Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19.

Identifieur interne : 000312 ( Main/Corpus ); précédent : 000311; suivant : 000313

Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19.

Auteurs : Bhagteshwar Singh ; Hannah Ryan ; Tamara Kredo ; Marty Chaplin ; Tom Fletcher

Source :

RBID : pubmed:33624299

English descriptors

Abstract

BACKGROUND

The coronavirus disease 2019 (COVID-19) pandemic has resulted in substantial mortality. Some specialists proposed chloroquine (CQ) and hydroxychloroquine (HCQ) for treating or preventing the disease. The efficacy and safety of these drugs have been assessed in randomized controlled trials.

OBJECTIVES

To evaluate the effects of chloroquine (CQ) or hydroxychloroquine (HCQ) for 1) treating people with COVID-19 on death and time to clearance of the virus; 2) preventing infection in people at risk of SARS-CoV-2 exposure; 3) preventing infection in people exposed to SARS-CoV-2.

SEARCH METHODS

We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Current Controlled Trials (www.controlled-trials.com), and the COVID-19-specific resources www.covid-nma.com and covid-19.cochrane.org, for studies of any publication status and in any language. We performed all searches up to 15 September 2020. We contacted researchers to identify unpublished and ongoing studies.

SELECTION CRITERIA

We included randomized controlled trials (RCTs) testing chloroquine or hydroxychloroquine in people with COVID-19, people at risk of COVID-19 exposure, and people exposed to COVID-19. Adverse events (any, serious, and QT-interval prolongation on electrocardiogram) were also extracted.

DATA COLLECTION AND ANALYSIS

Two review authors independently assessed eligibility of search results, extracted data from the included studies, and assessed risk of bias using the Cochrane 'Risk of bias' tool. We contacted study authors for clarification and additional data for some studies. We used risk ratios (RR) for dichotomous outcomes and mean differences (MD) for continuous outcomes, with 95% confidence intervals (CIs). We performed meta-analysis using a random-effects model for outcomes where pooling of effect estimates was appropriate.

MAIN RESULTS

1. Treatment of COVID-19 disease We included 12 trials involving 8569 participants, all of whom were adults. Studies were from China (4); Brazil, Egypt, Iran, Spain, Taiwan, the UK, and North America (each 1 study); and a global study in 30 countries (1 study). Nine were in hospitalized patients, and three from ambulatory care. Disease severity, prevalence of comorbidities, and use of co-interventions varied substantially between trials. We found potential risks of bias across all domains for several trials. Nine trials compared HCQ with standard care (7779 participants), and one compared HCQ with placebo (491 participants); dosing schedules varied. HCQ makes little or no difference to death due to any cause (RR 1.09, 95% CI 0.99 to 1.19; 8208 participants; 9 trials; high-certainty evidence). A sensitivity analysis using modified intention-to-treat results from three trials did not influence the pooled effect estimate.  HCQ may make little or no difference to the proportion of people having negative PCR for SARS-CoV-2 on respiratory samples at day 14 from enrolment (RR 1.00, 95% CI 0.91 to 1.10; 213 participants; 3 trials; low-certainty evidence). HCQ probably results in little to no difference in progression to mechanical ventilation (RR 1.11, 95% CI 0.91 to 1.37; 4521 participants; 3 trials; moderate-certainty evidence). HCQ probably results in an almost three-fold increased risk of adverse events (RR 2.90, 95% CI 1.49 to 5.64; 1394 participants; 6 trials; moderate-certainty evidence), but may make little or no difference to the risk of serious adverse events (RR 0.82, 95% CI 0.37 to 1.79; 1004 participants; 6 trials; low-certainty evidence). We are very uncertain about the effect of HCQ on time to clinical improvement or risk of prolongation of QT-interval on electrocardiogram (very low-certainty evidence). One trial (22 participants) randomized patients to CQ versus lopinavir/ritonavir, a drug with unknown efficacy against SARS-CoV-2, and did not report any difference for clinical recovery or adverse events. One trial compared HCQ combined with azithromycin against standard care (444 participants). This trial did not detect a difference in death, requirement for mechanical ventilation, length of hospital admission, or serious adverse events. A higher risk of adverse events was reported in the HCQ-and-azithromycin arm; this included QT-interval prolongation, when measured. One trial compared HCQ with febuxostat, another drug with unknown efficacy against SARS-CoV-2 (60 participants). There was no difference detected in risk of hospitalization or change in computed tomography (CT) scan appearance of the lungs; no deaths were reported. 2. Preventing COVID-19 disease in people at risk of exposure to SARS-CoV-2 Ongoing trials are yet to report results for this objective. 3. Preventing COVID-19 disease in people who have been exposed to SARS-CoV-2 One trial (821 participants) compared HCQ with placebo as a prophylactic agent in the USA (around 90% of participants) and Canada. Asymptomatic adults (66% healthcare workers; mean age 40 years; 73% without comorbidity) with a history of exposure to people with confirmed COVID-19 were recruited. We are very uncertain about the effect of HCQ on the primary outcomes, for which few events were reported: 20/821 (2.4%) developed confirmed COVID-19 at 14 days from enrolment, and 2/821 (0.2%) were hospitalized due to COVID-19 (very low-certainty evidence). HCQ probably increases the risk of adverse events compared with placebo (RR 2.39, 95% CI 1.83 to 3.11; 700 participants; 1 trial; moderate-certainty evidence). HCQ may result in little or no difference in serious adverse events (no RR: no participants experienced serious adverse events; low-certainty evidence). One cluster-randomized trial (2525 participants) compared HCQ with standard care for the prevention of COVID-19 in people with a history of exposure to SARS-CoV-2 in Spain. Most participants were working or residing in nursing homes; mean age was 49 years. There was no difference in the risk of symptomatic confirmed COVID-19 or production of antibodies to SARS-CoV-2 between the two study arms.

