Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chloroquine and hydroxychloroquine in the treatment of COVID-19: the never-ending story.

Identifieur interne : 000423 ( Main/Corpus ); précédent : 000422; suivant : 000424

Chloroquine and hydroxychloroquine in the treatment of COVID-19: the never-ending story.

Auteurs : Amin Gasmi ; Massimiliano Peana ; Sadaf Noor ; Roman Lysiuk ; Alain Menzel ; Asma Gasmi Benahmed ; Geir Bj Rklund

Source :

RBID : pubmed:33515285

English descriptors

Abstract

The anti-malarial drugs chloroquine (CQ) and hydroxychloroquine (HCQ) have been suggested as promising agents against the new coronavirus SARS-CoV-2 that induces COVID-19 and as a possible therapy for shortening the duration of the viral disease. The antiviral effects of CQ and HCQ have been demonstrated in vitro due to their ability to block viruses like coronavirus SARS in cell culture. CQ and HCQ have been proposed to reduce immune reactions to infectious agents, inhibit pneumonia exacerbation, and improve lung imaging investigations. CQ analogs have also revealed the anti-inflammatory and immunomodulatory effects in treating viral infections and related ailments. There was, moreover, convincing evidence from early trials in China about the efficacy of CQ and HCQ in the anti-COVID-19 procedure. Since then, research and studies have been massive to ascertain these drugs' efficacy and safety in treating the viral disease. In the present review, we construct a synopsis of the main properties and current data concerning the metabolism of CQ/HCQ, which were the basis of assessing their potential therapeutic roles against the new coronavirus infection. The effective role of QC and HCQ in the prophylaxis and therapy of COVID-19 infection is discussed in light of the latest international medical-scientific research results. KEY POINTS: • Data concerning metabolism and properties of CQ/HCQ are discussed. • The efficacy of CQ/HCQ against COVID-19 has been the subject of contradictory results. • CQ/HCQ has little or no effect in reducing mortality in SARS-CoV-2-affected patients.

DOI: 10.1007/s00253-021-11094-4
PubMed: 33515285
PubMed Central: PMC7847229

Links to Exploration step

pubmed:33515285

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chloroquine and hydroxychloroquine in the treatment of COVID-19: the never-ending story.</title>
<author>
<name sortKey="Gasmi, Amin" sort="Gasmi, Amin" uniqKey="Gasmi A" first="Amin" last="Gasmi">Amin Gasmi</name>
<affiliation>
<nlm:affiliation>Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peana, Massimiliano" sort="Peana, Massimiliano" uniqKey="Peana M" first="Massimiliano" last="Peana">Massimiliano Peana</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy. peana@uniss.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Noor, Sadaf" sort="Noor, Sadaf" uniqKey="Noor S" first="Sadaf" last="Noor">Sadaf Noor</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lysiuk, Roman" sort="Lysiuk, Roman" uniqKey="Lysiuk R" first="Roman" last="Lysiuk">Roman Lysiuk</name>
<affiliation>
<nlm:affiliation>Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menzel, Alain" sort="Menzel, Alain" uniqKey="Menzel A" first="Alain" last="Menzel">Alain Menzel</name>
<affiliation>
<nlm:affiliation>Laboratoires Réunis, Junglinster, Luxembourg.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gasmi Benahmed, Asma" sort="Gasmi Benahmed, Asma" uniqKey="Gasmi Benahmed A" first="Asma" last="Gasmi Benahmed">Asma Gasmi Benahmed</name>
<affiliation>
<nlm:affiliation>Académie Internationale de Médecine Dentaire Intégrative, Paris, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bj Rklund, Geir" sort="Bj Rklund, Geir" uniqKey="Bj Rklund G" first="Geir" last="Bj Rklund">Geir Bj Rklund</name>
<affiliation>
<nlm:affiliation>Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway. bjorklund@conem.org.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33515285</idno>
<idno type="pmid">33515285</idno>
<idno type="doi">10.1007/s00253-021-11094-4</idno>
<idno type="pmc">PMC7847229</idno>
<idno type="wicri:Area/Main/Corpus">000423</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000423</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chloroquine and hydroxychloroquine in the treatment of COVID-19: the never-ending story.</title>
<author>
<name sortKey="Gasmi, Amin" sort="Gasmi, Amin" uniqKey="Gasmi A" first="Amin" last="Gasmi">Amin Gasmi</name>
<affiliation>
<nlm:affiliation>Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peana, Massimiliano" sort="Peana, Massimiliano" uniqKey="Peana M" first="Massimiliano" last="Peana">Massimiliano Peana</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy. peana@uniss.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Noor, Sadaf" sort="Noor, Sadaf" uniqKey="Noor S" first="Sadaf" last="Noor">Sadaf Noor</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lysiuk, Roman" sort="Lysiuk, Roman" uniqKey="Lysiuk R" first="Roman" last="Lysiuk">Roman Lysiuk</name>
<affiliation>
<nlm:affiliation>Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menzel, Alain" sort="Menzel, Alain" uniqKey="Menzel A" first="Alain" last="Menzel">Alain Menzel</name>
<affiliation>
<nlm:affiliation>Laboratoires Réunis, Junglinster, Luxembourg.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gasmi Benahmed, Asma" sort="Gasmi Benahmed, Asma" uniqKey="Gasmi Benahmed A" first="Asma" last="Gasmi Benahmed">Asma Gasmi Benahmed</name>
<affiliation>
<nlm:affiliation>Académie Internationale de Médecine Dentaire Intégrative, Paris, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bj Rklund, Geir" sort="Bj Rklund, Geir" uniqKey="Bj Rklund G" first="Geir" last="Bj Rklund">Geir Bj Rklund</name>
<affiliation>
<nlm:affiliation>Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway. bjorklund@conem.org.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied microbiology and biotechnology</title>
<idno type="eISSN">1432-0614</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimalarials (chemistry)</term>
<term>Antimalarials (therapeutic use)</term>
<term>Antiviral Agents (chemistry)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>COVID-19 (drug therapy)</term>
<term>Chloroquine (chemistry)</term>
<term>Chloroquine (therapeutic use)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (chemistry)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>SARS-CoV-2 (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antimalarials</term>
<term>Antiviral Agents</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antimalarials</term>
