Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drugs intervention study in COVID-19 management.

Identifieur interne : 000137 ( Main/Corpus ); précédent : 000136; suivant : 000138

Drugs intervention study in COVID-19 management.

Auteurs : Muhammad Taher ; Noratika Tik ; Deny Susanti

Source :

RBID : pubmed:33818031

Abstract

By 9 February 2021, the Coronavirus has killed 2,336,650 people worldwide and it has been predicted that this number continues to increase in year 2021. The study aimed to identify therapeutic approaches and drugs that can potentially be used as interventions in Coronavirus 2019 (COVID-19) management. A systematic scoping review was conducted. Articles reporting clinical evidence of therapeutic management of COVID-19 were selected from three different research databases (Google Scholar, PubMed, and Science Direct). From the database search, 31 articles were selected based on the study inclusion and exclusion criteria. This review paper showed that remdesivir and ivermectin significantly reduced viral ribonucleic acid (RNA) activity. On the other hand, convalescent plasma (CP) significantly improved COVID-19 clinical symptoms. Additionally, the use of corticosteroid increased survival rates in COVID-19 patients with acute respiratory distress syndrome (ARDS). Findings also indicated that both hydroxychloroquine and favipiravir were effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, lopinavir-ritonavir combination was not effective against COVID-19. Finally, ribavirin, galidesivir, and sofosbuvir showed potential therapeutic benefit in treating COVID-19, but there is a lack of clinical evidence on their effectiveness against SARS-CoV-2. Remdesivir, ivermectin, favipiravir, hydroxychloroquine, dexamethasone, methylprednisolone, and CP are the therapeutic agents that can potentially be used in COVID-19 management.

