Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an Ex vivo COPD Model.

Identifieur interne : 000180 ( PubMed/Curation ); précédent : 000179; suivant : 000181

Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an Ex vivo COPD Model.

Auteurs : Eline M. Van Dijk [Pays-Bas] ; Sule Culha [Pays-Bas] ; Mark H. Menzen [Pays-Bas] ; Cécile M. Bidan [France] ; Reinoud Gosens [Pays-Bas]

Source :

RBID : pubmed:28101062

Abstract

Background: COPD is a progressive lung disease characterized by emphysema and enhanced bronchoconstriction. Current treatments focused on bronchodilation can delay disease progression to some extent, but recovery or normalization of loss of lung function is impossible. Therefore, novel therapeutic targets are needed. The importance of the parenchyma in airway narrowing is increasingly recognized. In COPD, the parenchyma and extracellular matrix are altered, possibly affecting airway mechanics and enhancing bronchoconstriction. Our aim was to set up a comprehensive ex vivo Precision Cut Lung Slice (PCLS) model with a pathophysiology resembling that of COPD and integrate multiple readouts in order to study the relationship between parenchyma, airway functionality, and lung repair processes. Methods: Lungs of C57Bl/6J mice were sliced and treated ex vivo with elastase (2.5 μg/ml) or H2O2 (200 μM) for 16 h. Following treatment, parenchymal structure, airway narrowing, and gene expression levels of alveolar Type I and II cell repair were assessed. Results: Following elastase, but not H2O2 treatment, slices showed a significant increase in mean linear intercept (Lmi), reflective of emphysema. Only elastase-treated slices showed disorganization of elastin and collagen fibers. In addition, elastase treatment lowered both alveolar Type I and II marker expression, whereas H2O2 stimulation lowered alveolar Type I marker expression only. Furthermore, elastase-treated slices showed enhanced methacholine-induced airway narrowing as reflected by increased pEC50 (5.87 at basal vs. 6.50 after elastase treatment) and Emax values (47.96 vs. 67.30%), and impaired chloroquine-induced airway opening. The increase in pEC50 correlated with an increase in mean Lmi. Conclusion: Using this model, we show that structural disruption of elastin fibers leads to impaired alveolar repair, disruption of the parenchymal compartment, and altered airway biomechanics, enhancing airway contraction. This finding may have implications for COPD, as the amount of elastin fiber and parenchymal tissue disruption is associated with disease severity. Therefore, we suggest that PCLS can be used to model certain aspects of COPD pathophysiology and that the parenchymal tissue damage observed in COPD contributes to lung function decline by disrupting airway biomechanics. Targeting the parenchymal compartment may therefore be a promising therapeutic target in the treatment of COPD.

