Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemoquiescence for ideal cancer treatment and prevention: where are we now?

Identifieur interne : 000279 ( PubMed/Curation ); précédent : 000278; suivant : 000280

Chemoquiescence for ideal cancer treatment and prevention: where are we now?

Auteurs : Napapan Kangwan [Corée du Sud] ; Jong-Min Park [Corée du Sud] ; Eun-Hee Kim [Corée du Sud] ; Ki Baik Hahm [Corée du Sud]

Source :

RBID : pubmed:25337576

Abstract

Cellular quiescence is a state of reversible cell cycle arrest and is associated with a low metabolic state featured with decreased glycolysis, reduced translation rates, and activation of autophagy, fundamentally to provide nutrients for cell survival similar as seen in hybernation. As signal for quiescence, inactivating the target of rapamycin kinase and resulting reduced cell growth and biosynthesis are essential, but cellular quiescence is not always associated with reduced metabolism since it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. However, in cancer cells, overcoming intrinsic and acquired resistance of cancer stem or cancer dormancy cells to current clinical treatments can be reversed with the acquisition of chemoquiesence. The development of new drug combinations or strategy to treat the highly aggressive and metastatic cancers including relapsed leukaemias, melanoma and head and neck, brain, lung, breast, ovary, prostate, pancreas as well as gastrointestinal cancers which remain incurable in the clinic in spite of aggressive therapies, can be accelerated with the introduction of chemoquiescence agent, for which cancer stem cells or tumor dormancy should be eradicated or removed. Recently potential applications of metformin or chloroquine as well as the potential drugs under investigation such as proton pump inhibitor, sonic hedgehog inhibitor, and Akt inhibitor, are actively investigated in this field of chemoquiescence to achieve cancer cure far beyond those of chemoprevention. In this review article, the evolving concept of chemoquiescence or cancer dormancy will be introduced accompanied by a description of novel target drug development.