DOI: 10.1515/dmdi-2020-0173
PubMed: 33818031

Links to Exploration step

pubmed:33818031

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drugs intervention study in COVID-19 management.</title>
<author>
<name sortKey="Taher, Muhammad" sort="Taher, Muhammad" uniqKey="Taher M" first="Muhammad" last="Taher">Muhammad Taher</name>
<affiliation>
<nlm:affiliation>Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tik, Noratika" sort="Tik, Noratika" uniqKey="Tik N" first="Noratika" last="Tik">Noratika Tik</name>
<affiliation>
<nlm:affiliation>Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Susanti, Deny" sort="Susanti, Deny" uniqKey="Susanti D" first="Deny" last="Susanti">Deny Susanti</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33818031</idno>
<idno type="pmid">33818031</idno>
<idno type="doi">10.1515/dmdi-2020-0173</idno>
<idno type="wicri:Area/Main/Corpus">000137</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000137</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Drugs intervention study in COVID-19 management.</title>
<author>
<name sortKey="Taher, Muhammad" sort="Taher, Muhammad" uniqKey="Taher M" first="Muhammad" last="Taher">Muhammad Taher</name>
<affiliation>
<nlm:affiliation>Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tik, Noratika" sort="Tik, Noratika" uniqKey="Tik N" first="Noratika" last="Tik">Noratika Tik</name>
<affiliation>
<nlm:affiliation>Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Susanti, Deny" sort="Susanti, Deny" uniqKey="Susanti D" first="Deny" last="Susanti">Deny Susanti</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Drug metabolism and personalized therapy</title>
<idno type="eISSN">2363-8915</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">By 9 February 2021, the Coronavirus has killed 2,336,650 people worldwide and it has been predicted that this number continues to increase in year 2021. The study aimed to identify therapeutic approaches and drugs that can potentially be used as interventions in Coronavirus 2019 (COVID-19) management. A systematic scoping review was conducted. Articles reporting clinical evidence of therapeutic management of COVID-19 were selected from three different research databases (Google Scholar, PubMed, and Science Direct). From the database search, 31 articles were selected based on the study inclusion and exclusion criteria. This review paper showed that remdesivir and ivermectin significantly reduced viral ribonucleic acid (RNA) activity. On the other hand, convalescent plasma (CP) significantly improved COVID-19 clinical symptoms. Additionally, the use of corticosteroid increased survival rates in COVID-19 patients with acute respiratory distress syndrome (ARDS). Findings also indicated that both hydroxychloroquine and favipiravir were effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, lopinavir-ritonavir combination was not effective against COVID-19. Finally, ribavirin, galidesivir, and sofosbuvir showed potential therapeutic benefit in treating COVID-19, but there is a lack of clinical evidence on their effectiveness against SARS-CoV-2. Remdesivir, ivermectin, favipiravir, hydroxychloroquine, dexamethasone, methylprednisolone, and CP are the therapeutic agents that can potentially be used in COVID-19 management.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33818031</PMID>
<DateRevised>
<Year>2021</Year>
<Month>04</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2363-8915</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2021</Year>
<Month>Apr</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Drug metabolism and personalized therapy</Title>
<ISOAbbreviation>Drug Metab Pers Ther</ISOAbbreviation>
</Journal>
<ArticleTitle>Drugs intervention study in COVID-19 management.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1515/dmdi-2020-0173</ELocationID>
<Abstract>
