Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recommendations for Dosing of Repurposed COVID-19 Medications in Patients with Renal and Hepatic Impairment.

Identifieur interne : 000643 ( Main/Corpus ); précédent : 000642; suivant : 000644

Recommendations for Dosing of Repurposed COVID-19 Medications in Patients with Renal and Hepatic Impairment.

Auteurs : Fiona Marra ; Elise J. Smolders ; Omar El-Sherif ; Alison Boyle ; Katherine Davidson ; Andrew J. Sommerville ; Catia Marzolini ; Marco Siccardi ; David Burger ; Sara Gibbons ; Saye Khoo ; David Back

Source :

RBID : pubmed:33336316

English descriptors

Abstract

INTRODUCTION

In December 2019, an outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began, resulting in a number of antivirals and immune modulators being repurposed to treat the associated coronavirus disease 2019 (COVID-19). Many patients requiring treatment for COVID-19 may have either pre-existing renal or hepatic disease or experience acute renal/hepatic injury as a result of the acute infection. Altered renal or hepatic function can significantly affect drug concentrations of medications due to impaired drug metabolism and excretion, resulting in toxicity or reduced efficacy. The aim of this paper is to review the pharmacokinetics and available study data for the experimental COVID-19 therapies in patients with any degree of renal or hepatic impairment to make recommendations for dosing.

METHODS

COVID-19 agents included in these recommendations were listed as primaries on the University of Liverpool COVID-19 drug interaction website ( www.covid19-druginteractions.org ), initially identified from Clinicialtrials.gov and ChicCTR.org.cn. A literature search was performed using PubMed and EMBASE as well as product licences and pharmacokinetic databases.

FINDINGS

Remdesivir, dexamethasone, azithromycin, favipiravir, lopinavir/ritonavir, atazanavir, hydroxychloroquine, interferon beta, ribavirin, tocilizumab, anakinra and sarilumab were identified as experimental drugs being used in COVID-19 trials as of November 2020. Limited study data was found for these drugs in patients with renal or hepatic impairment for COVID-19 or other indications. Recommendations were made based on available data, consideration of pharmacokinetic properties (including variability), the dosing and anticipated treatment duration of each regimen in COVID-19 and known toxicities.

CONCLUSION

Dosing of drugs used to treat COVID-19 in patients with renal or hepatic impairment is complex. These recommendations were produced to provide guidance to clinicians worldwide who are treating patients with COVID-19, many of whom will have some degree of acute or chronic renal or hepatic impairment.