DOI: 10.15430/JCP.2014.19.2.89
PubMed: 25337576

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25337576

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chemoquiescence for ideal cancer treatment and prevention: where are we now?</title>
<author>
<name sortKey="Kangwan, Napapan" sort="Kangwan, Napapan" uniqKey="Kangwan N" first="Napapan" last="Kangwan">Napapan Kangwan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Cancer Prevention Research Center, CHA University School of Medicine, Seoul</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Park, Jong Min" sort="Park, Jong Min" uniqKey="Park J" first="Jong-Min" last="Park">Jong-Min Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Cancer Prevention Research Center, CHA University School of Medicine, Seoul</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, Eun Hee" sort="Kim, Eun Hee" uniqKey="Kim E" first="Eun-Hee" last="Kim">Eun-Hee Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Cancer Prevention Research Center, CHA University School of Medicine, Seoul</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hahm, Ki Baik" sort="Hahm, Ki Baik" uniqKey="Hahm K" first="Ki Baik" last="Hahm">Ki Baik Hahm</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Cancer Prevention Research Center, CHA University School of Medicine, Seoul</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25337576</idno>
<idno type="pmid">25337576</idno>
<idno type="doi">10.15430/JCP.2014.19.2.89</idno>
<idno type="wicri:Area/PubMed/Corpus">000279</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000279</idno>
<idno type="wicri:Area/PubMed/Curation">000279</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000279</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chemoquiescence for ideal cancer treatment and prevention: where are we now?</title>
<author>
<name sortKey="Kangwan, Napapan" sort="Kangwan, Napapan" uniqKey="Kangwan N" first="Napapan" last="Kangwan">Napapan Kangwan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Cancer Prevention Research Center, CHA University School of Medicine, Seoul</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Park, Jong Min" sort="Park, Jong Min" uniqKey="Park J" first="Jong-Min" last="Park">Jong-Min Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Cancer Prevention Research Center, CHA University School of Medicine, Seoul</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, Eun Hee" sort="Kim, Eun Hee" uniqKey="Kim E" first="Eun-Hee" last="Kim">Eun-Hee Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Cancer Prevention Research Center, CHA University School of Medicine, Seoul</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hahm, Ki Baik" sort="Hahm, Ki Baik" uniqKey="Hahm K" first="Ki Baik" last="Hahm">Ki Baik Hahm</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Cancer Prevention Research Center, CHA University School of Medicine, Seoul</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of cancer prevention</title>
<idno type="ISSN">2288-3649</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellular quiescence is a state of reversible cell cycle arrest and is associated with a low metabolic state featured with decreased glycolysis, reduced translation rates, and activation of autophagy, fundamentally to provide nutrients for cell survival similar as seen in hybernation. As signal for quiescence, inactivating the target of rapamycin kinase and resulting reduced cell growth and biosynthesis are essential, but cellular quiescence is not always associated with reduced metabolism since it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. However, in cancer cells, overcoming intrinsic and acquired resistance of cancer stem or cancer dormancy cells to current clinical treatments can be reversed with the acquisition of chemoquiesence. The development of new drug combinations or strategy to treat the highly aggressive and metastatic cancers including relapsed leukaemias, melanoma and head and neck, brain, lung, breast, ovary, prostate, pancreas as well as gastrointestinal cancers which remain incurable in the clinic in spite of aggressive therapies, can be accelerated with the introduction of chemoquiescence agent, for which cancer stem cells or tumor dormancy should be eradicated or removed. Recently potential applications of metformin or chloroquine as well as the potential drugs under investigation such as proton pump inhibitor, sonic hedgehog inhibitor, and Akt inhibitor, are actively investigated in this field of chemoquiescence to achieve cancer cure far beyond those of chemoprevention. In this review article, the evolving concept of chemoquiescence or cancer dormancy will be introduced accompanied by a description of novel target drug development. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25337576</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">2288-3649</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>19</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of cancer prevention</Title>
<ISOAbbreviation>J Cancer Prev</ISOAbbreviation>
</Journal>
<ArticleTitle>Chemoquiescence for ideal cancer treatment and prevention: where are we now?</ArticleTitle>
<Pagination>
<MedlinePgn>89-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.15430/JCP.2014.19.2.89</ELocationID>
<Abstract>
<AbstractText>Cellular quiescence is a state of reversible cell cycle arrest and is associated with a low metabolic state featured with decreased glycolysis, reduced translation rates, and activation of autophagy, fundamentally to provide nutrients for cell survival similar as seen in hybernation. As signal for quiescence, inactivating the target of rapamycin kinase and resulting reduced cell growth and biosynthesis are essential, but cellular quiescence is not always associated with reduced metabolism since it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. However, in cancer cells, overcoming intrinsic and acquired resistance of cancer stem or cancer dormancy cells to current clinical treatments can be reversed with the acquisition of chemoquiesence. The development of new drug combinations or strategy to treat the highly aggressive and metastatic cancers including relapsed leukaemias, melanoma and head and neck, brain, lung, breast, ovary, prostate, pancreas as well as gastrointestinal cancers which remain incurable in the clinic in spite of aggressive therapies, can be accelerated with the introduction of chemoquiescence agent, for which cancer stem cells or tumor dormancy should be eradicated or removed. Recently potential applications of metformin or chloroquine as well as the potential drugs under investigation such as proton pump inhibitor, sonic hedgehog inhibitor, and Akt inhibitor, are actively investigated in this field of chemoquiescence to achieve cancer cure far beyond those of chemoprevention. In this review article, the evolving concept of chemoquiescence or cancer dormancy will be introduced accompanied by a description of novel target drug development. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kangwan</LastName>
<ForeName>Napapan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Jong-Min</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Eun-Hee</ForeName>
<Initials>EH</Initials>
<AffiliationInfo>
<Affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hahm</LastName>
<ForeName>Ki Baik</ForeName>
<Initials>KB</Initials>
<AffiliationInfo>
<Affiliation>Cancer Prevention Research Center, CHA University School of Medicine, Seoul, Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Korea (South)</Country>
<MedlineTA>J Cancer Prev</MedlineTA>
<NlmUniqueID>101615965</NlmUniqueID>
<ISSNLinking>2288-3649</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cancer dormancy</Keyword>
<Keyword MajorTopicYN="N">Cancer stem cells</Keyword>
<Keyword MajorTopicYN="N">Chemoprevention</Keyword>
<Keyword MajorTopicYN="N">Quiescence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>06</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25337576</ArticleId>
<ArticleId IdType="doi">10.15430/JCP.2014.19.2.89</ArticleId>
<ArticleId IdType="pii">jcp-19-089</ArticleId>