<term>Antiviral Agents</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The anti-malarial drugs chloroquine (CQ) and hydroxychloroquine (HCQ) have been suggested as promising agents against the new coronavirus SARS-CoV-2 that induces COVID-19 and as a possible therapy for shortening the duration of the viral disease. The antiviral effects of CQ and HCQ have been demonstrated in vitro due to their ability to block viruses like coronavirus SARS in cell culture. CQ and HCQ have been proposed to reduce immune reactions to infectious agents, inhibit pneumonia exacerbation, and improve lung imaging investigations. CQ analogs have also revealed the anti-inflammatory and immunomodulatory effects in treating viral infections and related ailments. There was, moreover, convincing evidence from early trials in China about the efficacy of CQ and HCQ in the anti-COVID-19 procedure. Since then, research and studies have been massive to ascertain these drugs' efficacy and safety in treating the viral disease. In the present review, we construct a synopsis of the main properties and current data concerning the metabolism of CQ/HCQ, which were the basis of assessing their potential therapeutic roles against the new coronavirus infection. The effective role of QC and HCQ in the prophylaxis and therapy of COVID-19 infection is discussed in light of the latest international medical-scientific research results. KEY POINTS: • Data concerning metabolism and properties of CQ/HCQ are discussed. • The efficacy of CQ/HCQ against COVID-19 has been the subject of contradictory results. • CQ/HCQ has little or no effect in reducing mortality in SARS-CoV-2-affected patients.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33515285</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>02</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0614</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2021</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Applied microbiology and biotechnology</Title>
<ISOAbbreviation>Appl Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Chloroquine and hydroxychloroquine in the treatment of COVID-19: the never-ending story.</ArticleTitle>
<Pagination>
<MedlinePgn>1333-1343</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00253-021-11094-4</ELocationID>
<Abstract>
<AbstractText>The anti-malarial drugs chloroquine (CQ) and hydroxychloroquine (HCQ) have been suggested as promising agents against the new coronavirus SARS-CoV-2 that induces COVID-19 and as a possible therapy for shortening the duration of the viral disease. The antiviral effects of CQ and HCQ have been demonstrated in vitro due to their ability to block viruses like coronavirus SARS in cell culture. CQ and HCQ have been proposed to reduce immune reactions to infectious agents, inhibit pneumonia exacerbation, and improve lung imaging investigations. CQ analogs have also revealed the anti-inflammatory and immunomodulatory effects in treating viral infections and related ailments. There was, moreover, convincing evidence from early trials in China about the efficacy of CQ and HCQ in the anti-COVID-19 procedure. Since then, research and studies have been massive to ascertain these drugs' efficacy and safety in treating the viral disease. In the present review, we construct a synopsis of the main properties and current data concerning the metabolism of CQ/HCQ, which were the basis of assessing their potential therapeutic roles against the new coronavirus infection. The effective role of QC and HCQ in the prophylaxis and therapy of COVID-19 infection is discussed in light of the latest international medical-scientific research results. KEY POINTS: • Data concerning metabolism and properties of CQ/HCQ are discussed. • The efficacy of CQ/HCQ against COVID-19 has been the subject of contradictory results. • CQ/HCQ has little or no effect in reducing mortality in SARS-CoV-2-affected patients.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gasmi</LastName>
<ForeName>Amin</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peana</LastName>
<ForeName>Massimiliano</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy. peana@uniss.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Noor</LastName>
<ForeName>Sadaf</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lysiuk</LastName>
<ForeName>Roman</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Menzel</LastName>
<ForeName>Alain</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratoires Réunis, Junglinster, Luxembourg.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gasmi Benahmed</LastName>
<ForeName>Asma</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Académie Internationale de Médecine Dentaire Intégrative, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bjørklund</LastName>
<ForeName>Geir</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2632-3935</Identifier>
<AffiliationInfo>
<Affiliation>Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway. bjorklund@conem.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>01</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Appl Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>8406612</NlmUniqueID>
<ISSNLinking>0175-7598</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000962">Antimalarials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000962" MajorTopicYN="N">Antimalarials</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="Y">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Chloroquine</Keyword>
<Keyword MajorTopicYN="N">Hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">Metabolism</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>12</Hour>
<Minute>6</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33515285</ArticleId>
<ArticleId IdType="doi">10.1007/s00253-021-11094-4</ArticleId>
<ArticleId IdType="pii">10.1007/s00253-021-11094-4</ArticleId>
<ArticleId IdType="pmc">PMC7847229</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Al-Bari MAA (2015) Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 70(6):1608–1621. https://doi.org/10.1093/jac/dkv018</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/jac/dkv018</ArticleId>
<ArticleId IdType="pubmed">25693996</ArticleId>
<ArticleId IdType="pmcid">7537707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Al-Bari MAA (2017) Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 5(1):e00293. https://doi.org/10.1002/prp2.293</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/prp2.293</ArticleId>
<ArticleId IdType="pubmed">28596841</ArticleId>
<ArticleId IdType="pmcid">5461643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Baize S, Leroy EM, Georges-Courbot M-C, Capron M, Lansoud-Soukate J, Debré P, Fisher-Hoch SP, McCormick JB, Georges AJ (1999) Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5(4):423–426. https://doi.org/10.1038/7422</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/7422</ArticleId>
<ArticleId IdType="pubmed">10202932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bhattacharyya B, Chatterjee TK, Ghosh JJ (1983) Effects of chloroquine on lysosomal enzymes, NADPH-induced lipid peroxidation, and antioxidant enzymes of rat retina. Biochem Pharmacol 32(19):2965–2968. https://doi.org/10.1016/0006-2952(83)90403-3</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/0006-2952(83)90403-3</ArticleId>
<ArticleId IdType="pubmed">6626266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bjorklund G, Oliinyk P, Lysiuk R, Rahaman MS, Antonyak H, Lozynska I, Lenchyk L, Peana M (2020) Arsenic intoxication: general aspects and chelating agents. Arch Toxicol 94:1879–1897. https://doi.org/10.1007/s00204-020-02739-w</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00204-020-02739-w</ArticleId>
