Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

System biological investigations of hydroxychloroquine and azithromycin targets and their implications in QT interval prolongation.

Identifieur interne : 000953 ( Main/Corpus ); précédent : 000952; suivant : 000954

System biological investigations of hydroxychloroquine and azithromycin targets and their implications in QT interval prolongation.

Auteurs : Abdul Arif Khan ; Zakir Khan

Source :

RBID : pubmed:33098839

English descriptors

Abstract

COVID-2019 pandemic is affecting people worldwide in the absence of an effective treatment strategy. Several suggestive therapeutic options through drug repurposing are recommended, but a complete consensus is not reached. A combination of Hydroxychloroquine (HCQ) and Azithromycin (AZM) has been widely tried and discussed but its administration has also led to potential adversities in patients. Studies are suggesting that most prominent adverse event with HCQ and AZM combination is QT interval prolongation. We studied interaction of HCQ with AZM and subsequent effect of this drug combination on QT interval prolongation. We performed system biological investigation of HCQ and AZM targets and screened important targets and pathways possibly involved in QT interval prolongation. The best core hub protein drug targets involved in QT interval prolongation were identified as HSP90AA1 exclusively associated with HCQ, while AKT1 exclusively associated with AZM on the basis of node degree value. It was found that PI3K/Akt, VEGF, ERBB2 pathways must be given consideration for understanding the role of HCQ and AZM in QT interval prolongation. Conclusion: Computational methods have certain limitations based on source database coverage and prediction algorithms and therefore this data needs experimental correlation to draw final conclusion, but current findings screen targets for QT interval prolongation associated with HCQ and AZM. These proteins and pathways may provide ways to reduce this major risk associated with this combination.