DOI: 10.1007/s40268-020-00333-0
PubMed: 33336316
PubMed Central: PMC7745756

Links to Exploration step

pubmed:33336316

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recommendations for Dosing of Repurposed COVID-19 Medications in Patients with Renal and Hepatic Impairment.</title>
<author>
<name sortKey="Marra, Fiona" sort="Marra, Fiona" uniqKey="Marra F" first="Fiona" last="Marra">Fiona Marra</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. fmarra@liverpool.ac.uk.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK. fmarra@liverpool.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smolders, Elise J" sort="Smolders, Elise J" uniqKey="Smolders E" first="Elise J" last="Smolders">Elise J. Smolders</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pharmacy, Isala Hospital, Zwolle, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="El Sherif, Omar" sort="El Sherif, Omar" uniqKey="El Sherif O" first="Omar" last="El-Sherif">Omar El-Sherif</name>
<affiliation>
<nlm:affiliation>Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boyle, Alison" sort="Boyle, Alison" uniqKey="Boyle A" first="Alison" last="Boyle">Alison Boyle</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davidson, Katherine" sort="Davidson, Katherine" uniqKey="Davidson K" first="Katherine" last="Davidson">Katherine Davidson</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, NHS Lothian, Edinburgh, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sommerville, Andrew J" sort="Sommerville, Andrew J" uniqKey="Sommerville A" first="Andrew J" last="Sommerville">Andrew J. Sommerville</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marzolini, Catia" sort="Marzolini, Catia" uniqKey="Marzolini C" first="Catia" last="Marzolini">Catia Marzolini</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital of Basel, Basel, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>University of Basel, Basel, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Siccardi, Marco" sort="Siccardi, Marco" uniqKey="Siccardi M" first="Marco" last="Siccardi">Marco Siccardi</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burger, David" sort="Burger, David" uniqKey="Burger D" first="David" last="Burger">David Burger</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gibbons, Sara" sort="Gibbons, Sara" uniqKey="Gibbons S" first="Sara" last="Gibbons">Sara Gibbons</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khoo, Saye" sort="Khoo, Saye" uniqKey="Khoo S" first="Saye" last="Khoo">Saye Khoo</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Royal Liverpool University Hospital, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Back, David" sort="Back, David" uniqKey="Back D" first="David" last="Back">David Back</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33336316</idno>
<idno type="pmid">33336316</idno>
<idno type="doi">10.1007/s40268-020-00333-0</idno>
<idno type="pmc">PMC7745756</idno>
<idno type="wicri:Area/Main/Corpus">000643</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000643</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Recommendations for Dosing of Repurposed COVID-19 Medications in Patients with Renal and Hepatic Impairment.</title>
<author>
<name sortKey="Marra, Fiona" sort="Marra, Fiona" uniqKey="Marra F" first="Fiona" last="Marra">Fiona Marra</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. fmarra@liverpool.ac.uk.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK. fmarra@liverpool.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smolders, Elise J" sort="Smolders, Elise J" uniqKey="Smolders E" first="Elise J" last="Smolders">Elise J. Smolders</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pharmacy, Isala Hospital, Zwolle, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="El Sherif, Omar" sort="El Sherif, Omar" uniqKey="El Sherif O" first="Omar" last="El-Sherif">Omar El-Sherif</name>
<affiliation>
<nlm:affiliation>Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boyle, Alison" sort="Boyle, Alison" uniqKey="Boyle A" first="Alison" last="Boyle">Alison Boyle</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davidson, Katherine" sort="Davidson, Katherine" uniqKey="Davidson K" first="Katherine" last="Davidson">Katherine Davidson</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, NHS Lothian, Edinburgh, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sommerville, Andrew J" sort="Sommerville, Andrew J" uniqKey="Sommerville A" first="Andrew J" last="Sommerville">Andrew J. Sommerville</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marzolini, Catia" sort="Marzolini, Catia" uniqKey="Marzolini C" first="Catia" last="Marzolini">Catia Marzolini</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital of Basel, Basel, Switzerland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>University of Basel, Basel, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Siccardi, Marco" sort="Siccardi, Marco" uniqKey="Siccardi M" first="Marco" last="Siccardi">Marco Siccardi</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burger, David" sort="Burger, David" uniqKey="Burger D" first="David" last="Burger">David Burger</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gibbons, Sara" sort="Gibbons, Sara" uniqKey="Gibbons S" first="Sara" last="Gibbons">Sara Gibbons</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khoo, Saye" sort="Khoo, Saye" uniqKey="Khoo S" first="Saye" last="Khoo">Saye Khoo</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Royal Liverpool University Hospital, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Back, David" sort="Back, David" uniqKey="Back D" first="David" last="Back">David Back</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Drugs in R&D</title>
