Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of a SARS-CoV-2-derived receptor-binding domain-based ACE2 biosensor.

Identifieur interne : 000323 ( Main/Corpus ); précédent : 000322; suivant : 000324

Development of a SARS-CoV-2-derived receptor-binding domain-based ACE2 biosensor.

Auteurs : Jung-Soo Suh ; Heon-Su Kim ; Tae-Jin Kim

Source :

RBID : pubmed:33612970

Abstract

The global outbreak of coronavirus disease and rapid spread of the causative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent a significant threat to human health. A key mechanism of human SARS-CoV-2 infection is initiated by the combination of human angiotensin-converting enzyme 2 (hACE2) and the receptor-binding domain (RBD) of the SARS-CoV-2-derived spike glycoprotein. Despite the importance of these protein interactions, there are still insufficient detection methods to observe their activity at the cellular level. Herein, we developed a novel fluorescence resonance energy transfer (FRET)-based hACE2 biosensor to monitor the interaction between hACE2 and SARS-CoV-2 RBD. This biosensor facilitated the visualization of hACE2-RBD activity with high spatiotemporal resolutions at the single-cell level. Further studies revealed that the FRET-based hACE2 biosensors were sensitive to both exogenous and endogenous hACE2 expression, suggesting that they might be safely applied to the early stage of SARS-CoV-2 infection without direct virus use. Therefore, our novel biosensor could potentially help develop drugs that target SARS-CoV-2 by inhibiting hACE2-RBD interaction.