DOI: 10.1016/j.cbi.2020.109299
PubMed: 33098839
PubMed Central: PMC7578186

Links to Exploration step

pubmed:33098839

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">System biological investigations of hydroxychloroquine and azithromycin targets and their implications in QT interval prolongation.</title>
<author>
<name sortKey="Khan, Abdul Arif" sort="Khan, Abdul Arif" uniqKey="Khan A" first="Abdul Arif" last="Khan">Abdul Arif Khan</name>
<affiliation>
<nlm:affiliation>Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, 411026, India. Electronic address: abdularifkhan@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khan, Zakir" sort="Khan, Zakir" uniqKey="Khan Z" first="Zakir" last="Khan">Zakir Khan</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Sciences, Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Davis Bldg. Rm. 2014 8700 Beverly Blvd. Los Angeles, CA, 90048, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33098839</idno>
<idno type="pmid">33098839</idno>
<idno type="doi">10.1016/j.cbi.2020.109299</idno>
<idno type="pmc">PMC7578186</idno>
<idno type="wicri:Area/Main/Corpus">000953</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000953</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">System biological investigations of hydroxychloroquine and azithromycin targets and their implications in QT interval prolongation.</title>
<author>
<name sortKey="Khan, Abdul Arif" sort="Khan, Abdul Arif" uniqKey="Khan A" first="Abdul Arif" last="Khan">Abdul Arif Khan</name>
<affiliation>
<nlm:affiliation>Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, 411026, India. Electronic address: abdularifkhan@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khan, Zakir" sort="Khan, Zakir" uniqKey="Khan Z" first="Zakir" last="Khan">Zakir Khan</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Sciences, Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Davis Bldg. Rm. 2014 8700 Beverly Blvd. Los Angeles, CA, 90048, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemico-biological interactions</title>
<idno type="eISSN">1872-7786</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Azithromycin (adverse effects)</term>
<term>Azithromycin (therapeutic use)</term>
<term>COVID-19 (complications)</term>
<term>COVID-19 (drug therapy)</term>
<term>COVID-19 (epidemiology)</term>
<term>Drug Combinations (MeSH)</term>
<term>HSP90 Heat-Shock Proteins (genetics)</term>
<term>HSP90 Heat-Shock Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (adverse effects)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Long QT Syndrome (etiology)</term>
<term>Pandemics (MeSH)</term>
<term>Protein Interaction Maps (MeSH)</term>
<term>Proto-Oncogene Proteins c-akt (genetics)</term>
<term>Proto-Oncogene Proteins c-akt (metabolism)</term>
<term>SARS-CoV-2 (drug effects)</term>
<term>Signal Transduction (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Azithromycin</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>HSP90 Heat-Shock Proteins</term>
<term>Proto-Oncogene Proteins c-akt</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>HSP90 Heat-Shock Proteins</term>
<term>Proto-Oncogene Proteins c-akt</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Azithromycin</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>SARS-CoV-2</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Long QT Syndrome</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Drug Combinations</term>
<term>Humans</term>
<term>Pandemics</term>
<term>Protein Interaction Maps</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">COVID-2019 pandemic is affecting people worldwide in the absence of an effective treatment strategy. Several suggestive therapeutic options through drug repurposing are recommended, but a complete consensus is not reached. A combination of Hydroxychloroquine (HCQ) and Azithromycin (AZM) has been widely tried and discussed but its administration has also led to potential adversities in patients. Studies are suggesting that most prominent adverse event with HCQ and AZM combination is QT interval prolongation. We studied interaction of HCQ with AZM and subsequent effect of this drug combination on QT interval prolongation. We performed system biological investigation of HCQ and AZM targets and screened important targets and pathways possibly involved in QT interval prolongation. The best core hub protein drug targets involved in QT interval prolongation were identified as HSP90AA1 exclusively associated with HCQ, while AKT1 exclusively associated with AZM on the basis of node degree value. It was found that PI3K/Akt, VEGF, ERBB2 pathways must be given consideration for understanding the role of HCQ and AZM in QT interval prolongation. Conclusion: Computational methods have certain limitations based on source database coverage and prediction algorithms and therefore this data needs experimental correlation to draw final conclusion, but current findings screen targets for QT interval prolongation associated with HCQ and AZM. These proteins and pathways may provide ways to reduce this major risk associated with this combination.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33098839</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>12</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-7786</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>332</Volume>
<PubDate>
<Year>2020</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Chemico-biological interactions</Title>
<ISOAbbreviation>Chem Biol Interact</ISOAbbreviation>
</Journal>
<ArticleTitle>System biological investigations of hydroxychloroquine and azithromycin targets and their implications in QT interval prolongation.</ArticleTitle>
<Pagination>
<MedlinePgn>109299</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0009-2797(20)31579-9</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cbi.2020.109299</ELocationID>
<Abstract>
<AbstractText>COVID-2019 pandemic is affecting people worldwide in the absence of an effective treatment strategy. Several suggestive therapeutic options through drug repurposing are recommended, but a complete consensus is not reached. A combination of Hydroxychloroquine (HCQ) and Azithromycin (AZM) has been widely tried and discussed but its administration has also led to potential adversities in patients. Studies are suggesting that most prominent adverse event with HCQ and AZM combination is QT interval prolongation. We studied interaction of HCQ with AZM and subsequent effect of this drug combination on QT interval prolongation. We performed system biological investigation of HCQ and AZM targets and screened important targets and pathways possibly involved in QT interval prolongation. The best core hub protein drug targets involved in QT interval prolongation were identified as HSP90AA1 exclusively associated with HCQ, while AKT1 exclusively associated with AZM on the basis of node degree value. It was found that PI3K/Akt, VEGF, ERBB2 pathways must be given consideration for understanding the role of HCQ and AZM in QT interval prolongation. Conclusion: Computational methods have certain limitations based on source database coverage and prediction algorithms and therefore this data needs experimental correlation to draw final conclusion, but current findings screen targets for QT interval prolongation associated with HCQ and AZM. These proteins and pathways may provide ways to reduce this major risk associated with this combination.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Khan</LastName>
<ForeName>Abdul Arif</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, 411026, India. Electronic address: abdularifkhan@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khan</LastName>
<ForeName>Zakir</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Sciences, Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Davis Bldg. Rm. 2014 8700 Beverly Blvd. Los Angeles, CA, 90048, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Ireland</Country>
<MedlineTA>Chem Biol Interact</MedlineTA>
<NlmUniqueID>0227276</NlmUniqueID>
<ISSNLinking>0009-2797</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004338">Drug Combinations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018841">HSP90 Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C112969">HSP90AA1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>83905-01-5</RegistryNumber>
<NameOfSubstance UI="D017963">Azithromycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C494918">AKT1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017963" MajorTopicYN="N">Azithromycin</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004338" MajorTopicYN="N">Drug Combinations</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018841" MajorTopicYN="N">HSP90 Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008133" MajorTopicYN="N">Long QT Syndrome</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="Y">etiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060066" MajorTopicYN="N">Protein Interaction Maps</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Adverse reactions</Keyword>
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Cardiac arrhythmia</Keyword>
<Keyword MajorTopicYN="N">Drug targets</Keyword>
<Keyword MajorTopicYN="N">Network pharmacology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33098839</ArticleId>
<ArticleId IdType="pii">S0009-2797(20)31579-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.cbi.2020.109299</ArticleId>
<ArticleId IdType="pmc">PMC7578186</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Food Funct. 2020 May 1;11(5):4765-4772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32420559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27322403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Treat Rev. 2018 Feb;63:135-143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29304463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Heart Assoc. 2020 Jun 16;9(12):e017144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32463348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2020 May;20(5):271-272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32296135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31691815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian Pacing Electrophysiol J. 2020 May - Jun;20(3):117-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32278018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Immunol Infect. 2020 Jun;53(3):436-443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32307245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AAPS J. 2020 Jun 12;22(4):86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32533263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunotherapy. 2020 Apr;12(5):269-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32212881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2020 Jan 8;48(D1):D845-D855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31680165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2019 Nov;45(6):912-919</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31469455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2020 Jul;46(4):675-684</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32449282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CMAJ. 2020 Apr 27;192(17):E450-E453</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32269021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heart Rhythm. 2020 Sep;17(9):1425-1433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32407884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evid Based Dent. 2020 Jun;21(2):64-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32591664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2015 Jan 2;116(1):127-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25552692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 2015 Jan 20;112(2):296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25349964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Med Res. 2020 May;151(5):459-467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32611916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2019 Feb 5;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30719773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W26-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24878925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Chem. 2020 Jul;100:103914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32417523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Feb 1;23(3):394-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17127678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Rev Med Pharmacol Sci. 2020 Apr;24(8):4539-4547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32373993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2018 Oct;32(10):5227-5237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29750575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Aug 15;21(16):3448-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15972284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jul 2;47(W1):W357-W364</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31106366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Cardiol. 2020 Sep 1;5(9):1036-1041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32936252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29126136</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000953 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000953 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33098839
   |texte=   System biological investigations of hydroxychloroquine and azithromycin targets and their implications in QT interval prolongation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33098839" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021