<idno type="eISSN">1179-6901</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Monophosphate (administration & dosage)</term>
<term>Adenosine Monophosphate (analogs & derivatives)</term>
<term>Alanine (administration & dosage)</term>
<term>Alanine (analogs & derivatives)</term>
<term>Antiviral Agents (administration & dosage)</term>
<term>COVID-19 (diagnosis)</term>
<term>COVID-19 (drug therapy)</term>
<term>COVID-19 (epidemiology)</term>
<term>Clinical Trials as Topic (methods)</term>
<term>Dexamethasone (administration & dosage)</term>
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Drug Repositioning (methods)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (administration & dosage)</term>
<term>Kidney Diseases (diagnosis)</term>
<term>Kidney Diseases (drug therapy)</term>
<term>Kidney Diseases (epidemiology)</term>
<term>Liver Diseases (diagnosis)</term>
<term>Liver Diseases (drug therapy)</term>
<term>Liver Diseases (epidemiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Adenosine Monophosphate</term>
<term>Alanine</term>
<term>Antiviral Agents</term>
<term>Dexamethasone</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Adenosine Monophosphate</term>
<term>Alanine</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>COVID-19</term>
<term>Kidney Diseases</term>
<term>Liver Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
<term>Kidney Diseases</term>
<term>Liver Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>COVID-19</term>
<term>Kidney Diseases</term>
<term>Liver Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Clinical Trials as Topic</term>
<term>Drug Repositioning</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dose-Response Relationship, Drug</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>INTRODUCTION</b>
</p>
<p>In December 2019, an outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began, resulting in a number of antivirals and immune modulators being repurposed to treat the associated coronavirus disease 2019 (COVID-19). Many patients requiring treatment for COVID-19 may have either pre-existing renal or hepatic disease or experience acute renal/hepatic injury as a result of the acute infection. Altered renal or hepatic function can significantly affect drug concentrations of medications due to impaired drug metabolism and excretion, resulting in toxicity or reduced efficacy. The aim of this paper is to review the pharmacokinetics and available study data for the experimental COVID-19 therapies in patients with any degree of renal or hepatic impairment to make recommendations for dosing.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>COVID-19 agents included in these recommendations were listed as primaries on the University of Liverpool COVID-19 drug interaction website ( www.covid19-druginteractions.org ), initially identified from Clinicialtrials.gov and ChicCTR.org.cn. A literature search was performed using PubMed and EMBASE as well as product licences and pharmacokinetic databases.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FINDINGS</b>
</p>
<p>Remdesivir, dexamethasone, azithromycin, favipiravir, lopinavir/ritonavir, atazanavir, hydroxychloroquine, interferon beta, ribavirin, tocilizumab, anakinra and sarilumab were identified as experimental drugs being used in COVID-19 trials as of November 2020. Limited study data was found for these drugs in patients with renal or hepatic impairment for COVID-19 or other indications. Recommendations were made based on available data, consideration of pharmacokinetic properties (including variability), the dosing and anticipated treatment duration of each regimen in COVID-19 and known toxicities.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Dosing of drugs used to treat COVID-19 in patients with renal or hepatic impairment is complex. These recommendations were produced to provide guidance to clinicians worldwide who are treating patients with COVID-19, many of whom will have some degree of acute or chronic renal or hepatic impairment.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33336316</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>03</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>03</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1179-6901</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2021</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Drugs in R&D</Title>
<ISOAbbreviation>Drugs R D</ISOAbbreviation>
</Journal>
<ArticleTitle>Recommendations for Dosing of Repurposed COVID-19 Medications in Patients with Renal and Hepatic Impairment.</ArticleTitle>
<Pagination>
<MedlinePgn>9-27</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s40268-020-00333-0</ELocationID>
<Abstract>
<AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">In December 2019, an outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began, resulting in a number of antivirals and immune modulators being repurposed to treat the associated coronavirus disease 2019 (COVID-19). Many patients requiring treatment for COVID-19 may have either pre-existing renal or hepatic disease or experience acute renal/hepatic injury as a result of the acute infection. Altered renal or hepatic function can significantly affect drug concentrations of medications due to impaired drug metabolism and excretion, resulting in toxicity or reduced efficacy. The aim of this paper is to review the pharmacokinetics and available study data for the experimental COVID-19 therapies in patients with any degree of renal or hepatic impairment to make recommendations for dosing.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">COVID-19 agents included in these recommendations were listed as primaries on the University of Liverpool COVID-19 drug interaction website ( www.covid19-druginteractions.org ), initially identified from Clinicialtrials.gov and ChicCTR.org.cn. A literature search was performed using PubMed and EMBASE as well as product licences and pharmacokinetic databases.</AbstractText>
<AbstractText Label="FINDINGS" NlmCategory="RESULTS">Remdesivir, dexamethasone, azithromycin, favipiravir, lopinavir/ritonavir, atazanavir, hydroxychloroquine, interferon beta, ribavirin, tocilizumab, anakinra and sarilumab were identified as experimental drugs being used in COVID-19 trials as of November 2020. Limited study data was found for these drugs in patients with renal or hepatic impairment for COVID-19 or other indications. Recommendations were made based on available data, consideration of pharmacokinetic properties (including variability), the dosing and anticipated treatment duration of each regimen in COVID-19 and known toxicities.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Dosing of drugs used to treat COVID-19 in patients with renal or hepatic impairment is complex. These recommendations were produced to provide guidance to clinicians worldwide who are treating patients with COVID-19, many of whom will have some degree of acute or chronic renal or hepatic impairment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Marra</LastName>
<ForeName>Fiona</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1326-1149</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. fmarra@liverpool.ac.uk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK. fmarra@liverpool.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Smolders</LastName>
<ForeName>Elise J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, Isala Hospital, Zwolle, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>El-Sherif</LastName>
<ForeName>Omar</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boyle</LastName>
<ForeName>Alison</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davidson</LastName>
<ForeName>Katherine</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, NHS Lothian, Edinburgh, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sommerville</LastName>
<ForeName>Andrew J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, NHS Greater Glasgow and Clyde, Glasgow, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marzolini</LastName>
<ForeName>Catia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital of Basel, Basel, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Basel, Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Siccardi</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burger</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gibbons</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khoo</LastName>
<ForeName>Saye</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Royal Liverpool University Hospital, Liverpool, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Back</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>12</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>New Zealand</Country>
<MedlineTA>Drugs R D</MedlineTA>
<NlmUniqueID>100883647</NlmUniqueID>
<ISSNLinking>1174-5886</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3QKI37EEHE</RegistryNumber>
<NameOfSubstance UI="C000606551">remdesivir</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>415SHH325A</RegistryNumber>
<NameOfSubstance UI="D000249">Adenosine Monophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7S5I7G3JQL</RegistryNumber>
<NameOfSubstance UI="D003907">Dexamethasone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OF5P57N2ZX</RegistryNumber>
<NameOfSubstance UI="D000409">Alanine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000249" MajorTopicYN="N">Adenosine Monophosphate</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000409" MajorTopicYN="N">Alanine</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002986" MajorTopicYN="N">Clinical Trials as Topic</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003907" MajorTopicYN="N">Dexamethasone</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058492" MajorTopicYN="N">Drug Repositioning</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007674" MajorTopicYN="N">Kidney Diseases</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008107" MajorTopicYN="N">Liver Diseases</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>5</Hour>
<Minute>55</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33336316</ArticleId>
<ArticleId IdType="doi">10.1007/s40268-020-00333-0</ArticleId>
<ArticleId IdType="pii">10.1007/s40268-020-00333-0</ArticleId>
<ArticleId IdType="pmc">PMC7745756</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephro., 2020.</Citation>
</Reference>
<Reference>
<Citation>Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428–30.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32145190</ArticleId>
