Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tissue distributions of antiviral drugs affect their capabilities of reducing viral loads in COVID-19 treatment.

Identifieur interne : 000A75 ( Main/Corpus ); précédent : 000A74; suivant : 000A76

Tissue distributions of antiviral drugs affect their capabilities of reducing viral loads in COVID-19 treatment.

Auteurs : Yan Wang ; Lei Chen

Source :

RBID : pubmed:33031797

English descriptors

Abstract

Repurposing of approved antiviral drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising strategy to treat Coronavirus disease 2019 (COVID-19) patients. Previously we reported our hypothesis that the antiviral drugs with high lung distributions might benefit COVID-19 patients by reducing viral loads. So far, chloroquine, lopinavir, hydroxychloroquine, azithromycin, favipiravir, ribavirin, darunavir, remdesivir, and umifenovir have been tested in COVID-19 clinical trials. Here we validated our hypothesis by comparing the pharmacokinetics profiles of these drugs and their capabilities of reducing viral load in clinical trials. According to bulk RNA and single cell RNA sequencing analysis, we found that high expression of both angiotensin converting enzyme 2 (ACE2) and transmembrane Serine Protease 2 (TMPRSS2) makes the lung and intestine vulnerable to SARS-CoV-2. Hydroxychloroquine, chloroquine, and favipiravir, which were highly distributed to the lung, were reported to reduce viral loads in respiratory tract of COVID-19 patients. Conversely, drugs with poor lung distributions, including lopinavir/ritonavir, umifenovir and remdesivir, were insufficient to inhibit viral replication. Lopinavir/ritonavir might inhibit SARS-CoV-2 in the GI tract according to their distribution profiles. We concluded here that the antiviral drugs should be distributed straight to the lung tissue for reducing viral loads in respiratory tract of COVID-19 patients. Additionally, to better evaluate antiviral effects of drugs that target the intestine, the stool samples should also be collected for viral RNA test in the future.

