395–403.</Citation>
</Reference>
<Reference>
<Citation>Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.</Citation>
</Reference>
<Reference>
<Citation>Henry BM, Aggarwal G, Wong J, Benoit S, Vikse J, Plebani M, et al. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: a pooled analysis. Am J Emerg Med. 2020;38:1722–6.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020;81:e6–12.</Citation>
</Reference>
<Reference>
<Citation>Chen ZHJ, Zhang Z, Jiang S, Han S, Yan D, Zhuang R, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv. 2020; 2020.03.22.20040758.</Citation>
</Reference>
<Reference>
<Citation>Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. J Zhejing Univ (Med Sci). 2020;49:215–9.</Citation>
</Reference>
<Reference>
<Citation>Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 2020;50:384. https://doi.org/10.1016/j.medmal.2020.03.006 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.medmal.2020.03.006</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32968208
   |texte=   Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32968208" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021