AUTHORS' CONCLUSIONS

HCQ for people infected with COVID-19 has little or no effect on the risk of death and probably no effect on progression to mechanical ventilation. Adverse events are tripled compared to placebo, but very few serious adverse events were found. No further trials of hydroxychloroquine or chloroquine for treatment should be carried out. These results make it less likely that the drug is effective in protecting people from infection, although this is not excluded entirely. It is probably sensible to complete trials examining prevention of infection, and ensure these are carried out to a high standard to provide unambiguous results.


DOI: 10.1002/14651858.CD013587.pub2
PubMed: 33624299
PubMed Central: PMC8094389

Links to Exploration step

pubmed:33624299

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19.</title>
<author>
<name sortKey="Singh, Bhagteshwar" sort="Singh, Bhagteshwar" uniqKey="Singh B" first="Bhagteshwar" last="Singh">Bhagteshwar Singh</name>
<affiliation>
<nlm:affiliation>Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Tropical and Infectious Diseases Unit, Royal Liverpool University Hospital, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Infectious Diseases, Christian Medical College, Vellore, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ryan, Hannah" sort="Ryan, Hannah" uniqKey="Ryan H" first="Hannah" last="Ryan">Hannah Ryan</name>
<affiliation>
<nlm:affiliation>Department of Clinical Pharmacology, Royal Liverpool University Hospital, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kredo, Tamara" sort="Kredo, Tamara" uniqKey="Kredo T" first="Tamara" last="Kredo">Tamara Kredo</name>
<affiliation>
<nlm:affiliation>Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chaplin, Marty" sort="Chaplin, Marty" uniqKey="Chaplin M" first="Marty" last="Chaplin">Marty Chaplin</name>
<affiliation>
<nlm:affiliation>Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fletcher, Tom" sort="Fletcher, Tom" uniqKey="Fletcher T" first="Tom" last="Fletcher">Tom Fletcher</name>
<affiliation>
<nlm:affiliation>Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33624299</idno>
<idno type="pmid">33624299</idno>
<idno type="doi">10.1002/14651858.CD013587.pub2</idno>
<idno type="pmc">PMC8094389</idno>
<idno type="wicri:Area/Main/Corpus">000312</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000312</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19.</title>
<author>
<name sortKey="Singh, Bhagteshwar" sort="Singh, Bhagteshwar" uniqKey="Singh B" first="Bhagteshwar" last="Singh">Bhagteshwar Singh</name>
<affiliation>
<nlm:affiliation>Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Tropical and Infectious Diseases Unit, Royal Liverpool University Hospital, Liverpool, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Infectious Diseases, Christian Medical College, Vellore, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ryan, Hannah" sort="Ryan, Hannah" uniqKey="Ryan H" first="Hannah" last="Ryan">Hannah Ryan</name>
<affiliation>
<nlm:affiliation>Department of Clinical Pharmacology, Royal Liverpool University Hospital, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kredo, Tamara" sort="Kredo, Tamara" uniqKey="Kredo T" first="Tamara" last="Kredo">Tamara Kredo</name>
<affiliation>
<nlm:affiliation>Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chaplin, Marty" sort="Chaplin, Marty" uniqKey="Chaplin M" first="Marty" last="Chaplin">Marty Chaplin</name>
<affiliation>
<nlm:affiliation>Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fletcher, Tom" sort="Fletcher, Tom" uniqKey="Fletcher T" first="Tom" last="Fletcher">Tom Fletcher</name>
<affiliation>
<nlm:affiliation>Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Cochrane database of systematic reviews</title>
<idno type="eISSN">1469-493X</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult (MeSH)</term>
<term>Aged (MeSH)</term>
<term>Antimalarials (adverse effects)</term>
<term>Antimalarials (therapeutic use)</term>
<term>Antiviral Agents (adverse effects)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Bias (MeSH)</term>
<term>COVID-19 (drug therapy)</term>
<term>COVID-19 (epidemiology)</term>
<term>COVID-19 (mortality)</term>
<term>COVID-19 (prevention & control)</term>
<term>COVID-19 Nucleic Acid Testing (statistics & numerical data)</term>
<term>Cause of Death (MeSH)</term>
<term>Chloroquine (adverse effects)</term>
<term>Chloroquine (therapeutic use)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (adverse effects)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Middle Aged (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Prognosis (MeSH)</term>
<term>Randomized Controlled Trials as Topic (MeSH)</term>
<term>Respiration, Artificial (statistics & numerical data)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Standard of Care (MeSH)</term>
<term>Treatment Outcome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Antimalarials</term>
<term>Antiviral Agents</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antimalarials</term>
<term>Antiviral Agents</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="mortality" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>COVID-19 Nucleic Acid Testing</term>
<term>Respiration, Artificial</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Aged</term>
<term>Bias</term>
<term>Cause of Death</term>
<term>Humans</term>
<term>Middle Aged</term>
<term>Pandemics</term>
<term>Prognosis</term>
<term>Randomized Controlled Trials as Topic</term>
<term>SARS-CoV-2</term>
<term>Standard of Care</term>