DOI: 10.1016/j.ejphar.2020.173634
PubMed: 33031797
PubMed Central: PMC7536545

Links to Exploration step

pubmed:33031797

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tissue distributions of antiviral drugs affect their capabilities of reducing viral loads in COVID-19 treatment.</title>
<author>
<name sortKey="Wang, Yan" sort="Wang, Yan" uniqKey="Wang Y" first="Yan" last="Wang">Yan Wang</name>
<affiliation>
<nlm:affiliation>Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China. Electronic address: yan.wang@siat.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Lei" sort="Chen, Lei" uniqKey="Chen L" first="Lei" last="Chen">Lei Chen</name>
<affiliation>
<nlm:affiliation>Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA. Electronic address: lchen@dls.rutgers.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33031797</idno>
<idno type="pmid">33031797</idno>
<idno type="doi">10.1016/j.ejphar.2020.173634</idno>
<idno type="pmc">PMC7536545</idno>
<idno type="wicri:Area/Main/Corpus">000A75</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A75</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tissue distributions of antiviral drugs affect their capabilities of reducing viral loads in COVID-19 treatment.</title>
<author>
<name sortKey="Wang, Yan" sort="Wang, Yan" uniqKey="Wang Y" first="Yan" last="Wang">Yan Wang</name>
<affiliation>
<nlm:affiliation>Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China. Electronic address: yan.wang@siat.ac.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Lei" sort="Chen, Lei" uniqKey="Chen L" first="Lei" last="Chen">Lei Chen</name>
<affiliation>
<nlm:affiliation>Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA. Electronic address: lchen@dls.rutgers.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">European journal of pharmacology</title>
<idno type="eISSN">1879-0712</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angiotensin-Converting Enzyme 2 (biosynthesis)</term>
<term>Antiviral Agents (pharmacokinetics)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>COVID-19 (drug therapy)</term>
<term>Humans (MeSH)</term>
<term>Lung (metabolism)</term>
<term>Pandemics (MeSH)</term>
<term>SARS-CoV-2 (drug effects)</term>
<term>Serine Endopeptidases (biosynthesis)</term>
<term>Tissue Distribution (MeSH)</term>
<term>Viral Load (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Angiotensin-Converting Enzyme 2</term>
<term>Serine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>SARS-CoV-2</term>
<term>Viral Load</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Pandemics</term>
<term>Tissue Distribution</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Repurposing of approved antiviral drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising strategy to treat Coronavirus disease 2019 (COVID-19) patients. Previously we reported our hypothesis that the antiviral drugs with high lung distributions might benefit COVID-19 patients by reducing viral loads. So far, chloroquine, lopinavir, hydroxychloroquine, azithromycin, favipiravir, ribavirin, darunavir, remdesivir, and umifenovir have been tested in COVID-19 clinical trials. Here we validated our hypothesis by comparing the pharmacokinetics profiles of these drugs and their capabilities of reducing viral load in clinical trials. According to bulk RNA and single cell RNA sequencing analysis, we found that high expression of both angiotensin converting enzyme 2 (ACE2) and transmembrane Serine Protease 2 (TMPRSS2) makes the lung and intestine vulnerable to SARS-CoV-2. Hydroxychloroquine, chloroquine, and favipiravir, which were highly distributed to the lung, were reported to reduce viral loads in respiratory tract of COVID-19 patients. Conversely, drugs with poor lung distributions, including lopinavir/ritonavir, umifenovir and remdesivir, were insufficient to inhibit viral replication. Lopinavir/ritonavir might inhibit SARS-CoV-2 in the GI tract according to their distribution profiles. We concluded here that the antiviral drugs should be distributed straight to the lung tissue for reducing viral loads in respiratory tract of COVID-19 patients. Additionally, to better evaluate antiviral effects of drugs that target the intestine, the stool samples should also be collected for viral RNA test in the future.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33031797</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>12</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0712</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>889</Volume>
<PubDate>
<Year>2020</Year>
<Month>Dec</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>European journal of pharmacology</Title>
<ISOAbbreviation>Eur J Pharmacol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tissue distributions of antiviral drugs affect their capabilities of reducing viral loads in COVID-19 treatment.</ArticleTitle>
<Pagination>
<MedlinePgn>173634</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0014-2999(20)30726-3</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ejphar.2020.173634</ELocationID>
<Abstract>
<AbstractText>Repurposing of approved antiviral drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising strategy to treat Coronavirus disease 2019 (COVID-19) patients. Previously we reported our hypothesis that the antiviral drugs with high lung distributions might benefit COVID-19 patients by reducing viral loads. So far, chloroquine, lopinavir, hydroxychloroquine, azithromycin, favipiravir, ribavirin, darunavir, remdesivir, and umifenovir have been tested in COVID-19 clinical trials. Here we validated our hypothesis by comparing the pharmacokinetics profiles of these drugs and their capabilities of reducing viral load in clinical trials. According to bulk RNA and single cell RNA sequencing analysis, we found that high expression of both angiotensin converting enzyme 2 (ACE2) and transmembrane Serine Protease 2 (TMPRSS2) makes the lung and intestine vulnerable to SARS-CoV-2. Hydroxychloroquine, chloroquine, and favipiravir, which were highly distributed to the lung, were reported to reduce viral loads in respiratory tract of COVID-19 patients. Conversely, drugs with poor lung distributions, including lopinavir/ritonavir, umifenovir and remdesivir, were insufficient to inhibit viral replication. Lopinavir/ritonavir might inhibit SARS-CoV-2 in the GI tract according to their distribution profiles. We concluded here that the antiviral drugs should be distributed straight to the lung tissue for reducing viral loads in respiratory tract of COVID-19 patients. Additionally, to better evaluate antiviral effects of drugs that target the intestine, the stool samples should also be collected for viral RNA test in the future.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China. Electronic address: yan.wang@siat.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA. Electronic address: lchen@dls.rutgers.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Eur J Pharmacol</MedlineTA>
<NlmUniqueID>1254354</NlmUniqueID>
<ISSNLinking>0014-2999</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.23</RegistryNumber>
<NameOfSubstance UI="C000705307">ACE2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.23</RegistryNumber>
<NameOfSubstance UI="D000085962">Angiotensin-Converting Enzyme 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C486977">transmembrane serine protease 2, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000085962" MajorTopicYN="N">Angiotensin-Converting Enzyme 2</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014018" MajorTopicYN="N">Tissue Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019562" MajorTopicYN="N">Viral Load</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antiviral drugs</Keyword>
<Keyword MajorTopicYN="N">Chloroquine</Keyword>
<Keyword MajorTopicYN="N">Coronavirus disease 2019</Keyword>
<Keyword MajorTopicYN="N">Favipiravir</Keyword>
<Keyword MajorTopicYN="N">Hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">Tissue distribution</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>08</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>20</Hour>
<Minute>9</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33031797</ArticleId>
<ArticleId IdType="pii">S0014-2999(20)30726-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.ejphar.2020.173634</ArticleId>
<ArticleId IdType="pmc">PMC7536545</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Infect Dis. 2020 Aug;97:7-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32479865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Data. 2020 Jan 2;7(1):4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31896769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(9):e343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 May 28;181(5):1016-1035.e19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32413319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 May;581(7809):465-469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32235945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Gastroenterol Hepatol. 2020 May;17(5):259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32214231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2018 Apr;517:9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29217279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):271-280.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2020 Jun;178:104786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32251767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 May 7;382(19):1787-1799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32187464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2015 Sep;121:132-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26186980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 23;347(6220):1260419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25613900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 30;395(10238):1695-1704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32401715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2020 Nov;177(21):4995-4996</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32424836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 16;395(10236):1569-1578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32423584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chirality. 1995;7(8):598-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8593253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharm Res. 2004 Sep;21(9):1622-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2018 Jun;36(5):411-420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29608179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 May 11;545(7653):238-242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28467820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Dec 16;91(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27733646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AAPS J. 2020 May 26;22(4):77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32458279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 Jun;20(6):697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32224310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2019 Jun 13;177(7):1888-1902.e21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31178118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2020 Mar;63(3):364-374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32048163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 1997 Apr;25(4):489-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9107549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Pharmacol. 2003 Dec;55(12):1647-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14738591</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000A75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33031797
   |texte=   Tissue distributions of antiviral drugs affect their capabilities of reducing viral loads in COVID-19 treatment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33031797" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021