<ArticleId IdType="pubmed">32388818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bolchoz LJ, Morrow JD, Jollow DJ, McMillan DC (2002) Primaquine-induced hemolytic anemia: effect of 6-methoxy-8-hydroxylaminoquinoline on rat erythrocyte sulfhydryl status, membrane lipids, cytoskeletal proteins, and morphology. J Pharmacol Exp Ther 303(1):141–148. https://doi.org/10.1124/jpet.102.036921</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1124/jpet.102.036921</ArticleId>
<ArticleId IdType="pubmed">12235244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL, Pelkmans L, Rottier PJ, Bosch BJ, de Haan CA (2014) Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 10(11):e1004502. https://doi.org/10.1371/journal.ppat.1004502</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.ppat.1004502</ArticleId>
<ArticleId IdType="pubmed">25375324</ArticleId>
<ArticleId IdType="pmcid">4223067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Byrd TF, Horwitz MA (1991) Chloroquine inhibits the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. A potential new mechanism for the therapeutic effect of chloroquine against intracellular pathogens. J Clin Invest 88(1):351–357. https://doi.org/10.1172/JCI115301</Citation>
</Reference>
<Reference>
<Citation>Carafoli E (2020) Chloroquine and hydroxychloroquine in the prophylaxis and therapy of COVID-19 infection. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2020.09.128</Citation>
</Reference>
<Reference>
<Citation>Cassera MB, Zhang Y, Hazleton KZ, Schramm VL (2011) Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem 11(16):2103–2115. https://doi.org/10.2174/156802611796575948</Citation>
</Reference>
<Reference>
<Citation>Castelnuovo AD, Costanzo S, Antinori A, Berselli N, Blandi L, Bruno R, Cauda R, Guaraldi G, Menicanti L, My I, Parruti G, Patti G, Perlini S, Santilli F, Signorelli C, Spinoni E, Stefanini GG, Vergori A, Ageno W, Agodi A, Aiello L, Agostoni P, Moghazi SA, Astuto M, Aucella F, Barbieri G, Bartoloni A, Bonaccio M, Bonfanti P, Cacciatore F, Caiano L, Cannata F, Carrozzi L, Cascio A, Ciccullo A, Cingolani A, Cipollone F, Colomba C, Crosta F, Pra CD, Danzi GB, D’Ardes D, Donati KDG, Giacomo PD, Gennaro FD, Di Tano G, D’Offizi G, Filippini T, Fusco FM, Gentile I, Gialluisi A, Gini G, Grandone E, Grisafi L, Guarnieri G, Lamonica S, Landi F, Leone A, Maccagni G, Maccarella S, Madaro A, Mapelli M, Maragna R, Marra L, Maresca G, Marotta C, Mastroianni F, Mazzitelli M, Mengozzi A, Menichetti F, Meschiari M, Minutolo F, Montineri A, Mussinelli R, Mussini C, Musso M, Odone A, Olivieri M, Pasi E, Petri F, Pinchera B, Pivato CA, Poletti V, Ravaglia C, Rinaldi M, Rognoni A, Rossato M, Rossi I, Rossi M, Sabena A, Salinaro F, Sangiovanni V, Sanrocco C, Scorzolini L, Sgariglia R, Simeone PG, Spinicci M, Trecarichi EM, Venezia A, Veronesi G, Vettor R, Vianello A, Vinceti M, Vocciante L, De Caterina R, Iacoviello L (2020) Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: findings from the observational multicentre Italian CORIST study. Eur J Intern Med. https://doi.org/10.1016/j.ejim.2020.08.019</Citation>
</Reference>
<Reference>
<Citation>Catteau L, Dauby N, Montourcy M, Bottieau E, Hautekiet J, Goetghebeur E, van Ierssel S, Duysburgh E, Van Oyen H, Wyndham-Thomas C, Van Beckhoven D, Bafort K, Belkhir L, Bossuyt N, Caprasse P, Colombie V, De Munter P, Deblonde J, Delmarcelle D, Delvallee M, Demeester R, Dugernier T, Holemans X, Kerzmann B, Yves Machurot P, Minette P, Minon J-M, Mokrane S, Nachtergal C, Noirhomme S, Piérard D, Rossi C, Schirvel C, Sermijn E, Staelens F, Triest F, Goethem NV, Praet JV, Vanhoenacker A, Verstraete R, Willems E (2020) Low-dose hydroxychloroquine therapy and mortality in hospitalised patients with COVID-19: a nationwide observational study of 8075 participants. Int J Antimicrob Agents 56(4):106144. https://doi.org/10.1016/j.ijantimicag.2020.106144</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.106144</ArticleId>
<ArticleId IdType="pubmed">32853673</ArticleId>
<ArticleId IdType="pmcid">7444610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chaanine AH, Gordon RE, Nonnenmacher M, Kohlbrenner E, Benard L, Hajjar RJ (2015) High-dose chloroquine is metabolically cardiotoxic by inducing lysosomes and mitochondria dysfunction in a rat model of pressure overload hypertrophy. Phys Rep 3(7). https://doi.org/10.14814/phy2.12413</Citation>
</Reference>
<Reference>
<Citation>Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME (2020) Recent aspects of the effects of zinc on human health. Arch Toxicol 94:1443–1460. https://doi.org/10.1007/s00204-020-02702-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00204-020-02702-9</ArticleId>
<ArticleId IdType="pubmed">32394086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chatterjee T, Muhkopadhyay A, Khan KA, Giri KA (1998) Comparative mutagenic and genotoxic effects of three antimalarial drugs, chloroquine, primaquine and amodiaquine. Mutagenesis 13(6):619–624. https://doi.org/10.1093/mutage/13.6.619</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/mutage/13.6.619</ArticleId>
<ArticleId IdType="pubmed">9862194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chauhan A, Tikoo A (2015) The enigma of the clandestine association between chloroquine and HIV-1 infection. HIV Med 16(10):585–590. https://doi.org/10.1111/hiv.12295</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/hiv.12295</ArticleId>
<ArticleId IdType="pubmed">26238012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chen TH, Chang PC, Chang MC, Lin YF, Lee HM (2005) Chloroquine induces the expression of inducible nitric oxide synthase in C6 glioma cells. Pharmacol Res 51(4):329–336. https://doi.org/10.1016/j.phrs.2004.10.004</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.phrs.2004.10.004</ArticleId>
<ArticleId IdType="pubmed">15683746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chowdhury MS, Rathod J, Gernsheimer J (2020) A rapid systematic review of clinical trials utilizing chloroquine and hydroxychloroquine as a treatment for COVID-19. Acad Emerg Med 27:493–504. https://doi.org/10.1111/acem.14005</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/acem.14005</ArticleId>
<ArticleId IdType="pubmed">32359203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ClinicalTrials.gov (2020) ClinicalTrials.gov : a database of privately and publicly funded clinical studies conducted around the world. https://clinicaltrials.gov/ct2/home . Accessed 19 Oct 2020</Citation>
</Reference>
<Reference>
<Citation>Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D (2020) Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 55(4):105932–105932. https://doi.org/10.1016/j.ijantimicag.2020.105932</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.105932</ArticleId>
<ArticleId IdType="pubmed">7135139</ArticleId>
<ArticleId IdType="pmcid">7135139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Coombs K, Mann E, Edwards J, Brown DT (1981) Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus. J Virol 37(3):1060–1065</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1128/JVI.37.3.1060-1065.1981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S (2020) A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 57:279–283. https://doi.org/10.1016/j.jcrc.2020.03.005</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jcrc.2020.03.005</ArticleId>
<ArticleId IdType="pubmed">32173110</ArticleId>