<ArticleId IdType="pmcid">7129165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Marcellin P, Kutala BK. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 2018;38(Suppl 1):2–6.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29427496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Qi X. COVID-19 in patients with pre-existing cirrhosis (COVID-Cirrhosis-CHESS2002): a multicentre observational study. 2020. https://clinicaltrials.gov/ct2/show/NCT04329559 .</Citation>
</Reference>
<Reference>
<Citation>Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395(10223):497–506.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chen N, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32007143</ArticleId>
<ArticleId IdType="pmcid">7135076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fan Z, et al. Clinical features of COVID-19-related liver damage. Clin Gastroenterol Hepatol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Boettler T, et al. Care of patients with liver disease during the COVID-19 pandemic: EASL-ESCMID position paper. JHEP Rep. 2020;2(3):100113.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32289115</ArticleId>
<ArticleId IdType="pmcid">7128473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phipps MM, et al. Acute liver injury in COVID-19: prevalence and association with clinical outcomes in a large US Cohort. Hepatology. 2020.</Citation>
</Reference>
<Reference>
<Citation>Fu Y, et al. Clinical features of COVID-19-infected patients with elevated liver biochemistries: a multicenter, retrospective study. Hepatology, 2020.</Citation>
</Reference>
<Reference>
<Citation>Liu W, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020;133(9):1032–8.</Citation>
</Reference>
<Reference>
<Citation>Collaborative TO, Williamson EW, Bhaskaran AJ, Bacon KJ, Bates S, Morton C, Curtis CE, Mehrkar HJ, Evans A, Inglesby D, Cockburn P, Mcdonald J, MacKenna HI, Tomlinson B, Douglas L, Rentsch IJ, Mathur CT, Wong R, Grieve A, Harrison R, Forbes D, Schultze H, Croker A, Parry RT, Hester J, Harper F, Perera S, Evans R, Smeeth S, Goldacre GB. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. 2020.</Citation>
</Reference>
<Reference>
<Citation>Collaboration GCKD. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709–33.</Citation>
</Reference>
<Reference>
<Citation>Goldfarb DS, et al. Impending shortages of kidney replacement therapy for COVID-19 patients. Clin J Am Soc Nephrol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Wang D, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020.</Citation>
</Reference>
<Reference>
<Citation>Aggarwal S, et al. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): Early report from the United States. Diagnosis (Berl). 2020;7(2):91–6.</Citation>
</Reference>
<Reference>
<Citation>Volunteers A-N, et al. Caution on kidney dysfunctions of COVID-19 patients.</Citation>
</Reference>
<Reference>
<Citation>Pei G, et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Liverpool, U.o. COVID 19 Drug Interactions. 8/5/20 8/5/20]. https://www.covid19-druginteractions.org/ .</Citation>
</Reference>
<Reference>
<Citation>Global Coronavirus COVID-19 Clinical Trial Tracker. 10/04/2020]. hhttps://covid19-trials.com/ .</Citation>
</Reference>
<Reference>
<Citation>Zeitlinger MAK, Birgit CP, Brüggemann R, De Cock, Pieter, Felton, Timothy, Hites, Maya, Le, Jennifer, Luque, Sonia, MacGowan, Alasdair, Marriott, Deborah, Muller, Anouk E, Nadrah, Kristina, Paterson, David, Standing, Joseph F, Telles JP, Wölfl-Duchek, M, Thy MR, Jason A. Pharmacokinetics-pharmacodynamics of antiviral agents used to treat SARS-CoV-2 and their potential interaction with drugs and other supportive measures: a comprehensive review by the PK/PD of Anti-Infectives Study Group of the European Society of Antimicrobial Agents. 2020. p. 178.</Citation>
</Reference>
<Reference>
<Citation>Ashley C, Dunleavy A. The Renal Drug Handbook: The Ultimate Prescribing Guide for Renal Practitioners, vol. 5. Milton Park: Taylor & Francis Ltd.; 2018.</Citation>
</Reference>
<Reference>
<Citation>National Institute of Diabetes and Digestive and Kidney Diseases (U.S.), LiverTox : clinical and research information on drug-induced liver injury. 2012, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda (MD). p. 1 online resource (1 PDF file)</Citation>
</Reference>
<Reference>
<Citation>Truven Health Analytics Inc. and Micromedex Inc., Micromedex gateway. 2011, Truven Health Analytics.</Citation>
</Reference>
<Reference>
<Citation>Aspen. Dexamethasone 2mg tablets, Summary of Product Characteristics. 2020. https://www.medicines.org.uk/emc/product/5411/smpc . Accessed 10 Nov 2020.</Citation>
</Reference>
<Reference>
<Citation>Horby P. Randomised Evaluation of COVID-19 Therapy (RECOVERY) trial. 2020. . 8 May 2020]. www.recoverytrial.net . Accessed 10 Nov 2020.</Citation>
</Reference>
<Reference>
<Citation>Workman RJ, Vaughn WK, Stone WJ. Dexamethasone suppression testing in chronic renal failure: pharmacokinetics of dexamethasone and demonstration of a normal hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab. 1986;63(3):741–6.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3734041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kawai S, Ichikawa Y, Homma M. Differences in metabolic properties among cortisol, prednisolone, and dexamethasone in liver and renal diseases: accelerated metabolism of dexamethasone in renal failure. J Clin Endocrinol Metab. 1985;60(5):848–54.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3980669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cummings DM, et al. Characterization of dexamethasone binding in normal and uremic human serum. DICP. 1990;24(3):229–31.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2316228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pandit SR, Vesole DH. Management of renal dysfunction in multiple myeloma. Curr Treat Options Oncol. 2003;4(3):239–46.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhao B, et al. Evaluation of the efficacy of steroid therapy on acute liver failure. Exp Ther Med. 2016;12(5):3121–9.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27882127</ArticleId>