DOI: 10.3389/fphys.2016.00657
PubMed: 28101062

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28101062

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an
<i>Ex vivo</i>
COPD Model.</title>
<author>
<name sortKey="Van Dijk, Eline M" sort="Van Dijk, Eline M" uniqKey="Van Dijk E" first="Eline M" last="Van Dijk">Eline M. Van Dijk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Culha, Sule" sort="Culha, Sule" uniqKey="Culha S" first="Sule" last="Culha">Sule Culha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Menzen, Mark H" sort="Menzen, Mark H" uniqKey="Menzen M" first="Mark H" last="Menzen">Mark H. Menzen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bidan, Cecile M" sort="Bidan, Cecile M" uniqKey="Bidan C" first="Cécile M" last="Bidan">Cécile M. Bidan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Grenoble Alpes, Centre National de la Recherche Scientifique, LIPhy Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Grenoble Alpes, Centre National de la Recherche Scientifique, LIPhy Grenoble</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gosens, Reinoud" sort="Gosens, Reinoud" uniqKey="Gosens R" first="Reinoud" last="Gosens">Reinoud Gosens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:28101062</idno>
<idno type="pmid">28101062</idno>
<idno type="doi">10.3389/fphys.2016.00657</idno>
<idno type="wicri:Area/PubMed/Corpus">000180</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000180</idno>
<idno type="wicri:Area/PubMed/Curation">000180</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000180</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an
<i>Ex vivo</i>
COPD Model.</title>
<author>
<name sortKey="Van Dijk, Eline M" sort="Van Dijk, Eline M" uniqKey="Van Dijk E" first="Eline M" last="Van Dijk">Eline M. Van Dijk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Culha, Sule" sort="Culha, Sule" uniqKey="Culha S" first="Sule" last="Culha">Sule Culha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Menzen, Mark H" sort="Menzen, Mark H" uniqKey="Menzen M" first="Mark H" last="Menzen">Mark H. Menzen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bidan, Cecile M" sort="Bidan, Cecile M" uniqKey="Bidan C" first="Cécile M" last="Bidan">Cécile M. Bidan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Grenoble Alpes, Centre National de la Recherche Scientifique, LIPhy Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Grenoble Alpes, Centre National de la Recherche Scientifique, LIPhy Grenoble</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gosens, Reinoud" sort="Gosens, Reinoud" uniqKey="Gosens R" first="Reinoud" last="Gosens">Reinoud Gosens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in physiology</title>
<idno type="ISSN">1664-042X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<b>Background:</b>
COPD is a progressive lung disease characterized by emphysema and enhanced bronchoconstriction. Current treatments focused on bronchodilation can delay disease progression to some extent, but recovery or normalization of loss of lung function is impossible. Therefore, novel therapeutic targets are needed. The importance of the parenchyma in airway narrowing is increasingly recognized. In COPD, the parenchyma and extracellular matrix are altered, possibly affecting airway mechanics and enhancing bronchoconstriction. Our aim was to set up a comprehensive
<i>ex vivo</i>
Precision Cut Lung Slice (PCLS) model with a pathophysiology resembling that of COPD and integrate multiple readouts in order to study the relationship between parenchyma, airway functionality, and lung repair processes.
<b>Methods:</b>
Lungs of C57Bl/6J mice were sliced and treated
<i>ex vivo</i>
with elastase (2.5 μg/ml) or H
<sub>2</sub>
O
<sub>2</sub>
(200 μM) for 16 h. Following treatment, parenchymal structure, airway narrowing, and gene expression levels of alveolar Type I and II cell repair were assessed.
<b>Results:</b>
Following elastase, but not H
<sub>2</sub>
O
<sub>2</sub>
treatment, slices showed a significant increase in mean linear intercept (Lmi), reflective of emphysema. Only elastase-treated slices showed disorganization of elastin and collagen fibers. In addition, elastase treatment lowered both alveolar Type I and II marker expression, whereas H
<sub>2</sub>
O
<sub>2</sub>
stimulation lowered alveolar Type I marker expression only. Furthermore, elastase-treated slices showed enhanced methacholine-induced airway narrowing as reflected by increased pEC50 (5.87 at basal vs. 6.50 after elastase treatment) and Emax values (47.96 vs. 67.30%), and impaired chloroquine-induced airway opening. The increase in pEC50 correlated with an increase in mean Lmi.
<b>Conclusion:</b>
Using this model, we show that structural disruption of elastin fibers leads to impaired alveolar repair, disruption of the parenchymal compartment, and altered airway biomechanics, enhancing airway contraction. This finding may have implications for COPD, as the amount of elastin fiber and parenchymal tissue disruption is associated with disease severity. Therefore, we suggest that PCLS can be used to model certain aspects of COPD pathophysiology and that the parenchymal tissue damage observed in COPD contributes to lung function decline by disrupting airway biomechanics. Targeting the parenchymal compartment may therefore be a promising therapeutic target in the treatment of COPD.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28101062</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-042X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in physiology</Title>
<ISOAbbreviation>Front Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an
<i>Ex vivo</i>
COPD Model.</ArticleTitle>
<Pagination>
<MedlinePgn>657</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fphys.2016.00657</ELocationID>
<Abstract>
<AbstractText>
<b>Background:</b>
COPD is a progressive lung disease characterized by emphysema and enhanced bronchoconstriction. Current treatments focused on bronchodilation can delay disease progression to some extent, but recovery or normalization of loss of lung function is impossible. Therefore, novel therapeutic targets are needed. The importance of the parenchyma in airway narrowing is increasingly recognized. In COPD, the parenchyma and extracellular matrix are altered, possibly affecting airway mechanics and enhancing bronchoconstriction. Our aim was to set up a comprehensive
<i>ex vivo</i>
Precision Cut Lung Slice (PCLS) model with a pathophysiology resembling that of COPD and integrate multiple readouts in order to study the relationship between parenchyma, airway functionality, and lung repair processes.
<b>Methods:</b>
Lungs of C57Bl/6J mice were sliced and treated
<i>ex vivo</i>
with elastase (2.5 μg/ml) or H
<sub>2</sub>
O
<sub>2</sub>
(200 μM) for 16 h. Following treatment, parenchymal structure, airway narrowing, and gene expression levels of alveolar Type I and II cell repair were assessed.
<b>Results:</b>
Following elastase, but not H
<sub>2</sub>
O
<sub>2</sub>
treatment, slices showed a significant increase in mean linear intercept (Lmi), reflective of emphysema. Only elastase-treated slices showed disorganization of elastin and collagen fibers. In addition, elastase treatment lowered both alveolar Type I and II marker expression, whereas H
<sub>2</sub>
O
<sub>2</sub>
stimulation lowered alveolar Type I marker expression only. Furthermore, elastase-treated slices showed enhanced methacholine-induced airway narrowing as reflected by increased pEC50 (5.87 at basal vs. 6.50 after elastase treatment) and Emax values (47.96 vs. 67.30%), and impaired chloroquine-induced airway opening. The increase in pEC50 correlated with an increase in mean Lmi.