<term>Treatment Outcome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The coronavirus disease 2019 (COVID-19) pandemic has resulted in substantial mortality. Some specialists proposed chloroquine (CQ) and hydroxychloroquine (HCQ) for treating or preventing the disease. The efficacy and safety of these drugs have been assessed in randomized controlled trials.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVES</b>
</p>
<p>To evaluate the effects of chloroquine (CQ) or hydroxychloroquine (HCQ) for 1) treating people with COVID-19 on death and time to clearance of the virus; 2) preventing infection in people at risk of SARS-CoV-2 exposure; 3) preventing infection in people exposed to SARS-CoV-2.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>SEARCH METHODS</b>
</p>
<p>We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Current Controlled Trials (www.controlled-trials.com), and the COVID-19-specific resources www.covid-nma.com and covid-19.cochrane.org, for studies of any publication status and in any language. We performed all searches up to 15 September 2020. We contacted researchers to identify unpublished and ongoing studies.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>SELECTION CRITERIA</b>
</p>
<p>We included randomized controlled trials (RCTs) testing chloroquine or hydroxychloroquine in people with COVID-19, people at risk of COVID-19 exposure, and people exposed to COVID-19. Adverse events (any, serious, and QT-interval prolongation on electrocardiogram) were also extracted.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>DATA COLLECTION AND ANALYSIS</b>
</p>
<p>Two review authors independently assessed eligibility of search results, extracted data from the included studies, and assessed risk of bias using the Cochrane 'Risk of bias' tool. We contacted study authors for clarification and additional data for some studies. We used risk ratios (RR) for dichotomous outcomes and mean differences (MD) for continuous outcomes, with 95% confidence intervals (CIs). We performed meta-analysis using a random-effects model for outcomes where pooling of effect estimates was appropriate.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN RESULTS</b>
</p>
<p>1. Treatment of COVID-19 disease We included 12 trials involving 8569 participants, all of whom were adults. Studies were from China (4); Brazil, Egypt, Iran, Spain, Taiwan, the UK, and North America (each 1 study); and a global study in 30 countries (1 study). Nine were in hospitalized patients, and three from ambulatory care. Disease severity, prevalence of comorbidities, and use of co-interventions varied substantially between trials. We found potential risks of bias across all domains for several trials. Nine trials compared HCQ with standard care (7779 participants), and one compared HCQ with placebo (491 participants); dosing schedules varied. HCQ makes little or no difference to death due to any cause (RR 1.09, 95% CI 0.99 to 1.19; 8208 participants; 9 trials; high-certainty evidence). A sensitivity analysis using modified intention-to-treat results from three trials did not influence the pooled effect estimate.  HCQ may make little or no difference to the proportion of people having negative PCR for SARS-CoV-2 on respiratory samples at day 14 from enrolment (RR 1.00, 95% CI 0.91 to 1.10; 213 participants; 3 trials; low-certainty evidence). HCQ probably results in little to no difference in progression to mechanical ventilation (RR 1.11, 95% CI 0.91 to 1.37; 4521 participants; 3 trials; moderate-certainty evidence). HCQ probably results in an almost three-fold increased risk of adverse events (RR 2.90, 95% CI 1.49 to 5.64; 1394 participants; 6 trials; moderate-certainty evidence), but may make little or no difference to the risk of serious adverse events (RR 0.82, 95% CI 0.37 to 1.79; 1004 participants; 6 trials; low-certainty evidence). We are very uncertain about the effect of HCQ on time to clinical improvement or risk of prolongation of QT-interval on electrocardiogram (very low-certainty evidence). One trial (22 participants) randomized patients to CQ versus lopinavir/ritonavir, a drug with unknown efficacy against SARS-CoV-2, and did not report any difference for clinical recovery or adverse events. One trial compared HCQ combined with azithromycin against standard care (444 participants). This trial did not detect a difference in death, requirement for mechanical ventilation, length of hospital admission, or serious adverse events. A higher risk of adverse events was reported in the HCQ-and-azithromycin arm; this included QT-interval prolongation, when measured. One trial compared HCQ with febuxostat, another drug with unknown efficacy against SARS-CoV-2 (60 participants). There was no difference detected in risk of hospitalization or change in computed tomography (CT) scan appearance of the lungs; no deaths were reported. 2. Preventing COVID-19 disease in people at risk of exposure to SARS-CoV-2 Ongoing trials are yet to report results for this objective. 3. Preventing COVID-19 disease in people who have been exposed to SARS-CoV-2 One trial (821 participants) compared HCQ with placebo as a prophylactic agent in the USA (around 90% of participants) and Canada. Asymptomatic adults (66% healthcare workers; mean age 40 years; 73% without comorbidity) with a history of exposure to people with confirmed COVID-19 were recruited. We are very uncertain about the effect of HCQ on the primary outcomes, for which few events were reported: 20/821 (2.4%) developed confirmed COVID-19 at 14 days from enrolment, and 2/821 (0.2%) were hospitalized due to COVID-19 (very low-certainty evidence). HCQ probably increases the risk of adverse events compared with placebo (RR 2.39, 95% CI 1.83 to 3.11; 700 participants; 1 trial; moderate-certainty evidence). HCQ may result in little or no difference in serious adverse events (no RR: no participants experienced serious adverse events; low-certainty evidence). One cluster-randomized trial (2525 participants) compared HCQ with standard care for the prevention of COVID-19 in people with a history of exposure to SARS-CoV-2 in Spain. Most participants were working or residing in nursing homes; mean age was 49 years. There was no difference in the risk of symptomatic confirmed COVID-19 or production of antibodies to SARS-CoV-2 between the two study arms.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>AUTHORS' CONCLUSIONS</b>