<ArticleId IdType="pmcid">5103754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heneghan MA, et al. Autoimmune hepatitis. Lancet. 2013;382(9902):1433–44.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23768844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tomlinson ES, et al. Dexamethasone metabolism in vitro: species differences. J Steroid Biochem Mol Biol. 1997;62(4):345–52.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9408089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>REYATAZ (atazanavir) capsules, US Prescribing Information. BMS.</Citation>
</Reference>
<Reference>
<Citation>Reyataz 300mg Hard Capsules, Summary of Product Characteristics. Last updated on emc: 25 Feb 2019, BMS.</Citation>
</Reference>
<Reference>
<Citation>EACS Guidelines version 10.0. November 2019.</Citation>
</Reference>
<Reference>
<Citation>Izzedine H, et al. Atazanavir: a novel inhibitor of HIV-protease in haemodialysis. Nephrol Dial Transplant. 2005;20(4):852–3.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Guaraldi G, et al. A pilot study on the efficacy, pharmacokinetics and safety of atazanavir in patients with end-stage liver disease. J Antimicrob Chemother. 2008;62(6):1356–64.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18776190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Guaraldi G, et al. Efficacy and safety of atazanavir in patients with end-stage liver disease. Infection. 2009;37(3):250–5.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19471855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ray JE, et al. Therapeutic drug monitoring of atazanavir: surveillance of pharmacotherapy in the clinic. Br J Clin Pharmacol. 2005;60(3):291–9.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16120068</ArticleId>
<ArticleId IdType="pmcid">1884776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kaletra 200 mg/50 mg film-coated tablets summary of product characteristics. 2019: AbbVie Ltd.</Citation>
</Reference>
<Reference>
<Citation>Cao B, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787–99.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32187464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kaletra, US Prescribing information. 2019, Abbvie.</Citation>
</Reference>
<Reference>
<Citation>Gupta SK, et al. The pharmacokinetics and pharmacogenomics of efavirenz and lopinavir/ritonavir in HIV-infected persons requiring hemodialysis. AIDS. 2008;22(15):1919–27.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18784455</ArticleId>
<ArticleId IdType="pmcid">2675161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peng JZ, et al. Pharmacokinetics of lopinavir/ritonavir in HIV/hepatitis C virus-coinfected subjects with hepatic impairment. J Clin Pharmacol. 2006;46(3):265–74.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16490802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>(EMA) E.MA. Summary on compassionate use: Remdesivir, Gilead. 2020 12/5/2020]. https://www.ema.europa.eu/en/documents/other/summary-compassionate-use-remdesivir-gilead_en.pdf . Accessed 10 Nov 2020.</Citation>
</Reference>
<Reference>
<Citation>Emergency Use Authorisation (EUA) of remdsivir (GS-5734™). 2020, Gilead.</Citation>
</Reference>
<Reference>
<Citation>Gilead. Veklury (Remdesivir) 100mg concentrate for solution. 2020. www.medicines.org.uk/emc/product/11596/smpc . Accessed 10 Nov 2020.</Citation>
</Reference>
<Reference>
<Citation>Grein J, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020.</Citation>
</Reference>
<Reference>
<Citation>Hoover RK, et al. Clinical Pharmacokinetics of Sulfobutylether-β-Cyclodextrin in Patients With Varying Degrees of Renal Impairment. J Clin Pharmacol. 2018;58(6):814–22.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29578585</ArticleId>
<ArticleId IdType="pmcid">6718009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019-nCoV Infection. Clin Pharmacol Ther. 2020.</Citation>
</Reference>
<Reference>
<Citation>Avigan (favipiravir) Tablet 200 mg. 2011, Toyama Chemical Co., Ltd.</Citation>
</Reference>
<Reference>
<Citation>Chen CZY. Favipiravir versus Arbidol for COVID-19: a randomized clinical trial. 2020.</Citation>
</Reference>
<Reference>
<Citation>Mishima E, et al. Uric Acid Elevation by Favipiravir, an Antiviral Drug. Tohoku J Exp Med. 2020;251(2):87–90.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32536670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Preston R. Pharmacokinetics of favipiravir in volunteers with hepatic impairment. 2015. https://clinicaltrials.gov/ct2/show/NCT01419457 .</Citation>
</Reference>
<Reference>
<Citation>Fujifilm Pharmaceuticals U.S.A., I. Study of the Use of Favipiravir in Hospitalized Subjects With COVID-19. 2020. https://clinicaltrials.gov/ct2/show/NCT04358549 .</Citation>
</Reference>
<Reference>
<Citation>Mehra, M., et al., Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020.</Citation>
