Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

Identifieur interne : 000165 ( PubMed/Curation ); précédent : 000164; suivant : 000166

Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

Auteurs : Shi Pan [États-Unis] ; Pawan Sharma [États-Unis] ; Sushrut D. Shah [États-Unis] ; Deepak A. Deshpande [États-Unis]

Source :

RBID : pubmed:28450286

Descripteurs français

English descriptors

Abstract

Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases.

DOI: 10.1152/ajplung.00106.2017
PubMed: 28450286

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28450286

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.</title>
<author>
<name sortKey="Pan, Shi" sort="Pan, Shi" uniqKey="Pan S" first="Shi" last="Pan">Shi Pan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Pawan" sort="Sharma, Pawan" uniqKey="Sharma P" first="Pawan" last="Sharma">Pawan Sharma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shah, Sushrut D" sort="Shah, Sushrut D" uniqKey="Shah S" first="Sushrut D" last="Shah">Sushrut D. Shah</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Deshpande, Deepak A" sort="Deshpande, Deepak A" uniqKey="Deshpande D" first="Deepak A" last="Deshpande">Deepak A. Deshpande</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania deepak.deshpande@jefferson.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28450286</idno>
<idno type="pmid">28450286</idno>
<idno type="doi">10.1152/ajplung.00106.2017</idno>
<idno type="wicri:Area/PubMed/Corpus">000165</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000165</idno>
<idno type="wicri:Area/PubMed/Curation">000165</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.</title>
<author>
<name sortKey="Pan, Shi" sort="Pan, Shi" uniqKey="Pan S" first="Shi" last="Pan">Shi Pan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Pawan" sort="Sharma, Pawan" uniqKey="Sharma P" first="Pawan" last="Sharma">Pawan Sharma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shah, Sushrut D" sort="Shah, Sushrut D" uniqKey="Shah S" first="Sushrut D" last="Shah">Sushrut D. Shah</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Deshpande, Deepak A" sort="Deshpande, Deepak A" uniqKey="Deshpande D" first="Deepak A" last="Deshpande">Deepak A. Deshpande</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania deepak.deshpande@jefferson.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Lung cellular and molecular physiology</title>
<idno type="eISSN">1522-1504</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Autophagy (drug effects)</term>
<term>Cell Death</term>
<term>Cells, Cultured</term>
<term>GTP Phosphohydrolases (metabolism)</term>
<term>Genes, Dominant</term>
<term>Humans</term>
<term>Lung (cytology)</term>
<term>Membrane Potential, Mitochondrial (drug effects)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Mitochondria (drug effects)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Dynamics (drug effects)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Models, Biological</term>
<term>Myocytes, Smooth Muscle (cytology)</term>
<term>Myocytes, Smooth Muscle (drug effects)</term>
<term>Myocytes, Smooth Muscle (metabolism)</term>
<term>Proto-Oncogene Proteins (metabolism)</term>
<term>Quinazolinones (pharmacology)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Receptors, G-Protein-Coupled (agonists)</term>
<term>Receptors, G-Protein-Coupled (metabolism)</term>
<term>Taste (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Autophagie ()</term>
<term>Cellules cultivées</term>
<term>Dynamique mitochondriale ()</term>
<term>Goût ()</term>
<term>Gènes dominants</term>
<term>Humains</term>
<term>Mitochondries ()</term>
<term>Mitochondries (métabolisme)</term>
<term>Modèles biologiques</term>
<term>Mort cellulaire</term>
<term>Myocytes du muscle lisse ()</term>
<term>Myocytes du muscle lisse (cytologie)</term>
<term>Myocytes du muscle lisse (métabolisme)</term>
<term>Petit ARN interférent (métabolisme)</term>
<term>Potentiel de membrane mitochondriale ()</term>
<term>Poumon (cytologie)</term>
<term>Protéines associées aux microtubules (métabolisme)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Protéines proto-oncogènes (métabolisme)</term>
<term>Quinazolinones (pharmacologie)</term>
<term>Récepteurs couplés aux protéines G (agonistes)</term>
<term>Récepteurs couplés aux protéines G (métabolisme)</term>
<term>dGTPases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="agonists" xml:lang="en">
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>GTP Phosphohydrolases</term>
<term>Membrane Proteins</term>
<term>Microtubule-Associated Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Proto-Oncogene Proteins</term>
<term>RNA, Small Interfering</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" qualifier="agonistes" xml:lang="fr">
<term>Récepteurs couplés aux protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Myocytes du muscle lisse</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Lung</term>
<term>Myocytes, Smooth Muscle</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Membrane Potential, Mitochondrial</term>
<term>Mitochondria</term>
<term>Mitochondrial Dynamics</term>
<term>Myocytes, Smooth Muscle</term>
<term>Taste</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Myocytes, Smooth Muscle</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
<term>Mitochondries</term>
<term>Myocytes du muscle lisse</term>
<term>Petit ARN interférent</term>
<term>Protéines associées aux microtubules</term>
<term>Protéines membranaires</term>
<term>Protéines mitochondriales</term>
<term>Protéines proto-oncogènes</term>
<term>Récepteurs couplés aux protéines G</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Quinazolinones</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Quinazolinones</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Death</term>
<term>Cells, Cultured</term>
<term>Genes, Dominant</term>
<term>Humans</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Autophagie</term>
<term>Cellules cultivées</term>
<term>Dynamique mitochondriale</term>
<term>Goût</term>
<term>Gènes dominants</term>
<term>Humains</term>
<term>Mitochondries</term>
<term>Modèles biologiques</term>
<term>Mort cellulaire</term>
<term>Myocytes du muscle lisse</term>
<term>Potentiel de membrane mitochondriale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28450286</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1504</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>313</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>07</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Lung cellular and molecular physiology</Title>
<ISOAbbreviation>Am. J. Physiol. Lung Cell Mol. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.</ArticleTitle>
<Pagination>
<MedlinePgn>L154-L165</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajplung.00106.2017</ELocationID>
<Abstract>
<AbstractText>Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases.</AbstractText>
<CopyrightInformation>Copyright © 2017 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Shi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>Pawan</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shah</LastName>
<ForeName>Sushrut D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deshpande</LastName>
<ForeName>Deepak A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania deepak.deshpande@jefferson.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Lung Cell Mol Physiol</MedlineTA>
<NlmUniqueID>100901229</NlmUniqueID>
<ISSNLinking>1040-0605</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C549041">3-(2,4-dichloro-5-methoxyphenyl)-2-sulfanyl-4(3H)-quinazolinone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C090121">BNIP3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011518">Proto-Oncogene Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D052999">Quinazolinones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C406821">taste receptors, type 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D020558">GTP Phosphohydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.5</RegistryNumber>
