Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomic signatures and repurposing drugs for COVID-19 patients: findings of bioinformatics analyses.

Identifieur interne : 000676 ( Main/Corpus ); précédent : 000675; suivant : 000677

Transcriptomic signatures and repurposing drugs for COVID-19 patients: findings of bioinformatics analyses.

Auteurs : Guobing Li ; Shasha Ruan ; Xiaolu Zhao ; Qi Liu ; Yali Dou ; Fengbiao Mao

Source :

RBID : pubmed:33312453

Abstract

The novel coronavirus SARS-CoV-2 is damaging the world's social and economic fabrics seriously. Effective drugs are urgently needed to decrease the high mortality rate of COVID-19 patients. Unfortunately, effective antiviral drugs or vaccines are currently unavailable. Herein, we systematically evaluated the effect of SARS-CoV-2 on gene expression of both lung tissue and blood from COVID-19 patients using transcriptome profiling. Differential gene expression analysis revealed potential core mechanism of COVID-19-induced pneumonia in which IFN-α, IFN-β, IFN-γ, TNF and IL6 triggered cytokine storm mediated by neutrophil, macrophage, B and DC cells. Weighted gene correlation network analysis identified two gene modules that are highly correlated with clinical traits of COVID-19 patients, and confirmed that over-activation of immune system-mediated cytokine release syndrome is the underlying pathogenic mechanism for acute phase of COVID-19 infection. It suggested that anti-inflammatory therapies may be promising regimens for COVID-19 patients. Furthermore, drug repurposing analysis of thousands of drugs revealed that TNFα inhibitor etanercept and γ-aminobutyric acid-B receptor (GABABR) agonist baclofen showed most significant reversal power to COVID-19 gene signature, so we are highly optimistic about their clinical use for COVID-19 treatment. In addition, our results suggested that adalimumab, tocilizumab, rituximab and glucocorticoids may also have beneficial effects in restoring normal transcriptome, but not chloroquine, hydroxychloroquine or interferons. Controlled clinical trials of these candidate drugs are needed in search of effective COVID-19 treatment in current crisis.