<ArticleId IdType="pmc">PMC4204166</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Open Biol. 2012 May;2(5):120066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22724067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23091617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Biomark. 2007;3(4-5):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17917153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 2011 Oct 25;105(9):1253-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21934687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BioDrugs. 2007;21(5):299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17896836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2014;107:333-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24439812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Commun Adhes. 2011 Jun;18(3):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21913875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2008;15(30):3171-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19075661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2012 Dec;44(12):2144-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22981632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2011;18(18):2715-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21649579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2009 Dec 25;625(1-3):220-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19836374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Stem Cells. 2009;4(2):123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20232597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell Int. 2013 Jun 24;13(1):62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23799994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Panminerva Med. 2008 Mar;50(1):3-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18427384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2005 Jul 15;65(14 ):6207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16024622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci (Elite Ed). 2010 Jan 01;2:602-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20036905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Aug;5(16):1799-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16929185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2013;734:19-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23143973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Agents Med Chem. 2013 Feb;13(2):199-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22934702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>APMIS. 2008 Jul-Aug;116(7-8):569-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18834403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2013 Jul 1;73(13):3811-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23794703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2011 Dec;2(12):896-917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22203527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2013 Jun;34(6):732-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23685952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2007 May;117(5):1175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17476347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2007 Oct;18(5):460-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18023337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2008 Apr;12 (2):374-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histol Histopathol. 2010 Aug;25(8):1057-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20552555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2013;53:89-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23294306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Prev Res (Phila). 2012 Mar;5(3):355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2008 Sep 8;268(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2007 Jan;17(1):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Treat Rev. 2012 Oct;38(6):589-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22469558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Pathol. 2011 Nov;64(11):937-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Aug;5(16):1779-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16931911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2011 Aug 1;17 (15):4942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2013;734:181-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23143980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Resist Updat. 2011 Aug-Oct;14(4-5):212-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21600837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Hematol Oncol. 2013 Oct 16;2(1):29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24502434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2014 Sep;234(1):23-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24756862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Radiat Oncol. 2009 Apr;19(2):96-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19249647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2006 Nov 15;312(19):3701-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breast Cancer Res Treat. 2011 Apr;126(2):355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20458531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2014 Jul 1;20(13):3384-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24756372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Nov 15;67(22):10627-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Oncol. 2012 Feb;13(2):e83-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22300863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Agents Med Chem. 2010 Feb;10(2):137-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2010 Feb 1;288(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Transl Oncol. 2013 Apr;15(4):253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22926945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2013 Jun;14(6):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2014 Jul;13(7):1758-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24785258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Sep 20;23(43):7274-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gastroenterol Hepatol. 2014 Feb 18;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24547965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2013 Mar;20(3):382-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23175184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Drugs. 2009 Sep;20(8):736-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2013;734:145-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23143979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2010 Aug 28;294(2):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Rep. 2012 Oct;28(4):1301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22895640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Oncol. 2010 Oct;6(10):1563-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21062156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2012 Feb 1;8(2):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22252008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anticancer Ther. 2011 Jul;11(7):1131-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21806335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Nov 7;155(4):750-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24209616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 Nov;19(11):1450-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24202397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2013 Jan 1;73(1):3-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23288916</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000279 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000279 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25337576
   |texte=   Chemoquiescence for ideal cancer treatment and prevention: where are we now?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25337576" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021