<ArticleId IdType="pmcid">7270792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Das RR, Jaiswal N, Dev N, Naik SS, Sankar J (2020) Efficacy and safety of anti-malarial drugs (chloroquine and hydroxy-chloroquine) in treatment of COVID-19 infection: a systematic review and meta-analysis. Front Med (Lausanne) 7:482. https://doi.org/10.3389/fmed.2020.00482</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/fmed.2020.00482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Delogu I, de Lamballerie X (2011) Chikungunya disease and chloroquine treatment. J Med Virol 83(6):1058–1059. https://doi.org/10.1002/jmv.22019</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/jmv.22019</ArticleId>
<ArticleId IdType="pubmed">21503920</ArticleId>
<ArticleId IdType="pmcid">7166838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Derwand R, Scholz M (2020) Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19? Med Hypotheses 142:109815. https://doi.org/10.1016/j.mehy.2020.109815</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.mehy.2020.109815</ArticleId>
<ArticleId IdType="pubmed">32408070</ArticleId>
<ArticleId IdType="pmcid">7202847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Devaux CA, Rolain J-M, Colson P, Raoult D (2020) New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 55(5):105938. https://doi.org/10.1016/j.ijantimicag.2020.105938</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.105938</ArticleId>
<ArticleId IdType="pubmed">32171740</ArticleId>
<ArticleId IdType="pmcid">7118659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dowall SD, Bosworth A, Watson R, Bewley K, Taylor I, Rayner E, Hunter L, Pearson G, Easterbrook L, Pitman J (2015) Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J Gen Virol 96(Pt 12):3484–3492. https://doi.org/10.1099/jgv.0.000309</Citation>
</Reference>
<Reference>
<Citation>Drakesmith H, Prentice A (2008) Viral infection and iron metabolism. Nat Rev Microbiol 6(7):541–552. https://doi.org/10.1038/nrmicro1930</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nrmicro1930</ArticleId>
<ArticleId IdType="pubmed">18552864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ektorp E (2020) Death threats after a trial on chloroquine for COVID-19. Lancet Infect Dis 20(6):661. https://doi.org/10.1016/S1473-3099(20)30383-2</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S1473-3099(20)30383-2</ArticleId>
<ArticleId IdType="pubmed">32473139</ArticleId>
<ArticleId IdType="pmcid">7255234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerole GO, Thabrew MI (1983) Changes in some rat hepatic microsomal components induced by prolonged administration of chloroquine. Biochem Pharmacol 32(20):3005–3009. https://doi.org/10.1016/0006-2952(83)90241-1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/0006-2952(83)90241-1</ArticleId>
<ArticleId IdType="pubmed">6639668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Falzarano D, Safronetz D, Prescott J, Marzi A, Feldmann F, Feldmann H (2015) Lack of protection against ebola virus from chloroquine in mice and hamsters. Emerg Infect Dis 21(6):1065–1067. https://doi.org/10.3201/eid2106.150176</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3201/eid2106.150176</ArticleId>
<ArticleId IdType="pubmed">25988934</ArticleId>
<ArticleId IdType="pmcid">4451918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Farombi E (2006) Genotoxicity of chloroquine in rat liver cells: protective role of free radical scavengers. Cell Biol Toxicol 22(3):159–167</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10565-006-0173-2</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fong KY, Wright DW (2013) Hemozoin and antimalarial drug discovery. Future Med Chem 5(12):1437–1450. https://doi.org/10.4155/fmc.13.113</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4155/fmc.13.113</ArticleId>
<ArticleId IdType="pubmed">23919553</ArticleId>
<ArticleId IdType="pmcid">4928194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gao G, Wang A, Wang S, Qian F, Chen M, Yu F, Zhang J, Wang X, Ma X, Zhao T, Zhang F, Chen Z (2020a) Brief report: retrospective evaluation on the efficacy of lopinavir/ritonavir and chloroquine to treat nonsevere COVID-19 patients. J Acquir Immune Defic Syndr 85(2):239–243. https://doi.org/10.1097/QAI.0000000000002452</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1097/QAI.0000000000002452</ArticleId>
<ArticleId IdType="pubmed">32740371</ArticleId>
<ArticleId IdType="pmcid">7495977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gao J, Tian Z, Yang X (2020b) Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 14:72–73. https://doi.org/10.5582/bst.2020.01047</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.5582/bst.2020.01047</ArticleId>
<ArticleId IdType="pubmed">32074550</ArticleId>
<ArticleId IdType="pmcid">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Gasmi Benahmed A, Bjorklund G (2020) Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol 220:108545. https://doi.org/10.1016/j.clim.2020.108545</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.clim.2020.108545</ArticleId>
<ArticleId IdType="pubmed">32710937</ArticleId>
<ArticleId IdType="pmcid">7833875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Tissot Dupont H, Honoré S, Colson P, Chabrière E, La Scola B, Rolain J-M, Brouqui P, Raoult D (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 56(1):105949–105949. https://doi.org/10.1016/j.ijantimicag.2020.105949</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.105949</ArticleId>
<ArticleId IdType="pubmed">32205204</ArticleId>
<ArticleId IdType="pmcid">7102549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ghigo D, Aldieri E, Todde R, Costamagna C, Garbarino G, Pescarmona G, Bosia A (1998) Chloroquine stimulates nitric oxide synthesis in murine, porcine, and human endothelial cells. J Clin Invest 102(3):595–605. https://doi.org/10.1172/JCI1052</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1172/JCI1052</ArticleId>
<ArticleId IdType="pubmed">9691096</ArticleId>
<ArticleId IdType="pmcid">508920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Giovanella F, Ferreira GK, de Pra SD, Carvalho-Silva M, Gomes LM, Scaini G, Goncalves RC, Michels M, Galant LS, Longaretti LM, Dajori AL, Andrade VM, Dal-Pizzol F, Streck EL, de Souza RP (2015) Effects of primaquine and chloroquine on oxidative stress parameters in rats. An Acad Bras Cienc 87(2 Suppl):1487–1496. https://doi.org/10.1590/0001-3765201520140637</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1590/0001-3765201520140637</ArticleId>
<ArticleId IdType="pubmed">26312430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Giri A, Das A, Sarkar AK, Giri AK (2020) Mutagenic, genotoxic and immunomodulatory effects of hydroxychloroquine and chloroquine: a review to evaluate its potential to use as a prophylactic drug against COVID-19. Genes Environ 42:25–25. https://doi.org/10.1186/s41021-020-00164-0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/s41021-020-00164-0</ArticleId>
<ArticleId IdType="pubmed">32884603</ArticleId>
<ArticleId IdType="pmcid">7462746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Harrison C (2020) Coronavirus puts drug repurposing on the fast track. Nat Biotechnol 38(4):379–381. https://doi.org/10.1038/d41587-020-00003-1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/d41587-020-00003-1</ArticleId>
