Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of Treatment Regimens on Antibody Response to the SARS-CoV-2 Coronavirus.

Identifieur interne : 000061 ( Main/Corpus ); précédent : 000060; suivant : 000062

Impact of Treatment Regimens on Antibody Response to the SARS-CoV-2 Coronavirus.

Auteurs : Yufeng Shang ; Tao Liu ; Jingfeng Li ; Natasha Mupeta Kaweme ; Xinghuan Wang ; Fuling Zhou

Source :

RBID : pubmed:33936026

English descriptors

Abstract

The coronavirus disease 2019 (COVID-19) is widely spread and remains a global pandemic. Limited evidence on the systematic evaluation of the impact of treatment regimens on antibody responses exists. Our study aimed to analyze the role of antibody response on prognosis and determine factors influencing the IgG antibodies' seroconversion. A total of 1,111 patients with mild to moderate COVID-19 symptoms admitted to Leishenshan Hospital in Wuhan were retrospectively analyzed. A serologic SARS-CoV-2 IgM/IgG antibody test was performed on all the patients 21 days after the onset of symptoms. Patient clinical characteristics were compared. In the study, 42 patients progressed to critical illness, with 6 mortalities reported while 1,069 patients reported mild to moderate disease. Advanced age (= 0.028), gasping (< 0.001), dyspnea (= 0.024), and IgG negativity (P = 0.006) were associated with progression to critical illness. The mortality rate in critically ill patients with IgG antibody was 6.45% (95% CI 1.12-22.84%) and 36.36% (95% CI 12.36-68.38%) in patients with no IgG antibody (P = 0.003). Symptomatic patients were more likely to develop IgG antibody responses than asymptomatic patients. Using univariable analysis, fever (< 0.001), gasping (P = 0.048), cancer (P < 0.001), cephalosporin (P = 0.015), and chloroquine/hydroxychloroquine (P = 0.021) were associated with IgG response. In the multivariable analysis, fever, cancer, cephalosporins, and chloroquine/hydroxychloroquine correlated independently with IgG response. We determined that the absence of SARS-CoV-2 antibody IgG in the convalescent stage had a specific predictive role in critical illness progression. Importantly, risk factors affecting seropositivity were identified, and the effect of antimalarial drugs on antibody response was determined.

