Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles.

Identifieur interne : 000451 ( Main/Corpus ); précédent : 000450; suivant : 000452

First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles.

Auteurs : Razieh Morad ; Mahmood Akbari ; Parham Rezaee ; Amin Koochaki ; Malik Maaza ; Zahra Jamshidi

Source :

RBID : pubmed:33483539

English descriptors

Abstract

From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt nanoparticles. We found the adsorption energies of HCQ/CQ towards nanoparticles have the following trend: PtNP > AuNP > AuAgNP > AgNP. This shows that PtNP has the highest affinity in comparison to the other types of nanoparticles. The (non)perturbative effects of this drug on the plasmonic absorption spectra of AgNP and AuNP with the time-dependent density functional theory. The effect of size and composition of NPs on the coating with HCQ and CQ were obtained to propose the appropriate candidate for drug delivery. This kind of modeling could help experimental groups to find efficient and safe therapies.

DOI: 10.1038/s41598-021-81617-6
PubMed: 33483539
PubMed Central: PMC7822900

Links to Exploration step

pubmed:33483539

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles.</title>
<author>
<name sortKey="Morad, Razieh" sort="Morad, Razieh" uniqKey="Morad R" first="Razieh" last="Morad">Razieh Morad</name>
<affiliation>
<nlm:affiliation>UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Akbari, Mahmood" sort="Akbari, Mahmood" uniqKey="Akbari M" first="Mahmood" last="Akbari">Mahmood Akbari</name>
<affiliation>
<nlm:affiliation>UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rezaee, Parham" sort="Rezaee, Parham" uniqKey="Rezaee P" first="Parham" last="Rezaee">Parham Rezaee</name>
<affiliation>
<nlm:affiliation>Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koochaki, Amin" sort="Koochaki, Amin" uniqKey="Koochaki A" first="Amin" last="Koochaki">Amin Koochaki</name>
<affiliation>
<nlm:affiliation>Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maaza, Malik" sort="Maaza, Malik" uniqKey="Maaza M" first="Malik" last="Maaza">Malik Maaza</name>
<affiliation>
<nlm:affiliation>UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa. maaza@tlabs.ac.za.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa. maaza@tlabs.ac.za.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jamshidi, Zahra" sort="Jamshidi, Zahra" uniqKey="Jamshidi Z" first="Zahra" last="Jamshidi">Zahra Jamshidi</name>
<affiliation>
<nlm:affiliation>Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran. njamshidi@sharif.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33483539</idno>
<idno type="pmid">33483539</idno>
<idno type="doi">10.1038/s41598-021-81617-6</idno>
<idno type="pmc">PMC7822900</idno>
<idno type="wicri:Area/Main/Corpus">000451</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000451</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles.</title>
<author>
<name sortKey="Morad, Razieh" sort="Morad, Razieh" uniqKey="Morad R" first="Razieh" last="Morad">Razieh Morad</name>
<affiliation>
<nlm:affiliation>UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Akbari, Mahmood" sort="Akbari, Mahmood" uniqKey="Akbari M" first="Mahmood" last="Akbari">Mahmood Akbari</name>
<affiliation>
<nlm:affiliation>UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rezaee, Parham" sort="Rezaee, Parham" uniqKey="Rezaee P" first="Parham" last="Rezaee">Parham Rezaee</name>
<affiliation>
<nlm:affiliation>Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koochaki, Amin" sort="Koochaki, Amin" uniqKey="Koochaki A" first="Amin" last="Koochaki">Amin Koochaki</name>
<affiliation>
<nlm:affiliation>Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maaza, Malik" sort="Maaza, Malik" uniqKey="Maaza M" first="Malik" last="Maaza">Malik Maaza</name>
<affiliation>
<nlm:affiliation>UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa. maaza@tlabs.ac.za.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa. maaza@tlabs.ac.za.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jamshidi, Zahra" sort="Jamshidi, Zahra" uniqKey="Jamshidi Z" first="Zahra" last="Jamshidi">Zahra Jamshidi</name>
<affiliation>
<nlm:affiliation>Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran. njamshidi@sharif.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption (MeSH)</term>
<term>Antiviral Agents (chemistry)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>COVID-19 (drug therapy)</term>
<term>Gold (chemistry)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (chemistry)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Platinum (chemistry)</term>
<term>Quantum Theory (MeSH)</term>
<term>SARS-CoV-2 (physiology)</term>
<term>Silver (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antiviral Agents</term>
<term>Gold</term>
<term>Hydroxychloroquine</term>
<term>Platinum</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adsorption</term>
<term>Humans</term>
<term>Molecular Dynamics Simulation</term>
<term>Pandemics</term>
<term>Quantum Theory</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt nanoparticles. We found the adsorption energies of HCQ/CQ towards nanoparticles have the following trend: PtNP > AuNP > AuAgNP > AgNP. This shows that PtNP has the highest affinity in comparison to the other types of nanoparticles. The (non)perturbative effects of this drug on the plasmonic absorption spectra of AgNP and AuNP with the time-dependent density functional theory. The effect of size and composition of NPs on the coating with HCQ and CQ were obtained to propose the appropriate candidate for drug delivery. This kind of modeling could help experimental groups to find efficient and safe therapies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33483539</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>01</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2021</Year>
<Month>01</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles.</ArticleTitle>
<Pagination>
<MedlinePgn>2131</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-021-81617-6</ELocationID>
<Abstract>
<AbstractText>From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt nanoparticles. We found the adsorption energies of HCQ/CQ towards nanoparticles have the following trend: PtNP > AuNP > AuAgNP > AgNP. This shows that PtNP has the highest affinity in comparison to the other types of nanoparticles. The (non)perturbative effects of this drug on the plasmonic absorption spectra of AgNP and AuNP with the time-dependent density functional theory. The effect of size and composition of NPs on the coating with HCQ and CQ were obtained to propose the appropriate candidate for drug delivery. This kind of modeling could help experimental groups to find efficient and safe therapies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Morad</LastName>
<ForeName>Razieh</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Akbari</LastName>
<ForeName>Mahmood</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Rezaee</LastName>
<ForeName>Parham</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Koochaki</LastName>
<ForeName>Amin</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maaza</LastName>
<ForeName>Malik</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa. maaza@tlabs.ac.za.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa. maaza@tlabs.ac.za.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jamshidi</LastName>