<AbstractText>By 9 February 2021, the Coronavirus has killed 2,336,650 people worldwide and it has been predicted that this number continues to increase in year 2021. The study aimed to identify therapeutic approaches and drugs that can potentially be used as interventions in Coronavirus 2019 (COVID-19) management. A systematic scoping review was conducted. Articles reporting clinical evidence of therapeutic management of COVID-19 were selected from three different research databases (Google Scholar, PubMed, and Science Direct). From the database search, 31 articles were selected based on the study inclusion and exclusion criteria. This review paper showed that remdesivir and ivermectin significantly reduced viral ribonucleic acid (RNA) activity. On the other hand, convalescent plasma (CP) significantly improved COVID-19 clinical symptoms. Additionally, the use of corticosteroid increased survival rates in COVID-19 patients with acute respiratory distress syndrome (ARDS). Findings also indicated that both hydroxychloroquine and favipiravir were effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, lopinavir-ritonavir combination was not effective against COVID-19. Finally, ribavirin, galidesivir, and sofosbuvir showed potential therapeutic benefit in treating COVID-19, but there is a lack of clinical evidence on their effectiveness against SARS-CoV-2. Remdesivir, ivermectin, favipiravir, hydroxychloroquine, dexamethasone, methylprednisolone, and CP are the therapeutic agents that can potentially be used in COVID-19 management.</AbstractText>
<CopyrightInformation>© 2021 Walter de Gruyter GmbH, Berlin/Boston.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Taher</LastName>
<ForeName>Muhammad</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tik</LastName>
<ForeName>Noratika</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Susanti</LastName>
<ForeName>Deny</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>04</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Drug Metab Pers Ther</MedlineTA>
<NlmUniqueID>101653409</NlmUniqueID>
<ISSNLinking>2363-8915</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">antiviral</Keyword>
<Keyword MajorTopicYN="N">clinical trial</Keyword>
<Keyword MajorTopicYN="N">drug intervention</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>34</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33818031</ArticleId>
<ArticleId IdType="pii">dmdi-2020-0173</ArticleId>
<ArticleId IdType="doi">10.1515/dmdi-2020-0173</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Harapan, H, Itoh, N, Yufika, A, Winardi, W, Keam, S, Te, H, et al.. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health 2020;13:667–73. https://doi.org/10.1016/j.jiph.2020.03.019.</Citation>
</Reference>
<Reference>
<Citation>Daga, MK. From SARS-CoV to coronavirus disease 2019 (COVID-19) – a brief review. J Adv Res Med 2020;06:1–9. https://doi.org/10.24321/2349.7181.201917.</Citation>
</Reference>
<Reference>
<Citation>Zhang, L, Shen, FM, Chen, F, Lin, Z. Origin and evolution of the 2019 novel coronavirus. Clin Infect Dis 2020;71:882–3. https://doi.org/10.1093/cid/ciaa112.</Citation>
</Reference>
<Reference>
<Citation>Su, S, Wong, G, Shi, W, Liu, J, Lai, ACK, Zhou, J, et al.. Epidemiology, genetic recombination and pathogenesis of coronaviruses. Trends Microbiol 2020;24:490–502. https://doi.org/10.1016/j.tim.2016.03.003.</Citation>
</Reference>
<Reference>
<Citation>Ruiz, SI, Zumbrun, EE, Nalca, A. Animal models of human viral diseases. In: Conn, PM, editor. Animal models for the study of human disease, 2nd ed. Elsevier Inc; 2017:853–901 pp. https://doi.org/10.1016/B978-0-12-809468-6.00033-4.</Citation>
</Reference>
<Reference>
<Citation>Gorbalenya, AE, Baker, SC, Baric, RS, de Groot, RJ, Drosten, C, Gulyaeva, AA, et al.. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536–44. https://doi.org/10.1038/s41564-020-0695-z.</Citation>
</Reference>
<Reference>
<Citation>Bhimraj, A, Morgan, RL, Shumaker, AH, Lavergne, V, Baden, L, Cheng, VC, et al.. Infectious diseases Society of America guidelines on the treatment and management of patients with COVID-19; 2020;1–32. Available from: https://www.idsociety.org/practice-guideline/covid-19-guideline-treatment-and-management/ [Accessed 13 Feb 2021].</Citation>
</Reference>
<Reference>
<Citation>Kang, S, Peng, W, Zhu, Y, Lu, S, Zhou, M, Lin, W, et al.. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int J Antimicrob Agents 2020;55:105950. https://doi.org/10.1016/j.ijantimicag.2020.105950.</Citation>