DOI: 10.1016/j.csbj.2020.11.056
PubMed: 33312453
PubMed Central: PMC7719282

Links to Exploration step

pubmed:33312453

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomic signatures and repurposing drugs for COVID-19 patients: findings of bioinformatics analyses.</title>
<author>
<name sortKey="Li, Guobing" sort="Li, Guobing" uniqKey="Li G" first="Guobing" last="Li">Guobing Li</name>
<affiliation>
<nlm:affiliation>Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruan, Shasha" sort="Ruan, Shasha" uniqKey="Ruan S" first="Shasha" last="Ruan">Shasha Ruan</name>
<affiliation>
<nlm:affiliation>Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>The First Clinical College of Wuhan University, Wuhan, Hubei 430060, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Xiaolu" sort="Zhao, Xiaolu" uniqKey="Zhao X" first="Xiaolu" last="Zhao">Xiaolu Zhao</name>
<affiliation>
<nlm:affiliation>Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Qi" sort="Liu, Qi" uniqKey="Liu Q" first="Qi" last="Liu">Qi Liu</name>
<affiliation>
<nlm:affiliation>Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dou, Yali" sort="Dou, Yali" uniqKey="Dou Y" first="Yali" last="Dou">Yali Dou</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mao, Fengbiao" sort="Mao, Fengbiao" uniqKey="Mao F" first="Fengbiao" last="Mao">Fengbiao Mao</name>
<affiliation>
<nlm:affiliation>Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33312453</idno>
<idno type="pmid">33312453</idno>
<idno type="doi">10.1016/j.csbj.2020.11.056</idno>
<idno type="pmc">PMC7719282</idno>
<idno type="wicri:Area/Main/Corpus">000676</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000676</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomic signatures and repurposing drugs for COVID-19 patients: findings of bioinformatics analyses.</title>
<author>
<name sortKey="Li, Guobing" sort="Li, Guobing" uniqKey="Li G" first="Guobing" last="Li">Guobing Li</name>
<affiliation>
<nlm:affiliation>Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruan, Shasha" sort="Ruan, Shasha" uniqKey="Ruan S" first="Shasha" last="Ruan">Shasha Ruan</name>
<affiliation>
<nlm:affiliation>Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>The First Clinical College of Wuhan University, Wuhan, Hubei 430060, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Xiaolu" sort="Zhao, Xiaolu" uniqKey="Zhao X" first="Xiaolu" last="Zhao">Xiaolu Zhao</name>
<affiliation>
<nlm:affiliation>Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Qi" sort="Liu, Qi" uniqKey="Liu Q" first="Qi" last="Liu">Qi Liu</name>
<affiliation>
<nlm:affiliation>Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dou, Yali" sort="Dou, Yali" uniqKey="Dou Y" first="Yali" last="Dou">Yali Dou</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mao, Fengbiao" sort="Mao, Fengbiao" uniqKey="Mao F" first="Fengbiao" last="Mao">Fengbiao Mao</name>
<affiliation>
<nlm:affiliation>Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Computational and structural biotechnology journal</title>
<idno type="ISSN">2001-0370</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The novel coronavirus SARS-CoV-2 is damaging the world's social and economic fabrics seriously. Effective drugs are urgently needed to decrease the high mortality rate of COVID-19 patients. Unfortunately, effective antiviral drugs or vaccines are currently unavailable. Herein, we systematically evaluated the effect of SARS-CoV-2 on gene expression of both lung tissue and blood from COVID-19 patients using transcriptome profiling. Differential gene expression analysis revealed potential core mechanism of COVID-19-induced pneumonia in which IFN-α, IFN-β, IFN-γ, TNF and IL6 triggered cytokine storm mediated by neutrophil, macrophage, B and DC cells. Weighted gene correlation network analysis identified two gene modules that are highly correlated with clinical traits of COVID-19 patients, and confirmed that over-activation of immune system-mediated cytokine release syndrome is the underlying pathogenic mechanism for acute phase of COVID-19 infection. It suggested that anti-inflammatory therapies may be promising regimens for COVID-19 patients. Furthermore, drug repurposing analysis of thousands of drugs revealed that TNFα inhibitor etanercept and γ-aminobutyric acid-B receptor (GABABR) agonist baclofen showed most significant reversal power to COVID-19 gene signature, so we are highly optimistic about their clinical use for COVID-19 treatment. In addition, our results suggested that adalimumab, tocilizumab, rituximab and glucocorticoids may also have beneficial effects in restoring normal transcriptome, but not chloroquine, hydroxychloroquine or interferons. Controlled clinical trials of these candidate drugs are needed in search of effective COVID-19 treatment in current crisis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33312453</PMID>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2001-0370</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>19</Volume>
<PubDate>
<Year>2021</Year>
</PubDate>
</JournalIssue>
<Title>Computational and structural biotechnology journal</Title>
<ISOAbbreviation>Comput Struct Biotechnol J</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomic signatures and repurposing drugs for COVID-19 patients: findings of bioinformatics analyses.</ArticleTitle>
<Pagination>
<MedlinePgn>1-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.csbj.2020.11.056</ELocationID>
<Abstract>
<AbstractText>The novel coronavirus SARS-CoV-2 is damaging the world's social and economic fabrics seriously. Effective drugs are urgently needed to decrease the high mortality rate of COVID-19 patients. Unfortunately, effective antiviral drugs or vaccines are currently unavailable. Herein, we systematically evaluated the effect of SARS-CoV-2 on gene expression of both lung tissue and blood from COVID-19 patients using transcriptome profiling. Differential gene expression analysis revealed potential core mechanism of COVID-19-induced pneumonia in which IFN-α, IFN-β, IFN-γ, TNF and IL6 triggered cytokine storm mediated by neutrophil, macrophage, B and DC cells. Weighted gene correlation network analysis identified two gene modules that are highly correlated with clinical traits of COVID-19 patients, and confirmed that over-activation of immune system-mediated cytokine release syndrome is the underlying pathogenic mechanism for acute phase of COVID-19 infection. It suggested that anti-inflammatory therapies may be promising regimens for COVID-19 patients. Furthermore, drug repurposing analysis of thousands of drugs revealed that TNFα inhibitor etanercept and γ-aminobutyric acid-B receptor (GABABR) agonist baclofen showed most significant reversal power to COVID-19 gene signature, so we are highly optimistic about their clinical use for COVID-19 treatment. In addition, our results suggested that adalimumab, tocilizumab, rituximab and glucocorticoids may also have beneficial effects in restoring normal transcriptome, but not chloroquine, hydroxychloroquine or interferons. Controlled clinical trials of these candidate drugs are needed in search of effective COVID-19 treatment in current crisis.</AbstractText>
<CopyrightInformation>© 2020 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Guobing</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruan</LastName>
<ForeName>Shasha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The First Clinical College of Wuhan University, Wuhan, Hubei 430060, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Xiaolu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dou</LastName>
<ForeName>Yali</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mao</LastName>
<ForeName>Fengbiao</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>12</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Comput Struct Biotechnol J</MedlineTA>
<NlmUniqueID>101585369</NlmUniqueID>
<ISSNLinking>2001-0370</ISSNLinking>
</MedlineJournalInfo>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>11</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>10</Hour>
<Minute>57</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33312453</ArticleId>
<ArticleId IdType="doi">10.1016/j.csbj.2020.11.056</ArticleId>
<ArticleId IdType="pii">S2001-0370(20)30523-7</ArticleId>