DOI: 10.3389/fimmu.2021.580147
PubMed: 33936026
PubMed Central: PMC8082543

Links to Exploration step

pubmed:33936026

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of Treatment Regimens on Antibody Response to the SARS-CoV-2 Coronavirus.</title>
<author>
<name sortKey="Shang, Yufeng" sort="Shang, Yufeng" uniqKey="Shang Y" first="Yufeng" last="Shang">Yufeng Shang</name>
<affiliation>
<nlm:affiliation>Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tao" sort="Liu, Tao" uniqKey="Liu T" first="Tao" last="Liu">Tao Liu</name>
<affiliation>
<nlm:affiliation>Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Jingfeng" sort="Li, Jingfeng" uniqKey="Li J" first="Jingfeng" last="Li">Jingfeng Li</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaweme, Natasha Mupeta" sort="Kaweme, Natasha Mupeta" uniqKey="Kaweme N" first="Natasha Mupeta" last="Kaweme">Natasha Mupeta Kaweme</name>
<affiliation>
<nlm:affiliation>Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xinghuan" sort="Wang, Xinghuan" uniqKey="Wang X" first="Xinghuan" last="Wang">Xinghuan Wang</name>
<affiliation>
<nlm:affiliation>Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Fuling" sort="Zhou, Fuling" uniqKey="Zhou F" first="Fuling" last="Zhou">Fuling Zhou</name>
<affiliation>
<nlm:affiliation>Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33936026</idno>
<idno type="pmid">33936026</idno>
<idno type="doi">10.3389/fimmu.2021.580147</idno>
<idno type="pmc">PMC8082543</idno>
<idno type="wicri:Area/Main/Corpus">000061</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000061</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Impact of Treatment Regimens on Antibody Response to the SARS-CoV-2 Coronavirus.</title>
<author>
<name sortKey="Shang, Yufeng" sort="Shang, Yufeng" uniqKey="Shang Y" first="Yufeng" last="Shang">Yufeng Shang</name>
<affiliation>
<nlm:affiliation>Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tao" sort="Liu, Tao" uniqKey="Liu T" first="Tao" last="Liu">Tao Liu</name>
<affiliation>
<nlm:affiliation>Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Jingfeng" sort="Li, Jingfeng" uniqKey="Li J" first="Jingfeng" last="Li">Jingfeng Li</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaweme, Natasha Mupeta" sort="Kaweme, Natasha Mupeta" uniqKey="Kaweme N" first="Natasha Mupeta" last="Kaweme">Natasha Mupeta Kaweme</name>
<affiliation>
<nlm:affiliation>Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xinghuan" sort="Wang, Xinghuan" uniqKey="Wang X" first="Xinghuan" last="Wang">Xinghuan Wang</name>
<affiliation>
<nlm:affiliation>Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Fuling" sort="Zhou, Fuling" uniqKey="Zhou F" first="Fuling" last="Zhou">Fuling Zhou</name>
<affiliation>
<nlm:affiliation>Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in immunology</title>
<idno type="eISSN">1664-3224</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Aged (MeSH)</term>
<term>Antibodies, Viral (immunology)</term>
<term>Antimalarials (adverse effects)</term>
<term>COVID-19 (complications)</term>
<term>COVID-19 (drug therapy)</term>
<term>COVID-19 (immunology)</term>
<term>COVID-19 (mortality)</term>
<term>Cephalosporins (adverse effects)</term>
<term>China (MeSH)</term>
<term>Chloroquine (adverse effects)</term>
<term>Convalescence (MeSH)</term>
<term>Female (MeSH)</term>
<term>Fever (complications)</term>
<term>Fever (virology)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (adverse effects)</term>
<term>Immunoglobulin G (immunology)</term>
<term>Immunoglobulin M (immunology)</term>
<term>Male (MeSH)</term>
<term>Middle Aged (MeSH)</term>
<term>Multivariate Analysis (MeSH)</term>
<term>Neoplasms (complications)</term>
<term>Neoplasms (virology)</term>
<term>Prognosis (MeSH)</term>
<term>Retrospective Studies (MeSH)</term>
<term>Risk Factors (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Seroconversion (MeSH)</term>
<term>Serologic Tests (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Antimalarials</term>
<term>Cephalosporins</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Viral</term>
<term>Immunoglobulin G</term>
<term>Immunoglobulin M</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>COVID-19</term>
<term>Fever</term>
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="mortality" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Fever</term>
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Aged</term>
<term>Convalescence</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Multivariate Analysis</term>
<term>Prognosis</term>
<term>Retrospective Studies</term>
<term>Risk Factors</term>
<term>SARS-CoV-2</term>
<term>Seroconversion</term>
<term>Serologic Tests</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coronavirus disease 2019 (COVID-19) is widely spread and remains a global pandemic. Limited evidence on the systematic evaluation of the impact of treatment regimens on antibody responses exists. Our study aimed to analyze the role of antibody response on prognosis and determine factors influencing the IgG antibodies' seroconversion. A total of 1,111 patients with mild to moderate COVID-19 symptoms admitted to Leishenshan Hospital in Wuhan were retrospectively analyzed. A serologic SARS-CoV-2 IgM/IgG antibody test was performed on all the patients 21 days after the onset of symptoms. Patient clinical characteristics were compared. In the study, 42 patients progressed to critical illness, with 6 mortalities reported while 1,069 patients reported mild to moderate disease. Advanced age (
<i></i>
= 0.028), gasping (
<i></i>
< 0.001), dyspnea (
<i></i>
= 0.024), and IgG negativity (
<i>P</i>
= 0.006) were associated with progression to critical illness. The mortality rate in critically ill patients with IgG antibody was 6.45% (95% CI 1.12-22.84%) and 36.36% (95% CI 12.36-68.38%) in patients with no IgG antibody (
<i>P</i>
= 0.003). Symptomatic patients were more likely to develop IgG antibody responses than asymptomatic patients. Using univariable analysis, fever (
<i></i>
< 0.001), gasping (
<i>P</i>
= 0.048), cancer (
<i>P</i>
< 0.001), cephalosporin (
<i>P</i>
= 0.015), and chloroquine/hydroxychloroquine (
<i>P</i>
= 0.021) were associated with IgG response. In the multivariable analysis, fever, cancer, cephalosporins, and chloroquine/hydroxychloroquine correlated independently with IgG response. We determined that the absence of SARS-CoV-2 antibody IgG in the convalescent stage had a specific predictive role in critical illness progression. Importantly, risk factors affecting seropositivity were identified, and the effect of antimalarial drugs on antibody response was determined.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33936026</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-3224</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2021</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in immunology</Title>
<ISOAbbreviation>Front Immunol</ISOAbbreviation>
</Journal>
<ArticleTitle>Impact of Treatment Regimens on Antibody Response to the SARS-CoV-2 Coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>580147</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fimmu.2021.580147</ELocationID>
<Abstract>
<AbstractText>The coronavirus disease 2019 (COVID-19) is widely spread and remains a global pandemic. Limited evidence on the systematic evaluation of the impact of treatment regimens on antibody responses exists. Our study aimed to analyze the role of antibody response on prognosis and determine factors influencing the IgG antibodies' seroconversion. A total of 1,111 patients with mild to moderate COVID-19 symptoms admitted to Leishenshan Hospital in Wuhan were retrospectively analyzed. A serologic SARS-CoV-2 IgM/IgG antibody test was performed on all the patients 21 days after the onset of symptoms. Patient clinical characteristics were compared. In the study, 42 patients progressed to critical illness, with 6 mortalities reported while 1,069 patients reported mild to moderate disease. Advanced age (
<i></i>
= 0.028), gasping (
<i></i>
< 0.001), dyspnea (
<i></i>
= 0.024), and IgG negativity (
<i>P</i>
= 0.006) were associated with progression to critical illness. The mortality rate in critically ill patients with IgG antibody was 6.45% (95% CI 1.12-22.84%) and 36.36% (95% CI 12.36-68.38%) in patients with no IgG antibody (
<i>P</i>
= 0.003). Symptomatic patients were more likely to develop IgG antibody responses than asymptomatic patients. Using univariable analysis, fever (
<i></i>
< 0.001), gasping (
<i>P</i>
= 0.048), cancer (
<i>P</i>
< 0.001), cephalosporin (
<i>P</i>
= 0.015), and chloroquine/hydroxychloroquine (
<i>P</i>