</Reference>
<Reference>
<Citation>Huang, C, Wang, Y, Li, X, Ren, L, Zhao, J, Hu, Y, et al.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.</Citation>
</Reference>
<Reference>
<Citation>Du, Y, Tu, L, Zhu, P, Mu, M, Wang, R, Yang, P, et al.. Clinical features of 85 fatal cases of COVID-19 from Wuhan: a retrospective observational study. Am J Respir Crit Care Med 2020;201:1372–9. https://doi.org/10.1164/rccm.202003-0543OC.</Citation>
</Reference>
<Reference>
<Citation>Dhama, K, Khan, S, Tiwari, R, Sircar, S, Bhat, S, Malik, YS, et al.. Coronavirus disease 2019–COVID-19. Clin Microbiol 2020;33:1–48.</Citation>
</Reference>
<Reference>
<Citation>Morse, JS, Lalonde, T, Xu, S, Liu, WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiochem 2020;21:30–738. https://doi.org/10.1002/cbic.202000047.</Citation>
</Reference>
<Reference>
<Citation>Kuba, K, Imai, Y, Ohto-Nakanishi, T, Penninger, JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther 2010;128:119–28. https://doi.org/10.1016/j.pharmthera.2010.06.003.</Citation>
</Reference>
<Reference>
<Citation>Zhao, Y, Zhao, Z, Wang, Y, Zhou, Y, Ma, Y, Zuo, W. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med 2020;202:756–9. https://doi.org/10.1164/rccm.202001-0179LE.</Citation>
</Reference>
<Reference>
<Citation>Xu, X, Chen, P, Wang, J, Feng, J, Zhou, H, Li, X, et al.. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020;63:457–60. https://doi.org/10.1007/s11427-020-1637-5.</Citation>
</Reference>
<Reference>
<Citation>Li, F, Li, W, Farzan, M, Harrison, SC. Structural biology: structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005;309:1864–8. https://doi.org/10.1126/science.1116480.</Citation>
</Reference>
<Reference>
<Citation>Kandeel, M, Ibrahim, A, Fayez, M, Al-Nazawi, M. From SARS and MERS CoVs to SARS-CoV-2: moving toward more biased codon usage in viral structural and nonstructural genes. J Med Virol 2020;92:660–6.</Citation>
</Reference>
<Reference>
<Citation>Crosby, JC, Heimann, MA, Burleson, SL, Anzalone, BC, Swanson, JF, Wallace, DW, et al.. COVID‐19: a review of therapeutics under investigation. JACEP Open 2020;1:231–7. https://doi.org/10.1002/emp2.12081.</Citation>
</Reference>
<Reference>
<Citation>Rothan, HA, Byrareddy, SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020;109:102433. https://doi.org/10.1016/j.jaut.2020.102433.</Citation>
</Reference>
<Reference>
<Citation>Dhama, K, Sharun, K, Tiwari, R, Dadar, M, Malik, YS, Singh, KP, et al.. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccines Immunother 2020;16:1232–8. https://doi.org/10.1080/21645515.2020.1735227.</Citation>
</Reference>
<Reference>
<Citation>Hoffmann, M, Kleine-Weber, H, Schroeder, S, Krüger, N, Herrler, T, Erichsen, S, et al.. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell 2020;181:271–80. https://doi.org/10.1016/j.cell.2020.02.052.</Citation>
</Reference>
<Reference>
<Citation>Liu, J, Cao, R, Xu, M, Wang, X, Zhang, H, Hu, H, et al.. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020;6:6–9. https://doi.org/10.1038/s41421-020-0156-0.</Citation>
</Reference>
<Reference>
<Citation>Yao, X, Ye, F, Zhang, M, Cui, C, Huang, B, Niu, P, et al.. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome SARS-CoV-2. Clin Infect Dis 2020;72:732–9. https://doi.org/10.1093/cid/ciaa237.</Citation>
</Reference>
<Reference>
<Citation>Chen, Z, Hu, J, Zhang, Z, Jiang, S, Han, S, Yan, D, et al.. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. Medrxiv 2020. https://doi.org/10.1101/2020.03.22.20040758.</Citation>
</Reference>
<Reference>
<Citation>Agostini, ML, Andres, EL, Sims, AC, Graham, RL, Sheahan, TP, Lu, X, et al.. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018;9:1–15. https://doi.org/10.1128/mBio.00221-18.</Citation>
</Reference>
<Reference>
<Citation>ElfikyRibavirin, AA. Remdesivir, rofosbuvir, ralidesivir, and renofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci 2020;253:117592. https://doi.org/10.1016/j.lfs.2020.117592.</Citation>
</Reference>
<Reference>
<Citation>Wang, M, Cao, R, Zhang, L, Yang, X, Liu, J, Xu, M, et al.. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269–71. https://doi.org/10.1038/s41422-020-0282-0.</Citation>
</Reference>
<Reference>