<b>Conclusion:</b>
Using this model, we show that structural disruption of elastin fibers leads to impaired alveolar repair, disruption of the parenchymal compartment, and altered airway biomechanics, enhancing airway contraction. This finding may have implications for COPD, as the amount of elastin fiber and parenchymal tissue disruption is associated with disease severity. Therefore, we suggest that PCLS can be used to model certain aspects of COPD pathophysiology and that the parenchymal tissue damage observed in COPD contributes to lung function decline by disrupting airway biomechanics. Targeting the parenchymal compartment may therefore be a promising therapeutic target in the treatment of COPD.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Van Dijk</LastName>
<ForeName>Eline M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Culha</LastName>
<ForeName>Sule</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Menzen</LastName>
<ForeName>Mark H</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bidan</LastName>
<ForeName>Cécile M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Université Grenoble Alpes, Centre National de la Recherche Scientifique, LIPhy Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gosens</LastName>
<ForeName>Reinoud</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Physiol</MedlineTA>
<NlmUniqueID>101549006</NlmUniqueID>
<ISSNLinking>1664-042X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">airway mechanics</Keyword>
<Keyword MajorTopicYN="N">chronic obstructive pulmonary disease</Keyword>
<Keyword MajorTopicYN="N">extracellular matrix</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28101062</ArticleId>
<ArticleId IdType="doi">10.3389/fphys.2016.00657</ArticleId>
<ArticleId IdType="pmc">PMC5209351</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Respir Res. 2014 Mar 12;15:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24621080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2004 Oct;24(4):664-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15459148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2008 May;31(5):998-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Pulm Med. 2014 May 26;14:90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24886452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lung. 1992;170(3):163-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1351970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Dec 02;6:346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26696894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2012 Jun 11;3:191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22701430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2007 Aug;28(8):1166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17640479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2016 Jul 16;17(1):83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27423691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Ther Targets. 2016 Sep;20(9):1031-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26962995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biochem Funct. 2014 Jun;32(4):309-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24574137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2015 Jun;45(6):1763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26028626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Gastrointest Liver Physiol. 2011 Jul;301(1):G32-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21493731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2011 Apr;110(4):1111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21212247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2010 Aug;171(2):189-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20412859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Chron Obstruct Pulmon Dis. 2009;4:19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19436685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2009 Aug;34(2):324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19357152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Opt. 2014 Mar;19(3):36005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24604535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2010 Jul;299(1):L98-L108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2003 Oct;22(4):672-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14582923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2014 May;50(5):876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24313705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 1997 Oct;17(4):393-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9376114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 26;8(6):e65580</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Care. 2001 Aug;46(8):798-825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11463370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2016 Jul 12;7:287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2005 Feb;98(2):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2014 Mar 15;116(6):628-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24481963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2013 Mar;1(1):51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24321804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2001;2(1):33-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11686863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2016 Jul;138(1):16-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27373322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2013 Jan;59(1):32-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22975077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2006 Mar;116(3):753-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16470245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 2013 Jul;144(1):266-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23880677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2007 Sep 15;176(6):532-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2008 Jun;31(6):1334-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2007 Oct;30(4):691-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17537774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 17;9(10):e109725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25329998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):33-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thorax. 2015 Jan;70(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24990664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2001 Nov 15;164(10 Pt 1):1920-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2006 Apr 1;173(7):751-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Apr;37(6):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19237396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2007 May;29(5):834-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2015 Jul 1;309(1):L53-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26136527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000180 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000180 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28101062
   |texte=   Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an Ex vivo COPD Model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28101062" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021