= 0.021) were associated with IgG response. In the multivariable analysis, fever, cancer, cephalosporins, and chloroquine/hydroxychloroquine correlated independently with IgG response. We determined that the absence of SARS-CoV-2 antibody IgG in the convalescent stage had a specific predictive role in critical illness progression. Importantly, risk factors affecting seropositivity were identified, and the effect of antimalarial drugs on antibody response was determined.</AbstractText>
<CopyrightInformation>Copyright © 2021 Shang, Liu, Li, Kaweme, Wang and Zhou.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shang</LastName>
<ForeName>Yufeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jingfeng</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaweme</LastName>
<ForeName>Natasha Mupeta</ForeName>
<Initials>NM</Initials>
<AffiliationInfo>
<Affiliation>Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xinghuan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Fuling</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>04</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Immunol</MedlineTA>
<NlmUniqueID>101560960</NlmUniqueID>
<ISSNLinking>1664-3224</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000962">Antimalarials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002511">Cephalosporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007074">Immunoglobulin G</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007075">Immunoglobulin M</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000962" MajorTopicYN="N">Antimalarials</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002511" MajorTopicYN="N">Cephalosporins</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003289" MajorTopicYN="N">Convalescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005334" MajorTopicYN="N">Fever</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007074" MajorTopicYN="N">Immunoglobulin G</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007075" MajorTopicYN="N">Immunoglobulin M</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015999" MajorTopicYN="N">Multivariate Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069078" MajorTopicYN="N">Seroconversion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012698" MajorTopicYN="N">Serologic Tests</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">IgG</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="Y">cancer</Keyword>
<Keyword MajorTopicYN="Y">chloroquine/hydroxychloroquine</Keyword>
</KeywordList>
<CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>03</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>11</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33936026</ArticleId>
<ArticleId IdType="doi">10.3389/fimmu.2021.580147</ArticleId>
<ArticleId IdType="pmc">PMC8082543</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2020 Nov 19;71(16):2027-2034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32221519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Aug 6;11(1):3924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32764665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Vet Res. 2015 Oct 22;11:268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26493336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2020 Aug;26(8):1200-1204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32555424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2020 Jun;26(6):845-848</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32350462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2020 Dec;16(12):2273-2275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32713288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2021 Jan;93(1):144-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32603501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Jun 23;323(24):2493-2502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32392282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Oct 6;324(13):1282-1283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32870235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2020 Dec 1;147(11):3267-3269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32525566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 22;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32450109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Jun 13;395(10240):e102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32504543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 May;94:49-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32251798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep Med. 2020 Jun 23;1(3):100040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32835303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2020 Nov;34(11):3047-3049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32855439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 May;55(5):105938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Poult Sci. 2011 Dec;90(12):2723-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2020 Jul;81(1):e78-e79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32283161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 28;395(10229):1054-1062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Oncol. 2020 Aug;31(8):1087-1088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32360743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JCI Insight. 2019 Feb 21;4(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30830861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Aug 25;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32840287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2020 Aug 04;11:1739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32849619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Aug 03;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32745196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2020 Dec;9(1):833-836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32306864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2020 Sep 1;173(5):W88-W89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32730105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infection. 1992;20 Suppl 1:S41-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1526676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancers (Basel). 2020 Aug 26;12(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32859016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2007 Sep;27(3):384-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17892847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Aug;53(8):3416-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 22;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32450107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005 Aug 22;2:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Sep;92(9):1518-1524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32104917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Dec 17;71(10):2688-2694</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32497196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Nov 5;71(8):1930-1934</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32306047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1977 Feb 24;265(5596):739-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">404559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 May;20(5):565-574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32213337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Sep 19;202(6):817-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16157687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Pharmacother. 2020 Nov;131:110668</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32861965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 1997 Apr;156:53-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9176699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Jun 13;395(10240):1820</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32511943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2020 Apr;38(4):379-381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2003 Nov;3(11):722-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14592603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2013 Mar 25;31(13):1717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23380456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000061 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000061 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33936026
   |texte=   Impact of Treatment Regimens on Antibody Response to the SARS-CoV-2 Coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33936026" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021