<Citation>Sheahan, TP, Sims, AC, Leist, SR, Schäfer, A, Won, J, Brown, AJ, et al.. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020;11:222. https://doi.org/10.1038/s41467-019-13940-6.</Citation>
</Reference>
<Reference>
<Citation>Aftab, SO, Ghouri, MZ, Masood, MU, Haider, Z, Khan, Z, Ahmad, A, et al.. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 2020;18:1–15. https://doi.org/10.1186/s12967-020-02439-0.</Citation>
</Reference>
<Reference>
<Citation>Dong, L, Hu, S, Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020;14:58–60. https://doi.org/10.5582/ddt.2020.01012.</Citation>
</Reference>
<Reference>
<Citation>Barlow, A, Landolf, KM, Barlow, B, Yeung, SYA, Heavner, JJ, Claassen, CW, et al.. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy 2020;40:416–37. https://doi.org/10.1002/phar.2398.</Citation>
</Reference>
<Reference>
<Citation>Khalili, JS, Zhu, H, Mak, NSA, Yan, Y, Zhu, Y. Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID-19. J Med Virol 2020;92:740–6. https://doi.org/10.1002/jmv.25798.</Citation>
</Reference>
<Reference>
<Citation>Falzarano, D, de Wit, E, Martellaro, C, Callison, J, Munster, VJ, Feldmann, H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep 2013;3:1–6. https://doi.org/10.1038/srep01686.</Citation>
</Reference>
<Reference>
<Citation>Gul, MH, Htun, ZM, Shaukat, N, Imran, M, Khan, A. Potential specific therapies in COVID-19. Ther Adv Respir Dis 2020;14:1–12. https://doi.org/10.1177/1753466620926853.</Citation>
</Reference>
<Reference>
<Citation>Chu, CM, Cheng, VCC, Hung, IFN, Wong, MML, Chan, KH, Chan, KS, et al.. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004;59:252–6. https://doi.org/10.1136/thorax.2003.012658.</Citation>
</Reference>
<Reference>
<Citation>Cao, B, Wang, Y, Wen, D, Liu, W, Wang, J, Fan, G, et al.. Trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020;382:1787–99. https://doi.org/10.1056/NEJMoa2001282.</Citation>
</Reference>
<Reference>
<Citation>Oluwaseyi, I. The perceived accompanying dangers of dexamethasone (a corticosteroid) use in Covid-19 management. Available at: https://www.researchgate.net/publication/342282696_THE_PERCEIVED_ACCOMPANYING_DANGERS_OF_DEXAMETHASONE_A_CORTICOSTEROID_USE_IN_COVID-19_MANAGEMENT [Accessed 29 Mar 2021].</Citation>
</Reference>
<Reference>
<Citation>Johnson, RM, Vinetz, JM. Dexamethasone in the management of Covid-19. BMJ 2020;370:m2648. https://doi.org/10.1136/bmj.m2648.</Citation>
</Reference>
<Reference>
<Citation>Selvaraj, V, Afriyie, KD, Finn, A, Falnigan, TP. Short-term dexamethasone in Sars-CoV-2. R I Med J 2020;103:39–43.</Citation>
</Reference>
<Reference>
<Citation>Sayad, B, Sobhani, M, Khodarahmi, R. Sofosbuvir as repurposed antiviral drug against COVID-19: why were we convinced to evaluate the drug in a registered/approved clinical trial? Arch Med Res 2020;51:577–81. https://doi.org/10.1016/j.arcmed.2020.04.018.</Citation>
</Reference>
<Reference>
<Citation>Sharun, K, Dhama, K, Patel, SK, Pathak, M, Tiwari, R, Singh, BR, et al.. Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19. Ann Clin Microbiol Antimicrob 2020;19:23. https://doi.org/10.1186/s12941-020-00368-w.</Citation>
</Reference>
<Reference>
<Citation>Caly, L, Druce, JD, Catton, MG, Jans, DA, Wagstaff, KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res 2020;178:104787. https://doi.org/10.1016/j.antiviral.2020.104787.</Citation>
</Reference>
<Reference>
<Citation>Ko, JH, Seok, H, Cho, SY, Ha, YE, Baek, JY, Kim, SH, et al.. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antivir Ther 2018;23:617–22. https://doi.org/10.3851/IMP3243.</Citation>
</Reference>
<Reference>
<Citation>Chen, L, Xiong, J, Bao, L, Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20:398–400. https://doi.org/10.1016/S1473-3099(20)30141-9.</Citation>
</Reference>
<Reference>
<Citation>Roback, JD, Guarner, J. Convalescent plasma to treat Covid-19 possibilities and challenges. J Am Med Assoc 2020;323:1561–2. https://doi.org/10.1001/jama.2020.4940.</Citation>
</Reference>
<Reference>
<Citation>Duan, K, Liu, B, Li, C, Zhang, H, Yu, T, Qu, J, et al.. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 2020;117:9490–6. https://doi.org/10.1073/pnas.2004168117.</Citation>