</p>
<p>HCQ for people infected with COVID-19 has little or no effect on the risk of death and probably no effect on progression to mechanical ventilation. Adverse events are tripled compared to placebo, but very few serious adverse events were found. No further trials of hydroxychloroquine or chloroquine for treatment should be carried out. These results make it less likely that the drug is effective in protecting people from infection, although this is not excluded entirely. It is probably sensible to complete trials examining prevention of infection, and ensure these are carried out to a high standard to provide unambiguous results.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33624299</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>03</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-493X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<PubDate>
<Year>2021</Year>
<Month>02</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>The Cochrane database of systematic reviews</Title>
<ISOAbbreviation>Cochrane Database Syst Rev</ISOAbbreviation>
</Journal>
<ArticleTitle>Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19.</ArticleTitle>
<Pagination>
<MedlinePgn>CD013587</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/14651858.CD013587.pub2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">The coronavirus disease 2019 (COVID-19) pandemic has resulted in substantial mortality. Some specialists proposed chloroquine (CQ) and hydroxychloroquine (HCQ) for treating or preventing the disease. The efficacy and safety of these drugs have been assessed in randomized controlled trials.</AbstractText>
<AbstractText Label="OBJECTIVES">To evaluate the effects of chloroquine (CQ) or hydroxychloroquine (HCQ) for 1) treating people with COVID-19 on death and time to clearance of the virus; 2) preventing infection in people at risk of SARS-CoV-2 exposure; 3) preventing infection in people exposed to SARS-CoV-2.</AbstractText>
<AbstractText Label="SEARCH METHODS">We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Current Controlled Trials (www.controlled-trials.com), and the COVID-19-specific resources www.covid-nma.com and covid-19.cochrane.org, for studies of any publication status and in any language. We performed all searches up to 15 September 2020. We contacted researchers to identify unpublished and ongoing studies.</AbstractText>
<AbstractText Label="SELECTION CRITERIA">We included randomized controlled trials (RCTs) testing chloroquine or hydroxychloroquine in people with COVID-19, people at risk of COVID-19 exposure, and people exposed to COVID-19. Adverse events (any, serious, and QT-interval prolongation on electrocardiogram) were also extracted.</AbstractText>
<AbstractText Label="DATA COLLECTION AND ANALYSIS">Two review authors independently assessed eligibility of search results, extracted data from the included studies, and assessed risk of bias using the Cochrane 'Risk of bias' tool. We contacted study authors for clarification and additional data for some studies. We used risk ratios (RR) for dichotomous outcomes and mean differences (MD) for continuous outcomes, with 95% confidence intervals (CIs). We performed meta-analysis using a random-effects model for outcomes where pooling of effect estimates was appropriate.</AbstractText>
<AbstractText Label="MAIN RESULTS">1. Treatment of COVID-19 disease We included 12 trials involving 8569 participants, all of whom were adults. Studies were from China (4); Brazil, Egypt, Iran, Spain, Taiwan, the UK, and North America (each 1 study); and a global study in 30 countries (1 study). Nine were in hospitalized patients, and three from ambulatory care. Disease severity, prevalence of comorbidities, and use of co-interventions varied substantially between trials. We found potential risks of bias across all domains for several trials. Nine trials compared HCQ with standard care (7779 participants), and one compared HCQ with placebo (491 participants); dosing schedules varied. HCQ makes little or no difference to death due to any cause (RR 1.09, 95% CI 0.99 to 1.19; 8208 participants; 9 trials; high-certainty evidence). A sensitivity analysis using modified intention-to-treat results from three trials did not influence the pooled effect estimate.  