<ArticleId IdType="pmc">PMC7719282</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Am J Transplant. 2020 Sep;20(9):2630-2631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32400965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 May 7;382(19):1787-1799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32187464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31114916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2010 Mar 15;207(3):565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Oncol. 2018 Sep 11;8:374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30254986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Funct Foods. 2020 Aug;71:104016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32421102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1998 Apr 15;160(8):4057-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9558116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Neurol. 2020 Jun 1;77(6):683-690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32275288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2015 Jul 28;9:284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26283920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 30;395(10238):1695-1704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32401715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Feb 10;19(2):181-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26867177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2014;2014:872370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25478576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autoimmun Rev. 2015 Apr;14(4):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25462582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Psychiatry. 2020 Apr;25(4):791-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30478419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Jun;30(6):541-543</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32346074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Haematol. 2020 Jul;190(2):185-188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32557623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jul 9;383(2):120-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32437596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Urol. 2020 Apr 21;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32318855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 2;395(10234):1407-1409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32278362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Med Sci. 2020 Apr 25;16(3):490-496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32399094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 16;395(10236):1569-1578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32423584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 4;286(9):7070-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21193407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2019 Aug;37(8):907-915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31375807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2020 Dec;9(1):761-770</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32228226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2018 May;154(1):69-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29392731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D1044-D1055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30445567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Sep 26;7:12846</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27667448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 May 1;368(6490):473-474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32303591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2020 Feb 20;48(3):1192-1205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31950163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2018 Oct 19;46(5):1147-1159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30301842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 31;278(5):3308-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12403790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2018 Sep 28;9:2235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30323814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 May 21;161(5):1175-1186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26000486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2018 Oct 8;34(4):643-658.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30270123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2020 May;20(5):271-272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32296135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Jan 15;184(2):912-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20008295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2020 Sep;79(9):1251-1252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32354772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2020 Aug;54:32-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32747157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D721-D728</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30289549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2020 Jun 2;172(11):754-755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32232419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2021 Jan;80(1):e10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32312768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Nov 19;71(16):2114-2120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32427279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med (N Y). 2020 Dec 18;1(1):114-127.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32838355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2015 Aug 11;6(4):e01120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26265720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2020 Jun;156:104803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32289478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e57285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23437361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2020 May;17(5):533-535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32203188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D92-D99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29040751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2020 May 08;21(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32397174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2020 May 19;117(20):10970-10975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32350134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2016 Jun 21;44(6):1350-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27261277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2020 May 01;11:827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32425950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2020 Jul;87:18-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32240762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jun;55(6):105971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32283177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2020 Jun;79(6):737-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32295789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2020 May;38(5):510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32393915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D154-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2021 Jan 8;49(D1):D1289-D1301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33179738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2016 May;54:260-277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26851553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 May 28;181(5):1036-1045.e9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32416070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Apr 3;10(1):1523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30944313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2008 May 15;867(2):253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 28;395(10229):1033-1034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32192578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflamm Res. 2003 Aug;52(8):341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14504672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jun 11;382(24):2327-2336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32275812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 Apr 8;369:m1432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32269046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2020 Jun 10;27(6):879-882.e2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32359396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2020 Apr 23;12(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32340216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2020 Aug;54:62-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32513566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2020 Jun 1;36(11):3295-3298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32239142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 28;8(8):e74082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24015316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jul;583(7816):459-468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32353859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2020 Aug 1;116(10):1666-1687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32352535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Diabetes Endocrinol. 2020 Jun;8(6):472-473</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32334645</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000676 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000676 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33312453
   |texte=   Transcriptomic signatures and repurposing drugs for COVID-19 patients: findings of bioinformatics analyses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33312453" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021