</Reference>
<Reference>
<Citation>Russell, CD, Millar, JE, Baillie, JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473–5. https://doi.org/10.1016/S0140-6736(20)30317-2.</Citation>
</Reference>
<Reference>
<Citation>Wu, C, Chen, X, Cai, Y, Xia, J, Zhou, X, Xu, S, et al.. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180:934–43. https://doi.org/10.1001/jamainternmed.2020.0994.</Citation>
</Reference>
<Reference>
<Citation>Wang, Y, Jiang, W, He, Q, Wang, C, Wang, B, Zhou, P, et al.. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. MedRxiv 2020:20032342. https://doi.org/10.1101/2020.03.06.20032342.</Citation>
</Reference>
<Reference>
<Citation>Savarino, A, Di Trani, L, Donatelli, I, Cauda, R, Cassone, A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006;6:67–9. https://doi.org/10.1016/S1473-3099(06)70361-9.</Citation>
</Reference>
<Reference>
<Citation>Swank, K, McCartan, K, Kapoor, R, Gada, N, Diak, IL. Pharmacovigilance Memorandum. Food and Drug Administration Center for Drug Evaluation and Research Office of Surveillance and Epidemiology; 2020:1–15. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/OSE [Accessed 14 Feb 2021].</Citation>
</Reference>
<Reference>
<Citation>Holshue, ML, DeBolt, C, Lindquist, S, Lofy, KH, Wiesman, J, Bruce, H, et al.. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929–36. https://doi.org/10.1056/NEJMoa2001191.</Citation>
</Reference>
<Reference>
<Citation>Gordon, CJ, Tchesnokov, EP, Feng, JY, Porter, DP, Götte, M. The antiviral compound remdesivir potently inhibits RNAdependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 2020;295:4773–9. https://doi.org/10.1074/jbc.AC120.013056.</Citation>
</Reference>
<Reference>
<Citation>Grein, J, Ohmagari, N, Shin, D, Diaz, G, Asperges, E, Castagna, A, et al.. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 2020;382:2327–36. https://doi.org/10.1056/NEJMoa2007016.</Citation>
</Reference>
<Reference>
<Citation>Angel, M. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother 2020;64:E00399-20. https://doi.org/10.1128/AAC.00399-20.</Citation>
</Reference>
<Reference>
<Citation>Delang, L, Abdelnabi, R, Neyts, J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antivir Res 2018;153:85–94. https://doi.org/10.1016/j.antiviral.2018.03.003.</Citation>
</Reference>
<Reference>
<Citation>Furuta, Y, Komeno, T, Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B 2017;93:449–63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713175/pdf/pjab-93-449.</Citation>
</Reference>
<Reference>
<Citation>Chen, C, Zhang, Y, Huang, J, Yin, P, Cheng, Z, Wu, J et al.. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. Medrxiv 2020. https://doi.org/10.1101/2020.03.17.20037432.</Citation>
</Reference>
<Reference>
<Citation>De Clercq, E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents 2009;33:307–20. https://doi.org/10.1016/j.ijantimicag.2008.10.010.</Citation>
</Reference>
<Reference>
<Citation>Chan, JF, Yao, Y, Yeung, ML, Deng, W, Bao, L, Jia, L, et al.. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 2015;212:1904–13. https://doi.org/10.1093/infdis/jiv392.</Citation>
</Reference>
<Reference>
<Citation>Croxtall, JD, Perry, CM. Lopinavir/ritonavir: a review of its use in the management of HIV-1 infection. Drugs 2010;70:1885–915. https://doi.org/10.2165/11204950-000000000-00000.</Citation>
</Reference>
<Reference>
<Citation>McGonagle, D, Sharif, K, O’Regan, A, Bridgewood, C. The Role of cytokines including interleukin-6 in Covid-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 2020;19:102537. https://doi.org/10.1016/j.autrev.2020.102537.</Citation>
</Reference>
<Reference>
<Citation>Lünemann, JD, Nimmerjahn, F, Dalakas, MC. Intravenous immunoglobulin in neurology-mode of action and clinical efficacy. Nat Rev Neurol 2015;11:80–9. https://doi.org/10.1038/nrneurol.2014.253.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000137 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000137 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33818031
   |texte=   Drugs intervention study in COVID-19 management.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33818031" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021