HCQ may make little or no difference to the proportion of people having negative PCR for SARS-CoV-2 on respiratory samples at day 14 from enrolment (RR 1.00, 95% CI 0.91 to 1.10; 213 participants; 3 trials; low-certainty evidence). HCQ probably results in little to no difference in progression to mechanical ventilation (RR 1.11, 95% CI 0.91 to 1.37; 4521 participants; 3 trials; moderate-certainty evidence). HCQ probably results in an almost three-fold increased risk of adverse events (RR 2.90, 95% CI 1.49 to 5.64; 1394 participants; 6 trials; moderate-certainty evidence), but may make little or no difference to the risk of serious adverse events (RR 0.82, 95% CI 0.37 to 1.79; 1004 participants; 6 trials; low-certainty evidence). We are very uncertain about the effect of HCQ on time to clinical improvement or risk of prolongation of QT-interval on electrocardiogram (very low-certainty evidence). One trial (22 participants) randomized patients to CQ versus lopinavir/ritonavir, a drug with unknown efficacy against SARS-CoV-2, and did not report any difference for clinical recovery or adverse events. One trial compared HCQ combined with azithromycin against standard care (444 participants). This trial did not detect a difference in death, requirement for mechanical ventilation, length of hospital admission, or serious adverse events. A higher risk of adverse events was reported in the HCQ-and-azithromycin arm; this included QT-interval prolongation, when measured. One trial compared HCQ with febuxostat, another drug with unknown efficacy against SARS-CoV-2 (60 participants). There was no difference detected in risk of hospitalization or change in computed tomography (CT) scan appearance of the lungs; no deaths were reported. 2. Preventing COVID-19 disease in people at risk of exposure to SARS-CoV-2 Ongoing trials are yet to report results for this objective. 3. Preventing COVID-19 disease in people who have been exposed to SARS-CoV-2 One trial (821 participants) compared HCQ with placebo as a prophylactic agent in the USA (around 90% of participants) and Canada. Asymptomatic adults (66% healthcare workers; mean age 40 years; 73% without comorbidity) with a history of exposure to people with confirmed COVID-19 were recruited. We are very uncertain about the effect of HCQ on the primary outcomes, for which few events were reported: 20/821 (2.4%) developed confirmed COVID-19 at 14 days from enrolment, and 2/821 (0.2%) were hospitalized due to COVID-19 (very low-certainty evidence). HCQ probably increases the risk of adverse events compared with placebo (RR 2.39, 95% CI 1.83 to 3.11; 700 participants; 1 trial; moderate-certainty evidence). HCQ may result in little or no difference in serious adverse events (no RR: no participants experienced serious adverse events; low-certainty evidence). One cluster-randomized trial (2525 participants) compared HCQ with standard care for the prevention of COVID-19 in people with a history of exposure to SARS-CoV-2 in Spain. Most participants were working or residing in nursing homes; mean age was 49 years. There was no difference in the risk of symptomatic confirmed COVID-19 or production of antibodies to SARS-CoV-2 between the two study arms.</AbstractText>
<AbstractText Label="AUTHORS' CONCLUSIONS">HCQ for people infected with COVID-19 has little or no effect on the risk of death and probably no effect on progression to mechanical ventilation. Adverse events are tripled compared to placebo, but very few serious adverse events were found. No further trials of hydroxychloroquine or chloroquine for treatment should be carried out. These results make it less likely that the drug is effective in protecting people from infection, although this is not excluded entirely. It is probably sensible to complete trials examining prevention of infection, and ensure these are carried out to a high standard to provide unambiguous results.</AbstractText>
<CopyrightInformation>Copyright © 2021 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Bhagteshwar</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Tropical and Infectious Diseases Unit, Royal Liverpool University Hospital, Liverpool, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Infectious Diseases, Christian Medical College, Vellore, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ryan</LastName>
<ForeName>Hannah</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Pharmacology, Royal Liverpool University Hospital, Liverpool, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kredo</LastName>
<ForeName>Tamara</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chaplin</LastName>
<ForeName>Marty</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fletcher</LastName>
<ForeName>Tom</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D017418">Meta-Analysis</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D000078182">Systematic Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>02</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cochrane Database Syst Rev</MedlineTA>
<NlmUniqueID>100909747</NlmUniqueID>
<ISSNLinking>1361-6137</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000962">Antimalarials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000962" MajorTopicYN="N">Antimalarials</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015982" MajorTopicYN="N">Bias</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000087123" MajorTopicYN="N">COVID-19 Nucleic Acid Testing</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002423" MajorTopicYN="N">Cause of Death</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016032" MajorTopicYN="N">Randomized Controlled Trials as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012121" MajorTopicYN="N">Respiration, Artificial</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="Y">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059039" MajorTopicYN="N">Standard of Care</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>48</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33624299</ArticleId>
<ArticleId IdType="doi">10.1002/14651858.CD013587.pub2</ArticleId>