</Reference>
<Reference>
<Citation>Gendrot M, et al. Chloroquine as a prophylactic agent against COVID-19? Int J Antimicrob Agents. 2020;55(6):105980</Citation>
</Reference>
<Reference>
<Citation>Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 2020.</Citation>
</Reference>
<Reference>
<Citation>Bonten M. Randomised, embedded, multi-factorial, adaptive platform trial for community acquired pneumonia (REMAP-CAP) trial. 2020 8 May 2020]. https://www.remapcap.org/ . Accessed 10 Nov 2020.</Citation>
</Reference>
<Reference>
<Citation>Jallouli M, et al. Determinants of hydroxychloroquine blood concentration variations in systemic lupus erythematosus. Arthritis Rheumatol. 2015;67(8):2176–84.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25989906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plaquenil Hydroxychloroquine Sulfate Tablets US Prescribing Information. 2017.</Citation>
</Reference>
<Reference>
<Citation>Lee JY, et al. Factors associated with blood hydroxychloroquine level in lupus patients: renal function could be important. Lupus. 2013;22(5):541–2.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23396569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plaquenil-Hydroxychloroquine sulfate 200mg Film-coated Tablets, Summary of Product Characteristics. 2020, Zentiva.</Citation>
</Reference>
<Reference>
<Citation>Dollery C. Therapeutic drugs. 2nd ed. London: Churchill Livingstone; 1999.</Citation>
</Reference>
<Reference>
<Citation>McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med. 1983;75(1A):11–8.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6408923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tett SE, et al. Bioavailability of hydroxychloroquine tablets in healthy volunteers. Br J Clin Pharmacol. 1989;27(6):771–9.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2757893</ArticleId>
<ArticleId IdType="pmcid">1379804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Warhurst DC, et al. Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum, in agreement with its physicochemical properties. J Antimicrob Chemother. 2003;52(2):188–93.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saag KG, et al. American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum. 2008;59(6):762–84.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18512708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FDA. Fact sheet for health care providers. Emergency use Authorisation (EUA) of hydroxychloroquine sulfate supplied supplied from the strategic national stockpile for treatment of COVID-19 in certain hospitalized patients. 2020, U.S. Food and Drug Administration (FDA).</Citation>
</Reference>
<Reference>
<Citation>Zentiva. Azithromycin 250mg capsules, Summary of Product Characteristics. 2020. https://www.medicines.org.uk/emc/product/8663/smpc .</Citation>
</Reference>
<Reference>
<Citation>Mazzei T, et al. Pharmacokinetics of azithromycin in patients with impaired hepatic function. J Antimicrob Chemother. 1993; 31 Suppl E: 57–63.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8396098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kong, U.o.H. Lopinavir/ritonavir, ribavirin and IFN-beta combination for nCoV treatment. 2020. https://clinicaltrials.gov/ct2/show/NCT04276688</Citation>
</Reference>
<Reference>
<Citation>Khalili JS, et al. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J Med Virol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Rebetol 200 mg hard capsules Summary of Product Characteristics. 2019. https://www.medicines.org.uk/emc/product/3832/smpc .</Citation>
</Reference>
<Reference>
<Citation>Roche. COPEGUS® (ribavirin) Tablets, US Prescribing Information. Accessed 12/5/2020]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021511s023lbl.pdf .</Citation>
</Reference>
<Reference>
<Citation>Wong WM, et al. Temporal patterns of hepatic dysfunction and disease severity in patients with SARS. JAMA. 2003;290(20):2663–5.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rieckmann P, et al. Haematological effects of interferon-beta-1a (Rebif) therapy in multiple sclerosis. Drug Saf. 2004;27(10):745–56.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15350158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Francis GS, et al. Hepatic reactions during treatment of multiple sclerosis with interferon-beta-1a: incidence and clinical significance. Drug Saf. 2003;26(11):815–27.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12908850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rebif 22 micrograms solution for injection in cartridge. 2020, Merck.</Citation>
</Reference>
<Reference>
<Citation>Rebif US Prescribing Information. 2014: Pfizer.</Citation>
</Reference>
<Reference>
<Citation>A Study to Evaluate the Safety and Efficacy of Tocilizumab in Patients with Severe COVID-19 Pneumonia (COVACTA). 2020 30/03/2020 25/03/2020]. https://clinicaltrials.gov/ct2/show/NCT04320615</Citation>
</Reference>
<Reference>
<Citation>Actemra (tocilizumab) injection, for intravenous or subcutaneous use, US Prescribing Information. Genentech Inc. Roche.</Citation>
</Reference>
<Reference>
<Citation>RoActemra 20mg/ml Concentrate for Solution for Infusion Summary of Product Characteristics. 2019. https://www.medicines.org.uk/emc/product/6673/smpc . Accessed 10 Nov 2020.</Citation>
</Reference>
<Reference>