<ForeName>Zahra</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran. njamshidi@sharif.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>01</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>49DFR088MY</RegistryNumber>
<NameOfSubstance UI="D010984">Platinum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-57-5</RegistryNumber>
<NameOfSubstance UI="D006046">Gold</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000327" MajorTopicYN="N">Adsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006046" MajorTopicYN="N">Gold</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010984" MajorTopicYN="N">Platinum</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011789" MajorTopicYN="N">Quantum Theory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>01</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>5</Hour>
<Minute>36</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33483539</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-021-81617-6</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-021-81617-6</ArticleId>
<ArticleId IdType="pmc">PMC7822900</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Langmuir. 2018 May 29;34(21):6161-6169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29724100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):33-8, 27-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2016 Feb 24;22(9):2987-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26875938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomaterials (Basel). 2018 Aug 31;8(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30200373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotoxicology. 2011 Mar;5(1):43-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21417687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2007 Dec 20;111(50):13238-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18004828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mayo Clin Proc. 2020 Apr;95(4):646-652</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32122636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2016 May 14;144(18):184103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27179467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Adv Res. 2016 Jan;7(1):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26843966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1701-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2012 May 3;116(17):4338-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22356446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2011 Aug 22;51(8):2007-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21761915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2017 Aug 14;46(16):4951-4975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28696452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanobiotechnology. 2018 Sep 19;16(1):71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30231877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mayo Clin Proc. 2020 Jun;95(6):1213-1221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32359771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Drug Deliv Rev. 2017 Jan 15;109:84-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26712711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3745-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22734516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2012 Aug 15;23(8):1507-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev A. 1994 Apr;49(4):2421-2431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9910514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mal Infect. 2020 May;50(3):229-230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32217166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2019 Aug 08;11(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31398832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1988 Mar 1;110(6):1657-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27557051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2018 Feb 27;12(2):1188-1202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29357226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2011 Oct 24;16(10):8894-918</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22024958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Forum Infect Dis. 2020 Apr 15;7(4):ofaa130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32363212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2007 May 24;111(20):4391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Mar 5;382(10):929-936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32004427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Microbiol. 2016 Sep;42(5):696-719</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26089024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2016 Feb 9;32(5):1214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26760445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2011 May;32(7):1456-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21370243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2017 Apr 12;12:2957-2978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28442906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2012;7:4679-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22956869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2017 Jan 18;28(1):135-152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27973767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomaterials (Basel). 2019 Dec 02;9(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31810256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jun 18;382(25):2411-2418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32379955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Apr;55(4):105932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32145363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2017 Mar 29;19(13):8742-8756</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28217797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2008 Jan 21;128(3):034104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2020 Sep 3;17(9):e1003252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32881895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25127-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27589368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 Jun 8;369:m2263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32513810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine (Lond). 2017 Feb;12(4):357-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28078952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 1996 Oct 28;77(18):3865-3868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10062328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2016 Nov 15;482:151-158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27501038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenobiotica. 2021 Feb;51(2):127-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32933365</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000451 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000451 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33483539
   |texte=   First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33483539" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021