<ArticleId IdType="pmc">PMC8094389</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>JAMA. 2020 Apr 7;323(13):1239-1242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32091533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 Aug 11;370:m3026</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32784198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 16;6:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naunyn Schmiedebergs Arch Pharmacol. 2021 Apr;394(4):775-782</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32892293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cochrane Database Syst Rev. 2021 Feb 12;2:CD013587</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33624299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 May 7;382(19):1787-1799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32187464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Sep 15;324(11):1048-1057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32821939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 May 14;369:m1849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32409561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Oct;56(4):106144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32853673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cochrane Database Syst Rev. 2020 Jun 25;6:CD013652</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32584464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 2020 Oct;103(4):1635-1639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32828135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2020 Aug 18;173(4):287-296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32459529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 May 25;49(2):215-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32391667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jun;55(6):105980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32294495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 28;395(10229):1039-1046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32192580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):106056</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32674929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Rheumatol. 2021 Feb;80(Suppl 1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32236844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Intern Med. 2020 Nov;35(11):3308-3314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32885373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Acad Dermatol. 2020 Jun;82(6):e221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32283237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):887-888</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32211764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Apr 30;382(18):1708-1720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32109013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2020 Oct 20;173(8):623-631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32673060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Aug;97:396-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32623082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Engineering (Beijing). 2020 Oct;6(10):1192-1198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32346491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Med. 2020 Jun 15;9(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32549293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2020 Jul;81(1):e1-e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2020 Mar 16;14(1):72-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Rheumatol. 2020 May;2(5):e257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32368738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 Mar - Apr;34:101663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32289548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Aug 6;383(6):517-525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32492293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 16;395(10236):1569-1578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32423584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 Jun;20(6):656-657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32199493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 Oct;20(10):1118-1119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32311324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 May 14;369:m1844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32409486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Rheumatol. 2020 Mar;16(3):155-166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32034323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Epidemiol. 2013 Sep;66(9):1014-1021.e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23774111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Med Res. 2020 May;151(5):459-467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32611916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Apr 14;323(14):1406-1407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32083643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Epidemiol. 2014 May;67(5):560-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24613497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Oct 6;324(13):1330-1341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32876694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Rev Allergy Immunol. 2012 Apr;42(2):145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Forum Infect Dis. 2020 Oct 19;7(11):ofaa500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33204764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Rheumatol. 