<ArticleId IdType="pubmed">32205870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Helal GK, Gad MA, Abd-Ellah MF, Eid MS (2016) Hydroxychloroquine augments early virological response to pegylated interferon plus ribavirin in genotype-4 chronic hepatitis C patients. J Med Virol 88(12):2170–2178. https://doi.org/10.1002/jmv.24575</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/jmv.24575</ArticleId>
<ArticleId IdType="pubmed">27183377</ArticleId>
<ArticleId IdType="pmcid">7167065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hernandez AV, Roman YM, Pasupuleti V, Barboza JJ, White CM (2020) Update alert 2: hydroxychloroquine or chloroquine for the treatment or prophylaxis of COVID-19. Ann Intern Med 173(7):W128–W129. https://doi.org/10.7326/L20-1054</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.7326/L20-1054</ArticleId>
<ArticleId IdType="pubmed">32853033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hoffmann M, Mösbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H, Krüger N, Gassen NC, Müller MA, Drosten C, Pöhlmann S (2020) Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 585(7826):588–590. https://doi.org/10.1038/s41586-020-2575-3</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41586-020-2575-3</ArticleId>
<ArticleId IdType="pubmed">32698190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberson JR, Wiselka M, Ustianowski A, Elmahi E, Prudon B, Whitehouse T, Felton T, Williams J, Faccenda J, Underwood J, Baillie JK, Chappell LC, Faust SN, Jaki T, Jeffery K, Lim WS, Montgomery A, Rowan K, Tarning J, Watson JA, White NJ, Juszczak E, Haynes R, Landray MJ (2020) Effect of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 383:2030–2040. https://doi.org/10.1056/NEJMoa2022926</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa2022926</ArticleId>
<ArticleId IdType="pubmed">33031652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Huang M, Li M, Xiao F, Pang P, Liang J, Tang T, Liu S, Chen B, Shu J, You Y, Li Y, Tang M, Zhou J, Jiang G, Xiang J, Hong W, He S, Wang Z, Feng J, Lin C, Ye Y, Wu Z, Li Y, Zhong B, Sun R, Hong Z, Liu J, Chen H, Wang X, Li Z, Pei D, Tian L, Xia J, Jiang S, Zhong N, Shan H (2020) Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. Natl Sci Rev 7(9):1428–1436. https://doi.org/10.1093/nsr/nwaa113</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/nsr/nwaa113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Junqueira DR, Rowe BH (2020) Efficacy and safety outcomes of proposed randomized controlled trials investigating hydroxychloroquine and chloroquine during the early stages of the COVID-19 pandemic. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.14598</Citation>
</Reference>
<Reference>
<Citation>Karres I, Kremer J-P, Dietl I, Steckholzer U, Jochum M, Ertel W (1998) Chloroquine inhibits proinflammatory cytokine release into human whole blood. Am J Phys Regul Integr Comp Phys 274(4):R1058–R1064. https://doi.org/10.1152/ajpregu.1998.274.4.R1058</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1152/ajpregu.1998.274.4.R1058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kashour Z, Riaz M, Garbati MA, AlDosary O, Tlayjeh H, Gerberi D, Murad MH, Sohail MR, Kashour T, Tleyjeh IM (2020) Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: a systematic review and meta-analysis. J Antimicrob Chemother 76:30–42. https://doi.org/10.1093/jac/dkaa403</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/jac/dkaa403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Katz SJ, Russell AS (2011) Re-evaluation of antimalarials in treating rheumatic diseases: re-appreciation and insights into new mechanisms of action. Curr Opin Rheumatol 23(3):278–281. https://doi.org/10.1097/BOR.0b013e32834456bf</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1097/BOR.0b013e32834456bf</ArticleId>
<ArticleId IdType="pubmed">21448012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kearney J (2020) Chloroquine as a potential treatment and prevention measure for the 2019 novel coronavirus: a review. Preprints:2020030275. https://doi.org/10.20944/preprints202003.0275.v1</Citation>
</Reference>
<Reference>
<Citation>Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M (2004) In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 323(1):264–268. https://doi.org/10.1016/j.bbrc.2004.08.085</Citation>
</Reference>
<Reference>
<Citation>Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Van Ranst M, Maes P (2009) Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother 53(8):3416–3421. https://doi.org/10.1128/AAC.01509-08</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1128/AAC.01509-08</ArticleId>
<ArticleId IdType="pubmed">19506054</ArticleId>
<ArticleId IdType="pmcid">2715625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kim AHJ, Sparks JA, Liew JW, Putman MS, Berenbaum F, Duarte-García A, Graef ER, Korsten P, Sattui SE, Sirotich E, Ugarte-Gil MF, Webb K, Grainger R (2020) A rush to judgment? Rapid reporting and dissemination of results and its consequences regarding the use of hydroxychloroquine for COVID-19. Ann Intern Med 172(12):819–821. https://doi.org/10.7326/m20-1223</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.7326/m20-1223</ArticleId>
<ArticleId IdType="pubmed">32227189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Klouda CB, Stone WL (2020) Oxidative stress, proton fluxes, and chloroquine/hydroxychloroquine treatment for COVID-19. Antioxidants (Basel) 9(9). https://doi.org/10.3390/antiox9090894</Citation>
</Reference>
<Reference>
<Citation>Lamballerie XD, Boisson V, Reynier J-C, Enault S, Charrel RN, Flahault A, Roques P, Grand RL (2008) On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis 8(6):837–840</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1089/vbz.2008.0049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lammers AJJ, Brohet RM, Theunissen REP, Koster C, Rood R, Verhagen DWM, Brinkman K, Hassing RJ, Dofferhoff A, El Moussaoui R, Hermanides G, Ellerbroek J, Bokhizzou N, Visser H, van den Berge M, Bax H, Postma DF, Groeneveld PHP (2020) Early Hydroxychloroquine but not chloroquine use reduces ICU admission in COVID-19 patients. Int J Infect Dis 101:283–289. https://doi.org/10.1016/j.ijid.2020.09.1460</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijid.2020.09.1460</ArticleId>
<ArticleId IdType="pubmed">33007454</ArticleId>
<ArticleId IdType="pmcid">7524430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lamoureux F, Thomas C, Crafter C, Kumano M, Zhang F, Davies BR, Gleave ME, Zoubeidi A (2013) Blocked autophagy using lysosomotropic agents sensitizes resistant prostate tumor cells to the novel Akt inhibitor AZD5363. Clin Cancer Res 19(4):833–844. https://doi.org/10.1158/1078-0432.ccr-12-3114</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1158/1078-0432.ccr-12-3114</ArticleId>
<ArticleId IdType="pubmed">23258740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lazarczyk M, Favre M (2008) Role of Zn2+ ions in host-virus interactions. J Virol 82(23):11486–11494. https://doi.org/10.1128/JVI.01314-08</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1128/JVI.01314-08</ArticleId>