<Citation>Ternant D, et al. Clinical pharmacokinetics and pharmacodynamics of monoclonal antibodies approved to treat rheumatoid arthritis. Clin Pharmacokinet. 2015;54(11):1107–23.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26123705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genovese MC, et al. Transaminase levels and hepatic events during tocilizumab treatment: pooled analysis of long-term clinical trial safety data in rheumatoid arthritis. Arthritis Rheumatol. 2017;69(9):1751–61.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28597609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sun Q, et al. Does hepatic impairment affect the exposure of monoclonal antibodies? Clin Pharmacol Ther. 2020;107(5):1256–62.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31899819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kineret (Anakinra)100 mg solution for injection in a pre-filled syringe. 2019, Swedish Orphan Biovitrum Ltd.</Citation>
</Reference>
<Reference>
<Citation>Kineret® (anakinra) for injection, for subcutaneous use. US Prescribing Information. Swedish Orphan Biovitrum AB.</Citation>
</Reference>
<Reference>
<Citation>Delaporte, A. Treatment of COVID-19 patients with anti-interleukin drugs (COV-AID). 2020. https://clinicaltrials.gov/ct2/show/NCT04330638 .</Citation>
</Reference>
<Reference>
<Citation>Cavalli G, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Yang BB, Baughman S, Sullivan JT. Pharmacokinetics of anakinra in subjects with different levels of renal function. Clin Pharmacol Ther. 2003;74(1):85–94.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12844139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pinedo M, Efficacy of subcutaneous sarilumab in hospitalised patients with moderate-severe COVID-19 Infection (SARCOVID) (SARCOVID). 2020.</Citation>
</Reference>
<Reference>
<Citation>Branch-Elliman W. Sarilumab for patients with moderate COVID-19 disease: a randomized controlled trial with a play-the-winner design. 2020 . https://clinicaltrials.gov/ct2/show/NCT04359901 .</Citation>
</Reference>
<Reference>
<Citation>Evaluation of the Efficacy and Safety of Sarilumab in Hospitalized Patients With COVID-19. 2020; Available from</Citation>
</Reference>
<Reference>
<Citation>Kevzara (Sarilumab) 150 mg solution for injection in pre-filled syringe. 2020; https://www.medicines.org.uk/emc/product/762/smpc . Accessed 10 Nov 2020.</Citation>
</Reference>
<Reference>
<Citation>Fleischmann R, et al. Long-term safety of sarilumab in rheumatoid arthritis: an integrated analysis with up to 7 years’ follow-up. Rheumatology (Oxford). 2020;59(2):292–302.</Citation>
</Reference>
<Reference>
<Citation>Amarapurkar DN. Prescribing medications in patients with decompensated liver cirrhosis. Int J Hepatol. 2011;2011:519526.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994861</ArticleId>
<ArticleId IdType="pmcid">3168911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li R, Barton HA, Maurer TS. A mechanistic pharmacokinetic model for liver transporter substrates under liver cirrhosis conditions. CPT Pharmacometr Syst Pharmacol. 2015;4(6):338–49.</Citation>
</Reference>
<Reference>
<Citation>Rhee SJ, et al. Physiologically Based Pharmacokinetic Modelling and Prediction of Metformin Pharmacokinetics in Renal/Hepatic-Impaired Young Adults and Elderly Populations. Eur J Drug Metab Pharmacokinet. 2017;42(6):973–80.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28536774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Power BM, et al. Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet. 1998;34(1):25–56.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9474472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Czock D, et al. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44(1):61–98.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FDA. Decadron (dexamethasone) tablets 2mg. US Prescribing Information. 2020. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/11664slr062_decadron_lbl.pdf . Accessed 10 Nov 2020.</Citation>
</Reference>
<Reference>
<Citation>Wishart DS, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avonex US Prescribing Information. 2019: Biogen Inc.</Citation>
</Reference>
<Reference>
<Citation>Avonex 30 µg/0.5 mL solution for injection Summary of Product Characteristics. 2019: Biogen Idec Ltd.</Citation>
</Reference>
<Reference>
<Citation>Hegen H, Auer M, Deisenhammer F. Pharmacokinetic considerations in the treatment of multiple sclerosis with interferon-β. Expert Opin Drug Metab Toxicol. 2015;11(12):1803–19.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26419922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kent JR, Almond MK, Dhillon S. Azithromycin: an assessment of its pharmacokinetics and therapeutic potential in CAPD. Perit Dial Int. 2001;21(4):372–7.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11587400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Alatrakchi N, et al. Strong CD4 Th1 responses to HIV and hepatitis C virus in HIV-infected long-term non-progressors co-infected with hepatitis C virus. AIDS. 2002;16(5):713–7.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11964527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000643 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000643 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33336316
   |texte=   Recommendations for Dosing of Repurposed COVID-19 Medications in Patients with Renal and Hepatic Impairment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33336316" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021