DOI: 10.1016/j.snb.2021.129663
PubMed: 33612970
PubMed Central: PMC7885701

Links to Exploration step

pubmed:33612970

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of a SARS-CoV-2-derived receptor-binding domain-based ACE2 biosensor.</title>
<author>
<name sortKey="Suh, Jung Soo" sort="Suh, Jung Soo" uniqKey="Suh J" first="Jung-Soo" last="Suh">Jung-Soo Suh</name>
<affiliation>
<nlm:affiliation>Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Heon Su" sort="Kim, Heon Su" uniqKey="Kim H" first="Heon-Su" last="Kim">Heon-Su Kim</name>
<affiliation>
<nlm:affiliation>Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Tae Jin" sort="Kim, Tae Jin" uniqKey="Kim T" first="Tae-Jin" last="Kim">Tae-Jin Kim</name>
<affiliation>
<nlm:affiliation>Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Institute of Systems Biology, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33612970</idno>
<idno type="pmid">33612970</idno>
<idno type="doi">10.1016/j.snb.2021.129663</idno>
<idno type="pmc">PMC7885701</idno>
<idno type="wicri:Area/Main/Corpus">000323</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000323</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development of a SARS-CoV-2-derived receptor-binding domain-based ACE2 biosensor.</title>
<author>
<name sortKey="Suh, Jung Soo" sort="Suh, Jung Soo" uniqKey="Suh J" first="Jung-Soo" last="Suh">Jung-Soo Suh</name>
<affiliation>
<nlm:affiliation>Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Heon Su" sort="Kim, Heon Su" uniqKey="Kim H" first="Heon-Su" last="Kim">Heon-Su Kim</name>
<affiliation>
<nlm:affiliation>Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Tae Jin" sort="Kim, Tae Jin" uniqKey="Kim T" first="Tae-Jin" last="Kim">Tae-Jin Kim</name>
<affiliation>
<nlm:affiliation>Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Institute of Systems Biology, Pusan National University, Pusan 46241, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Sensors and actuators. B, Chemical</title>
<idno type="ISSN">0925-4005</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The global outbreak of coronavirus disease and rapid spread of the causative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent a significant threat to human health. A key mechanism of human SARS-CoV-2 infection is initiated by the combination of human angiotensin-converting enzyme 2 (hACE2) and the receptor-binding domain (RBD) of the SARS-CoV-2-derived spike glycoprotein. Despite the importance of these protein interactions, there are still insufficient detection methods to observe their activity at the cellular level. Herein, we developed a novel fluorescence resonance energy transfer (FRET)-based hACE2 biosensor to monitor the interaction between hACE2 and SARS-CoV-2 RBD. This biosensor facilitated the visualization of hACE2-RBD activity with high spatiotemporal resolutions at the single-cell level. Further studies revealed that the FRET-based hACE2 biosensors were sensitive to both exogenous and endogenous hACE2 expression, suggesting that they might be safely applied to the early stage of SARS-CoV-2 infection without direct virus use. Therefore, our novel biosensor could potentially help develop drugs that target SARS-CoV-2 by inhibiting hACE2-RBD interaction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33612970</PMID>
<DateRevised>
<Year>2021</Year>
<Month>03</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0925-4005</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>334</Volume>
<PubDate>
<Year>2021</Year>
<Month>May</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Sensors and actuators. B, Chemical</Title>
<ISOAbbreviation>Sens Actuators B Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Development of a SARS-CoV-2-derived receptor-binding domain-based ACE2 biosensor.</ArticleTitle>
<Pagination>
<MedlinePgn>129663</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.snb.2021.129663</ELocationID>
<Abstract>
<AbstractText>The global outbreak of coronavirus disease and rapid spread of the causative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent a significant threat to human health. A key mechanism of human SARS-CoV-2 infection is initiated by the combination of human angiotensin-converting enzyme 2 (hACE2) and the receptor-binding domain (RBD) of the SARS-CoV-2-derived spike glycoprotein. Despite the importance of these protein interactions, there are still insufficient detection methods to observe their activity at the cellular level. Herein, we developed a novel fluorescence resonance energy transfer (FRET)-based hACE2 biosensor to monitor the interaction between hACE2 and SARS-CoV-2 RBD. This biosensor facilitated the visualization of hACE2-RBD activity with high spatiotemporal resolutions at the single-cell level. Further studies revealed that the FRET-based hACE2 biosensors were sensitive to both exogenous and endogenous hACE2 expression, suggesting that they might be safely applied to the early stage of SARS-CoV-2 infection without direct virus use. Therefore, our novel biosensor could potentially help develop drugs that target SARS-CoV-2 by inhibiting hACE2-RBD interaction.</AbstractText>
<CopyrightInformation>© 2021 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Suh</LastName>
<ForeName>Jung-Soo</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Heon-Su</ForeName>
<Initials>HS</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Tae-Jin</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Pusan National University, Pusan 46241, Republic of Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Systems Biology, Pusan National University, Pusan 46241, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>02</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Sens Actuators B Chem</MedlineTA>
<NlmUniqueID>101149755</NlmUniqueID>
<ISSNLinking>0925-4005</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ACE2</Keyword>
<Keyword MajorTopicYN="N">Biosensor</Keyword>
<Keyword MajorTopicYN="N">CQ, chloroquine</Keyword>
<Keyword MajorTopicYN="N">FRET</Keyword>
<Keyword MajorTopicYN="N">HCQ, hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">Live-cell imaging</Keyword>
<Keyword MajorTopicYN="N">NA, numerical aperture</Keyword>
<Keyword MajorTopicYN="N">RBD, receptor-binding domain</Keyword>
<Keyword MajorTopicYN="N">RBM, receptor-binding motif</Keyword>
<Keyword MajorTopicYN="N">ROI, region of interest</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2, severe acute respiratory syndrome coronavirus 2</Keyword>
<Keyword MajorTopicYN="N">SEM, standard error of the mean</Keyword>
<Keyword MajorTopicYN="N">bg, background</Keyword>
<Keyword MajorTopicYN="N">hACE2, human angiotensin-converting enzyme 2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>12</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>5</Hour>
<Minute>51</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33612970</ArticleId>
<ArticleId IdType="doi">10.1016/j.snb.2021.129663</ArticleId>
<ArticleId IdType="pii">S0925-4005(21)00231-8</ArticleId>
<ArticleId IdType="pmc">PMC7885701</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>J Neurochem. 2008 Dec;107(6):1482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2011 Apr;11(2):150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21215698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 20;417(6891):822-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12075344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2020 Mar 17;94(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31996437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2000 Sep 1;87(5):E1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10969042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005 Aug 22;2:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Mar 27;367(6485):1444-1448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32132184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cardiol. 2014 Jul;11(7):413-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24776703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2007 May;212(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17464936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2020 Nov 20;11:574720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33658924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2009 Jul;297(1):L84-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19411314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2007 Sep;47(3):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17532087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2016 May;107:154-162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26995300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Nucl Med Mol Imaging. 2020 May;47(5):1275-1280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32107577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2020 May 1;116(6):1097-1100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32227090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Mar 26;382(13):1199-1207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31995857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2006 Mar;47(3):515-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16365192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol Sin. 2020 Jun;35(3):266-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32125642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1951 Oct 27;2(6687):755-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14874500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2020 Jun;17(6):621-630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32415260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmune Pharmacol. 2020 Jun;15(2):174-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32415419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2020 Sep 10;25(18):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32927621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Heart Fail Rep. 2014 Mar;11(1):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24293035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Sep 11;11(1):4541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32917884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Rev Allergy Immunol. 2012 Apr;42(2):145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 May;581(7807):221-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32225175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2281-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 1993 Dec 1;119(11):1067-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8239224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eye (Lond). 2020 Jul;34(7):1212-1219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32382146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Seq. 2002 Aug;13(4):217-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12487024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 30;314(1):235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytomedicine. 2020 Dec;79:153333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32920291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2020 Jun 30;527(3):702-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32410735</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000323 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000323 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33612970
   |texte=   Development of a SARS-CoV-2-derived receptor-binding domain-based ACE2 biosensor.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33612970" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021