<ArticleId IdType="pubmed">18787005</ArticleId>
<ArticleId IdType="pmcid">2583646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Legssyer R, Josse C, Piette J, Ward RJ, Crichton RR (2003) Changes in function of iron-loaded alveolar macrophages after in vivo administration of desferrioxamine and/or chloroquine. J Inorg Biochem 94(1–2):36–42. https://doi.org/10.1016/s0162-0134(02)00633-5</Citation>
</Reference>
<Reference>
<Citation>Li C, Zhu X, Ji X, Quanquin N, Deng Y-Q, Tian M, Aliyari R, Zuo X, Yuan L, Afridi SK (2017) Chloroquine, a FDA-approved drug, prevents Zika virus infection and its associated congenital microcephaly in mice. EBioMedicine 24:189–194. https://doi.org/10.1016/j.ebiom.2017.09.034</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ebiom.2017.09.034</ArticleId>
<ArticleId IdType="pubmed">29033372</ArticleId>
<ArticleId IdType="pmcid">5652284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lin M-H, Moses DC, Hsieh C-H, Cheng S-C, Chen Y-H, Sun C-Y, Chou C-Y (2018) Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antivir Res 150:155–163. https://doi.org/10.1016/j.antiviral.2017.12.015</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.antiviral.2017.12.015</ArticleId>
<ArticleId IdType="pubmed">29289665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M (2020) Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 6(1):16. https://doi.org/10.1038/s41421-020-0156-0</Citation>
</Reference>
<Reference>
<Citation>Magwere T, Naik YS, Hasler JA (1997) Effects of chloroquine treatment on antioxidant enzymes in rat liver and kidney. Free Radic Biol Med 22(1-2):321–327. https://doi.org/10.1016/s0891-5849(96)00285-7</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/s0891-5849(96)00285-7</ArticleId>
<ArticleId IdType="pubmed">8958157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Marzi A, Reinheckel T, Feldmann H (2012) Cathepsin B & L are not required for ebola virus replication. PLoS Neglect Trop D 6(12)</Citation>
</Reference>
<Reference>
<Citation>Mehra MR, Desai SS, Ruschitzka F, Patel AN (2020) RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. https://doi.org/10.1016/S0140-6736(20)31180-6</Citation>
</Reference>
<Reference>
<Citation>Meyerowitz EA, Vannier AGL, Friesen MGN, Schoenfeld S, Gelfand JA, Callahan MV, Kim AY, Reeves PM, Poznansky MC (2020) Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J 34(5):6027–6037. https://doi.org/10.1096/fj.202000919</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1096/fj.202000919</ArticleId>
<ArticleId IdType="pubmed">32350928</ArticleId>
<ArticleId IdType="pmcid">7267640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Michaelides M, Stover NB, Francis PJ, Weleber RG (2011) Retinal toxicity associated with hydroxychloroquine and chloroquine: risk factors, screening, and progression despite cessation of therapy. Arch Ophthalmol 129(1):30–39. https://doi.org/10.1001/archophthalmol.2010.321</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/archophthalmol.2010.321</ArticleId>
<ArticleId IdType="pubmed">21220626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326. https://doi.org/10.1016/j.cell.2010.01.028</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.cell.2010.01.028</ArticleId>
<ArticleId IdType="pubmed">20144757</ArticleId>
<ArticleId IdType="pmcid">2852113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Murr C, Widner B, Wirleitner B, Fuchs D (2002) Neopterin as a marker for immune system activation. Curr Drug Metab 3(2):175–187. https://doi.org/10.2174/1389200024605082</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.2174/1389200024605082</ArticleId>
<ArticleId IdType="pubmed">12003349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>National Health Commission (2020) Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 7). Chin Med J 133(9):1087–1095</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1097/CM9.0000000000000819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>National Institute of Health (2020) Chloroquine or hydroxychloroquine with or without azithromycin. https://www.covid19treatmentguidelines.nih.gov/antiviral-therapy/chloroquine-or-hydroxychloroquine-with-or-without-azithromycin/clinical-data%2D%2Dchloroquine-or-hydroxychloroquine/ . Accessed 5 Nov 2020</Citation>
</Reference>
<Reference>
<Citation>Ohkuma S, Poole B (1981) Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J Cell Biol 90(3):656–664. https://doi.org/10.1083/jcb.90.3.656</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1083/jcb.90.3.656</ArticleId>
<ArticleId IdType="pubmed">7287819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Paiva CN, Bozza MT (2014) Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal 20(6):1000–1037. https://doi.org/10.1089/ars.2013.5447</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1089/ars.2013.5447</ArticleId>
<ArticleId IdType="pubmed">23992156</ArticleId>
<ArticleId IdType="pmcid">3924804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parhizgar AR, Tahghighi A (2017) Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review. Iran J Med Sci 42(2):115–128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28360437</ArticleId>
<ArticleId IdType="pmcid">5366359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Paton NI, Lee L, Xu Y, Ooi EE, Cheung YB, Archuleta S, Wong G, Wilder-Smith A (2011) Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. Lancet Infect Dis 11(9):677–683. https://doi.org/10.1016/S1473-3099(11)70065-2</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S1473-3099(11)70065-2</ArticleId>
<ArticleId IdType="pubmed">21550310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peymani P, Yeganeh B, Sabour S, Geramizadeh B, Fattahi MR, Keyvani H, Azarpira N, Coombs KM, Ghavami S, Lankarani KB (2016) New use of an old drug: chloroquine reduces viral and ALT levels in HCV non-responders (a randomized, triple-blind, placebo-controlled pilot trial). Can J Physiol Pharmacol 94(6):613–619. https://doi.org/10.1139/cjpp-2015-0507</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1139/cjpp-2015-0507</ArticleId>
<ArticleId IdType="pubmed">26998724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Quiros Roldan E, Biasiotto G, Magro P, Zanella I (2020) The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): a role for iron homeostasis? Pharmacol Res 158:104904. https://doi.org/10.1016/j.phrs.2020.104904</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.phrs.2020.104904</ArticleId>
<ArticleId IdType="pubmed">32430286</ArticleId>
<ArticleId IdType="pmcid">7217799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redmann M, Benavides GA, Berryhill TF, Wani WY, Ouyang X, Johnson MS, Ravi S, Barnes S, Darley-Usmar VM, Zhang J (2017) Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol 11:73–81. https://doi.org/10.1016/j.redox.2016.11.004</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.redox.2016.11.004</ArticleId>
<ArticleId IdType="pubmed">27889640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Riviere JH, Back DJ (1986) Inhibition of ethinyloestradiol and tolbutamide metabolism by quinoline derivatives in vitro. Chem Biol Interact 59(3):301–308. https://doi.org/10.1016/s0009-2797(86)80075-8</Citation>
</Reference>
<Reference>