<NameOfSubstance UI="C110768">DNM1L protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020558" MajorTopicYN="N">GTP Phosphohydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005799" MajorTopicYN="N">Genes, Dominant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053078" MajorTopicYN="N">Membrane Potential, Mitochondrial</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063154" MajorTopicYN="N">Mitochondrial Dynamics</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032389" MajorTopicYN="N">Myocytes, Smooth Muscle</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011518" MajorTopicYN="N">Proto-Oncogene Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052999" MajorTopicYN="N">Quinazolinones</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="Y">agonists</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013649" MajorTopicYN="Y">Taste</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">G protein-coupled receptor</Keyword>
<Keyword MajorTopicYN="Y">TAS2R</Keyword>
<Keyword MajorTopicYN="Y">asthma</Keyword>
<Keyword MajorTopicYN="Y">mitochondria</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>04</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28450286</ArticleId>
<ArticleId IdType="pii">ajplung.00106.2017</ArticleId>
<ArticleId IdType="doi">10.1152/ajplung.00106.2017</ArticleId>
<ArticleId IdType="pmc">PMC5538869</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2010 Nov;16(11):1299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20972434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2009 Jul;124(1):45-51.e1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Aug 1;405(3):407-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 31;6(1):e16523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jul;1843(7):1259-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24637330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2011 Jun;130(3):325-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21334378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2003 May 15;167(10):1360-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12531777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Aug 2;18(15):4118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10428951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2012 Jan;19(1):87-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22052193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Endocrinol Metab. 2006 Aug;91(8):3224-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2008 Feb;73(2):566-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Feb 2;100(2):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Endocrinol. 2016 Nov;12 (11):633-645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27448057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2010 Jun;10(3):236-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20591736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2008 Jul;22(7):2134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18337459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Nov 15;21(22):2861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cardiovasc Med. 2000 Feb;10(2):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2010 Mar;20(3):314-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19935772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2003;4:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12648290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2015 Jan 16;116(2):264-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25332205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1998 Sep;275(3 Pt 1):L491-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9728043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2007 Jan;14(1):146-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16645637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2001 Sep;91(3):1467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11509550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2010 May;221(1):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20225336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2009 Jun 1;389(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19285029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2000 Jan;203(Pt 1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Sep;27(17 ):6229-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2001 Jul 1;164(1):141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11435252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2012 Dec 1;303(11):L956-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22962016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2012 Jun;166(3):981-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22145625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Nov 5;402(1):70-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20920472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Jul 15;29(28):9090-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19605646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2016 Feb 15;310(4):L365-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26684251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Mol Biol Transl Sci. 2014;127:93-131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25149215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2016 Mar 29;133(13):1249-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26915633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2015 Mar;22(3):367-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25257169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Dec;6(12 ):1221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2014 Oct 5;740:302-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25036266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2012 Jun 21;3:e330</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22717585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Med. 2010 Sep;104(9):1271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20418085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2009;456:29-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2017 Jan;12 (1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27976834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2007 Oct;117(10):2825-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 9;278(19):17190-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12598526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2006 Dec;18(12):2105-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 23;280(38):33076-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16049009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2008 Aug;173(2):470-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H1924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21890690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2015 Jan 1;308(1):H39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25380814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Res. 2009 Oct;154(4):165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2009 Dec;6(8):683-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20008876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Jan;32(2):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22083962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2010 Jun;48(6):1146-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20025887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Senses. 2010 Feb;35(2):157-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20022913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2009 Jul;89(3):799-845</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:303-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2005 Nov;12 Suppl 2:1509-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16247498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1999 Nov;277(5 Pt 1):L932-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10564178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Toxicol. 2017 Apr;33(2):145-168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27957648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2008 Jul 15;79(2):341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Apr;6(4):463-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15068787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2010 May;125(5):1037-1045.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451038</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28450286
   |texte=   Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28450286" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021