2020 May;2(5):e255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32518920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 2011 Dec;85(6):1015-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22144437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Netw Open. 2020 Apr 24;3(4):e208857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32330277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2021 Feb;64(2):330-333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32761451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Clin Pract. 2020 Nov;74(11):e13600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32603531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 16;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32674126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Suisse. 2020 Mar 11;16(685):510-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32167254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oral Surg Oral Med Oral Pathol Oral Radiol. 2020 Jun;129(6):643-644</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32331804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 May;20(5):533-534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32087114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Biol. 2020 May 18;12(4):322-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32236562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Dec 10;383(24):2333-2344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33085857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 May - Jun;35:101738</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32387409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mal Infect. 2020 Jun;50(4):384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32240719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 Oct;20(10):1118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32311322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Monaldi Arch Chest Dis. 2020 Mar 30;90(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32231348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Mar;55(3):105923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32070753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Apr;55(4):105945</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Rheumatol. 1997 Jan;24(1):55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 21;395(10228):922</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32199474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Apr;55(4):105932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32145363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Rheum Dis. 2020 May;23(5):613-619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32281213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Apr;580(7802):175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32242113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 Oct 22;371:m3939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33093056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2020 Jun;79(6):e60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32295788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Apr 16;382(16):1564-1567</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32182409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Crit Care. 2020 Jun;57:279-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32173110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2020 Dec 2;15(12):e0242763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33264337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 28;395(10229):1033-1034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32192578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Jun 13;395(10240):1820</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32511943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Nov 5;383(19):1813-1826</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32445440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 May 1;368(6490):493-497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32213647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 May 12;323(18):1843-1844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32159775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Nov 19;383(21):2041-2052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32706953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jun;55(6):105988</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32305587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):271-280.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 Apr 8;369:m1432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32269046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Mar 5;382(10):970-971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32003551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2020 Jul 21;142(3):303-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32442023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Acad Dermatol. 2020 Jul;83(1):e33-e34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32283236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Infect. 2021 Jan;27(1):138-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33080383</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000312 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000312 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33624299
   |texte=   Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33624299" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021