<Citation>Roques P, Thiberville SD, Dupuis-Maguiraga L, Lum FM, Labadie K, Martinon F, Gras G, Lebon P, Ng LFP, de Lamballerie X, Le Grand R (2018) Paradoxical effect of chloroquine treatment in enhancing chikungunya virus infection. Viruses 10(5). https://doi.org/10.3390/v10050268</Citation>
</Reference>
<Reference>
<Citation>Rosendaal FR (2020) Review of: “Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial Gautret et al 2010, DOI:10.1016/j.ijantimicag.2020.105949”. Int J Antimicrob Agents 56(1):106063–106063. https://doi.org/10.1016/j.ijantimicag.2020.106063</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.106063</ArticleId>
<ArticleId IdType="pubmed">32674928</ArticleId>
<ArticleId IdType="pmcid">7357515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Roy LD, Mazumdar M, Giri S (2008) Effects of low dose radiation and vitamin C treatment on chloroquine-induced genotoxicity in mice. Environ Mol Mutagen 49(6):488–495. https://doi.org/10.1002/em.20408</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/em.20408</ArticleId>
<ArticleId IdType="pubmed">18618582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sahu R, Kashyap P (2012) Genotoxic potential of some commonly used antimalarials: a review. Int J Pharm Sci Res 3(6):1569</Citation>
</Reference>
<Reference>
<Citation>Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R (2003) Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 3(11):722–727. https://doi.org/10.1016/s1473-3099(03)00806-5</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/s1473-3099(03)00806-5</ArticleId>
<ArticleId IdType="pubmed">14592603</ArticleId>
<ArticleId IdType="pmcid">7128816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189. https://doi.org/10.1189/jlb.0603252</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1189/jlb.0603252</ArticleId>
<ArticleId IdType="pubmed">14525967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shalumashvili MA, Sigidin Ia A (1976) Cytogenetic effects of chloroquine in a culture of human lymphocytes. Biull Eksp Biol Med 82(7):879–881</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1085185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shimizu Y, Yamamoto S, Homma M, Ishida N (1972) Effect of chloroquine on the growth of animal viruses. Arch Gesamte Virusforsch 36(1):93–104. https://doi.org/10.1007/BF01250299</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/BF01250299</ArticleId>
<ArticleId IdType="pubmed">4335025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A, van der Heden van Noort GJ, Ovaa H, Muller S, Knobeloch KP, Rajalingam K, Schulman BA, Cinatl J, Hummer G, Ciesek S, Dikic I (2020) Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 587:657–662. https://doi.org/10.1038/s41586-020-2601-5</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41586-020-2601-5</ArticleId>
<ArticleId IdType="pubmed">32726803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Skelton FS, Pardini RS, Heidker JC, Folkers K (1968) Inhibition of coenzyme Q systems by chloroquine and other antimalarials. J Am Chem Soc 90(19):5334–5336. https://doi.org/10.1021/ja01021a084</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/ja01021a084</ArticleId>
<ArticleId IdType="pubmed">5670801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Slater AF, Cerami A (1992) Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 355(6356):167–169. https://doi.org/10.1038/355167a0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/355167a0</ArticleId>
<ArticleId IdType="pubmed">1729651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Spiro HM (1986) Chemotherapy of malaria. Second ed.: Edited by L. J. Bruce-Chwatt, with R. H. Black, C. J. Canfield, D. F. Clyde, W. Peters, and W. H. Wernsdorfer. 261 pp., 44 Swiss francs. World Health Organization, Geneva, Switzerland, 1986. ISBN 92 4 1401273. Gastroenterology 91(4):1034. https://doi.org/10.5555/uri:pii:0016508586907249</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.5555/uri:pii:0016508586907249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sugioka Y, Suzuki M, Sugioka K, Nakano M (1987) A ferriprotoporphyrin IX-chloroquine complex promotes membrane phospholipid peroxidation. A possible mechanism for antimalarial action. FEBS Lett 223(2):251–254. https://doi.org/10.1016/0014-5793(87)80299-5</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/0014-5793(87)80299-5</ArticleId>
<ArticleId IdType="pubmed">3666151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sullivan DJ Jr (2017) Quinolines block every step of malaria heme crystal growth. Proc Natl Acad Sci U S A 114(29):7483–7485. https://doi.org/10.1073/pnas.1708153114</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.1708153114</ArticleId>
<ArticleId IdType="pubmed">28696317</ArticleId>
<ArticleId IdType="pmcid">5530708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sullivan DJ Jr, Gluzman IY, Russell DG, Goldberg DE (1996) On the molecular mechanism of chloroquine’s antimalarial action. Proc Natl Acad Sci U S A 93(21):11865–11870. https://doi.org/10.1073/pnas.93.21.11865</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.93.21.11865</ArticleId>
<ArticleId IdType="pubmed">8876229</ArticleId>
<ArticleId IdType="pmcid">38150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tan YW, Yam WK, Sun J, Chu JJH (2018) An evaluation of chloroquine as a broad-acting antiviral against hand, foot and mouth disease. Antivir Res 149:143–149. https://doi.org/10.1016/j.antiviral.2017.11.017</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.antiviral.2017.11.017</ArticleId>
<ArticleId IdType="pubmed">29175128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ (2010) Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 6(11):e1001176. https://doi.org/10.1371/journal.ppat.1001176</Citation>
</Reference>
<Reference>
<Citation>Thabrew MI, Ioannides C (1984) Inhibition of rat hepatic mixed function oxidases by antimalarial drugs: selectivity for cytochromes P-450 and P-448. Chem Biol Interact 51(3):285–294. https://doi.org/10.1016/0009-2797(84)90154-6</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/0009-2797(84)90154-6</ArticleId>
<ArticleId IdType="pubmed">6488390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Torrentino-Madamet M, Desplans J, Travaille C, Jammes Y, Parzy D (2010) Microaerophilic respiratory metabolism of plasmodium falciparum mitochondrion as a drug target. Curr Mol Med 10(1):29–46. https://doi.org/10.2174/156652410791065390</Citation>
</Reference>
<Reference>
<Citation>Touret F, de Lamballerie X (2020) Of chloroquine and COVID-19. Antivir Res 177:104762. https://doi.org/10.1016/j.antiviral.2020.104762</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.antiviral.2020.104762</ArticleId>
<ArticleId IdType="pubmed">32147496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tracey MDKJ, Cerami PDA (1994) Tumor necrosis factor: a pleiotropic cytokine and therapuetic target. Annu Rev Med 45(1):491–503. https://doi.org/10.1146/annurev.med.45.1.491</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1146/annurev.med.45.1.491</ArticleId>
<ArticleId IdType="pubmed">8198398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B, Tran HT, Simmons CP (2010) A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 4(8):e785. https://doi.org/10.1371/journal.pntd.0000785</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pntd.0000785</ArticleId>
<ArticleId IdType="pubmed">20706626</ArticleId>
<ArticleId IdType="pmcid">2919376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaidya AB, Mather MW (2009) Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol 63:249–267. https://doi.org/10.1146/annurev.micro.091208.073424</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1146/annurev.micro.091208.073424</ArticleId>
<ArticleId IdType="pubmed">19575561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL (1997) Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol 24(1):55–60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vessoni AT, Quinet A, Andrade-Lima LCD, Martins DJ, Garcia CCM, Rocha CRR, Vieira DB, Menck CFM (2016) Chloroquine-induced glioma cells death is associated with mitochondrial membrane potential loss, but not oxidative stress. Free Radic Biol Med 90:91–100. https://doi.org/10.1016/j.freeradbiomed.2015.11.008</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.freeradbiomed.2015.11.008</ArticleId>
<ArticleId IdType="pubmed">26577174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vezmar M, Georges E (1998) Direct binding of chloroquine to the multidrug resistance protein (MRP): possible role for MRP in chloroquine drug transport and resistance in tumor cells. Biochem Pharmacol 56(6):733–742. https://doi.org/10.1016/S0006-2952(98)00217-2</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S0006-2952(98)00217-2</ArticleId>
<ArticleId IdType="pubmed">9751078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vezmar M, Georges E (2000) Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Biochem Pharmacol 59(10):1245–1252. https://doi.org/10.1016/s0006-2952(00)00270-7</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/s0006-2952(00)00270-7</ArticleId>
<ArticleId IdType="pubmed">10736425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vigerust DJ, McCullers JA (2007) Chloroquine is effective against influenza A virus in vitro but not in vivo. Influenza Other Respir Viruses 1(5–6):189–192</Citation>
</Reference>
<Reference>
<Citation>Villinger F, Rollin PE, Brar SS, Chikkala NF, Winter J, Sundstrom JB, Zaki SR, Swanepoel R, Ansari AA, Peters CJ (1999) Markedly elevated levels of interferon (IFN)-γ, IFN-α, interleukin (IL)-2, IL-10, and tumor necrosis factor-α associated with fatal Ebola virus infection. J Infect Dis 179(Supplement_1):S188–S191. https://doi.org/10.1086/514283</Citation>
</Reference>
<Reference>
<Citation>Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2(1):69</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/1743-422X-2-69</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG (2003) Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev 55(3):551–571. https://doi.org/10.1124/pr.55.3.5</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1124/pr.55.3.5</ArticleId>
<ArticleId IdType="pubmed">12869663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30(3):269–271. https://doi.org/10.1038/s41422-020-0282-0</Citation>
</Reference>
<Reference>
<Citation>Wessels I, Rolles B, Rink L (2020) The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol 11:1712. https://doi.org/10.3389/fimmu.2020.01712</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/fimmu.2020.01712</ArticleId>
<ArticleId IdType="pubmed">32754164</ArticleId>
<ArticleId IdType="pmcid">7365891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>White NJ (1996) The treatment of malaria. N Engl J Med 335(11):800–806. https://doi.org/10.1056/NEJM199609123351107</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJM199609123351107</ArticleId>
<ArticleId IdType="pubmed">8703186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Winzeler EA (2008) Malaria research in the post-genomic era. Nature 455(7214):751–756</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nature07361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World Health Organization (2020) “Solidarity” clinical trial for COVID-19 treatments. UPDATE: solidarity trial reports interim results. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments</Citation>
</Reference>
<Reference>
<Citation>Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding W-Q (2014) Chloroquine is a zinc ionophore. PLoS One 9(10):e109180–e109180. https://doi.org/10.1371/journal.pone.0109180</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0109180</ArticleId>
<ArticleId IdType="pubmed">25271834</ArticleId>
<ArticleId IdType="pmcid">4182877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yan Y, Zou Z, Sun Y, Li X, Xu K-F, Wei Y, Jin N, Jiang C (2013) Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 23(2):300–302. https://doi.org/10.1038/cr.2012.165</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/cr.2012.165</ArticleId>
<ArticleId IdType="pubmed">23208422</ArticleId>
<ArticleId IdType="pmcid">23208422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yang Z-Y, Huang Y, Ganesh L, Leung K, Kong W-P, Schwartz O, Subbarao K, Nabel GJ (2004) pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 78(11):5642–5650. https://doi.org/10.1128/JVI.78.11.5642-5650.2004</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1128/JVI.78.11.5642-5650.2004</ArticleId>
<ArticleId IdType="pubmed">15140961</ArticleId>
<ArticleId IdType="pmcid">415834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yu H, Zhou Y, Lind SE, Ding W-Q (2009) Clioquinol targets zinc to lysosomes in human cancer cells. Biochem J 417(1):133–139. https://doi.org/10.1042/BJ20081421</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1042/BJ20081421</ArticleId>
<ArticleId IdType="pubmed">18764784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zheng J, Zhang X-X, Yu H, Taggart JE, Ding W-Q (2012) Zinc at cytotoxic concentrations affects posttranscriptional events of gene expression in cancer cells. Cell Physiol Biochem 29(1-2):181–188. https://doi.org/10.1159/000337599</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1159/000337599</ArticleId>
<ArticleId IdType="pubmed">22415087</ArticleId>
<ArticleId IdType="pmcid">3711771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoroddu MA, Medici S, Ledda A, Nurchi VM, Lachowicz JI, Peana M (2014) Toxicity of nanoparticles. Curr Med Chem 21(33):3837–3853. https://doi.org/10.2174/0929867321666140601162314</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.2174/0929867321666140601162314</ArticleId>
<ArticleId IdType="pubmed">25306903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM (2019) The essential metals for humans: a brief overview. J Inorg Biochem 195:120–129. https://doi.org/10.1016/j.jinorgbio.2019.03.013</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jinorgbio.2019.03.013</ArticleId>
<ArticleId IdType="pubmed">30939379</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000423 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000423 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33515285
   |texte=   Chloroquine and hydroxychloroquine in the treatment of COVID-19: the never-ending story.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33515285" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021